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Robust topological degeneracy of classical theories
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We challenge the hypothesis that the ground states of a physical system whose degeneracy depends on topology
must necessarily realize topological quantum order and display nonlocal entanglement. To this end, we introduce
and study a classical rendition of the Toric Code model embedded on Riemann surfaces of different genus
numbers. We find that the minimal ground state degeneracy (and those of all levels) depends on the topology
of the embedding surface alone. As the ground states of this classical system may be distinguished by local
measurements, a characteristic of Landau orders, this example illustrates that topological degeneracy is not a
sufficient condition for topological quantum order. This conclusion is generic and, as shown, it applies to many
other models. We also demonstrate that certain lattice realizations of these models, and other theories, display
a ground state entropy (and those of all levels) that is “holographic”, i.e., extensive in the system boundary. We
find that clock and U (1) gauge theories display topological (in addition to gauge) degeneracies.
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I. INTRODUCTION

The primary purpose of the current paper is to show that,
as a matter of principle, contrary to discerning lore that is
realized in many fascinating systems, e.g., Refs. [1–3], the
appearance of a topological ground state degeneracy does not
imply that these degenerate states are “topologically ordered,”
in the sense that local perturbations can be detected without
destroying the encoded quantum information [4]. Towards
this end, we introduce various models, including a classical
version of Kitaev’s toric code [3], that exhibit robust genus
dependent degeneracies but are nonetheless Landau ordered.
Those models do not harbor long-range entangled ground
states that cannot be told apart from one another by local
measurements. Rather, they (as well as all other eigenstates)
are trivial classical states. Along the way we will discover
that these two-dimensional classical models (including rather
mundane clock and U (1) gauge-like theories with four spin
interactions (specifically, toric clock and U (1) theories that we
will define) may not only have genus dependent symmetries
and degeneracies but, for various lattice types, may also
exhibit holographic degeneracies that scale exponentially in
the system perimeter. Similar degeneracies also appear in
classical systems having two spin interactions. Thus, the
classical degeneracies that we find may be viewed as analogs of
those in quantum models such as the Haah code model on the
simple cubic lattice [5–7], a nontrivial theory with eight spin
interactions that is topologically quantum ordered, and other
quantum systems. To put our results in a broader context, we
first succinctly review current basic notions concerning the
different possible types of order.

The celebrated symmetry-breaking paradigm [8,9] has seen
monumental success across disparate arenas of physics. Its
traditional textbook applications include liquid to solid transi-
tions, magnetism, and superconductivity to name only a few
examples out of a very vast array. Within this paradigm, distinct
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thermodynamic phases are associated with local observables
known as order parameter(s). In the symmetric phase(s), these
order parameters must vanish. However, when symmetries
are lifted, the order parameter may become nonzero. Phase
transitions occur at these symmetry breaking points at which
the order parameter becomes nonzero (either continuously
or discontinuously). Landau [9] turned these ideas into a
potent phenomenological prescription. Indeed, long before
the microscopic theory of superconductivity [10], Ginzburg
and Landau [11] wrote down a phenomenological free energy
form in the hitherto unknown complex order parameter with
the aid of which predictions may be made. Albeit its numerous
triumphs, the symmetry-breaking paradigm might not directly
account for transitions in which symmetry breaking cannot
occur. Pivotal examples are afforded by gauge theories
of the fundamental forces and very insightful abstracted
simplified renditions capturing their quintessential character,
e.g., Ref. [12]. Elitzur’s theorem [13] prohibits symmetry
breaking in gauge theories. Another notable example where
the symmetry breaking paradigm cannot be directly applied
is that of the Berezinskii-Kosterlitz-Thouless transition [14]
in two-dimensional systems with a global U (1) symmetry.
By the Mermin-Wagner-Hohenberg-Coleman theorem and
its extensions [15–18], such continuous symmetries cannot
be spontaneously broken in very general two-dimensional
systems.

Augmenting these examples, penetrating work illustrated
that something intriguing may happen when the quantum
nature of the theory is of a defining nature [1]. In particular,
strikingly rich behavior was found in fractional quantum hall
(FQH) systems [1,19–21], chiral spin liquids [1,21,22], a
plethora of exactly solvable models, e.g., [3,23–25], and other
systems. One curious characteristic highlighted in Ref. [1]
concerns the number of degenerate ground states in FQH fluids
[26], chiral spin liquids [27,28], and other systems. Namely,
in these theories, the ground state (g.s.) degeneracy is set
by the topology alone. For instance, regardless of general
perturbations (including impurities that may break all the
symmetries of the Hamiltonian), when placed on a manifold of

2469-9950/2016/93(20)/205112(19) 205112-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.205112


VAEZI, ORTIZ, AND NUSSINOV PHYSICAL REVIEW B 93, 205112 (2016)

genus number g (the determining topological characteristic),
the FQH liquid at a Laughlin type filling of ν = 1/q (with
q � 3 an odd integer) universally has

n
Laughlin
g.s. = qg (1)

orthogonal ground states [26]. Equation (1) constitutes one of
the best known realizations of topological degeneracy. Exact
similarity transformations connect the second quantized FQH
systems of equal filling when these are placed on different
surfaces sharing the same genus [29]. Making use of the
archetypal topological quantum phenomenon, the Aharonov-
Bohm effect [30], it was argued that, when charge is quantized
in units of (1/q) (as it is for Laughlin states), the minimal
ground state degeneracy is given by the right-hand side of
Eq. (1) [31]. This may appear esoteric since realizing FQH
states on Riemann surfaces is seemingly not feasible in the
laboratory. Recent work [32] proposed the use of an annular
superconductor-insulator-superconductor Josephson junction
in which the insulator is (an electron-hole double layer) in a
FQH state (of an identical filling) for which this degeneracy
is not mathematical fiction but might be experimentally
addressed. Associated fractional Josephson effects of this type
in parafermionic systems were advanced in Ref. [33].

Historically, the robust topological degeneracy of Eq. (1)
for FQH systems and its counterparts in chiral spin liquids
suggested that such a degeneracy may imply the existence of
a novel sort of order—“topological quantum order” present in
Kitaev’s toric code model [3], Haah’s code [5,6], and numerous
other quantum systems [26–28,34]—a quantum order for
which no local Landau order parameter exists. As we will
later review and make precise [see Eq. (3)], in topologically
ordered systems, no local measurement may provide useful
information.

As it is of greater pertinence to a model analyzed in the
current paper, we note that similar to Eq. (1), on a surface of
genus g the ground state degeneracy of Kitaev’s toric code
model [3], an example of an Abelian quantum double model
representing quantum error correcting codes (solvable both
in the ground state sector [3] as well as at all temperatures
[35–37]), is

nToric-Code
g.s. = 4g. (2)

Thus, for instance, on a torus (g = 1), the model exhibits
four ground states while the system has a unique ground state
on a topologically trivial (g = 0) surface with boundaries.
By virtue of a simple mapping [35–37], it may be readily
established that an identical degeneracy appears for all excited
states; that is the degeneracy of each energy level is an integer
multiple of 4g . Thus, the minimal degeneracy amongst all
energy levels is given by 4g . The same ground state degeneracy
[38] appears in Kitaev’s honeycomb model [23,24]. As is
widely known, an identical situation occurs in the quantum
dimer model [35,36,39]. Invoking the well-known “n-ality”
considerations of SU (n), leading to a basic spin of 1/2 in SU (2)
and a minimal quark charge of 1/3 in SU (3), it was suggested
[35,36] that in many systems, fractional charges (quantized
in units of 1/n) are a trivial consequence of the Zn phase
group center structure of a system endowed with an SU (n)
symmetry, which is associated with the n states comprising

the ground state manifold. This n-ality type phase factors and
other considerations, prompted Sato [40] to suggest the use
of topological degeneracy [akin to that of Eqs. (1) and (2)]
as a theoretical diagnosis delineating the boundary between
the confined and the topological deconfined phases of QCD in
the presence of dynamical quarks. Other notable examples
include, e.g., the BF action for superconductors (carefully
argued to not support a local order parameter [41]).

References [35,36] examined the links between various
concepts surrounding topological order with a focus on the
absence of local order parameters. In particular, building on a
generalization of Elitzur’s theorem [42,43] it was shown how
to construct and classify theories for which no local order
parameter exists both at zero and at positive temperatures; this
extension of Elitzur’s theorem unifies the treatment of classical
systems, such as gauge and Berezinskii-Kosterlitz-Thouless
type theories in an arbitrary number of space (or spacetime)
dimensions, to topologically ordered systems. Moreover, it
was demonstrated that a sufficient condition for the existence
of topological quantum order is the explicit presence, or emer-
gence, of symmetries of dimension d lower than the system’s
dimension D, dubbed d-dimensional gaugelike symmetries,
and which lead to the phenomenon of dimensional reduction.
The topologically ordered ground states are connected by these
low-dimensional operator symmetries [35,36]. All known
examples of systems displaying topological quantum order
host these low-dimensional symmetries, thus providing a
unifying framework and organizing principle for such an order.

As underscored by numerous pioneers, features such
as fractionalization and quasiparticle statistics, e.g.,
[1,3,20,23,44–54], edge states [3,23,53,55,56], nontrivial en-
tanglement [35,36,57], and other fascinating properties seem
to relate with the absence of local order parameters and
permeate topological quantum order. While all of the above
features appear and complement the topological degeneracies
found in, e.g., the FQH [Eq. (1)], the toric code [Eq. (2)],
and numerous other systems, it is not at all obvious that
one property [say, a topological degeneracy such as those
of Eqs. (1) and (2)] implies another attribute (for instance,
the absence of meaningful local observables). The current
work will indeed precisely establish the absence of such a
rigid connection between these two concepts (viz., topological
degeneracy is not at odds with the existence of a local order
parameter).

We will employ the lack of local order parameters (or,
equivalently, an associated robustness to local perturbations)
as the defining feature of topological quantum order [35–37].
This robustness condition implies that local errors can be
detected, and thus corrected, without spoiling the potentially
encoded quantum information. To set the stage, in what
follows, we consider a set of ng.s. orthonormal ground
states {|gα〉}ng.s.

α=1 with a spectral gap to all other (excited)
states. Specifically [35,36], a system will be said to exhibit
topological order at zero temperature if and only if for any
quasilocal operator V ,

〈gα|V|gβ〉 = v δα,β + c, (3)

where v is a constant, independent of α and β, and c

is a correction that is either zero or vanishes (typically
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exponentially in the system size) in the thermodynamic limit.
The physical content of Eq. (3) is clear: no possible quantity V
may serve as an order parameter to differentiate between the
different ground states in the “algebraic language” [58] where
V is local [35,36,59]. That is, all ground states look identical
locally. Similarly, no local operator V may link different
orthogonal states—the ground states are immune to all local
perturbations. Notice the importance of the physical, and
consequently mathematical, language to establish topological
order: A physical system may be topologically ordered in
a given language, but its dual (that is isospectral) is not
[35,36,59].

Expressed in terms of the simple equations that we
discussed thus far, the goal of this paper is to introduce systems
for which the ground state sector has a genus dependent
degeneracy [as in Eqs. (1) and (2)] while, nevertheless,
certain local observables (or order parameters) V will be
able to distinguish between different ground states [thus
violating Eq. (3)]. Moreover, they will be connected by global
symmetry operators as opposed to low-dimensional ones. Our
conclusions are generic and, as shown, they apply to many
classical models. The paradigmatic counterexample that we
will introduce is a new classical version of Kitaev’s toric code
model [3].

We now turn to the outline of the paper. In Sec. II,
we generalize the standard (quantum) toric code model.
After a brief review and analysis of the ground states of
Kitaev’s toric code model (Sec. III), we exclusively study
our classical systems. In Sec. IV, we extensively study the
ground states of the classical variant of the model for different
square lattices on Riemann surfaces of varying genus numbers
g � 1. A principal result will be that this and many other
classical systems exhibit a topological degeneracy. We will
demonstrate that an intriguing holographic degeneracy may
appear on lattices of a certain type. As will be explained,
topological as well as exponentially large in system linear size
(“holographic”) degeneracies can appear in numerous systems,
not only in this new classical version of Kitaev’s toric code
model [60]. We further study the effect of lattice defects. The
partition function of the classical toric code model is revealed
in Sec. V and Appendix.

In Sec. VI, we introduce related classical clock models.
Generalizing the considerations of Sec. IV, we will demon-
strate that these clock models may exhibit topological or
holographic degeneracies. The ensuing analysis is richer by
comparison to that of the classical toric code model. Towards
this end, we will construct a new framework for broadly
examining degeneracies. We then derive lower bounds on the
degeneracy that are in agreement with our numerical analysis.
These bounds are not confined to the ground state sector. That
is, all levels may exhibit topological degeneracies [as they do
in the classical toric code model (Sec. V)].

In Sec. VII, we will relate our results to U (1) models
and to U (1) lattice gauge theories in particular. The fact that
simple lattice gauge systems, that constitute a limiting case
of our more general studied models, such as the conventional
classical Clock and U (1) lattice gauge theories on general
Riemann surfaces (and their toric code extensions), exhibit
topological (or, in some cases, holographic) degeneracies
seems to have been overlooked until now. In Sec. VIII, we will

study honeycomb and triangular lattice systems embedded on
surfaces of different genus. In Sec. IX, we will discuss yet three
more regular lattice classical systems that exhibit holographic
degeneracies. We summarize our main message and findings
in Sec. X.

Before embarking on the specifics of these various models,
we briefly highlight the organizing principle behind the
existence of degeneracies in our theories. Irrespective of
the magnitude and precise form of the interactions in these
theories, the number of independent constraints between the
individual interaction terms sets the system degeneracy. As
such, the degeneracies that we find are, generally, not a
consequence of any particular fine tuning.

II. THE GENERAL TORIC CODE MODEL

We start with a general description of a class of two-
dimensional stabilizer models defined on lattices embedded on
closed manifolds with arbitrary genus number g (the number
of handles or, equivalently, the number of holes). The genus of
a closed orientable surface is related to a topological invariant
known as Euler characteristic

χ = 2 − 2g, (4)

which, for a general tessellation of that surface, satisfies the
(Euler) relation

χ = V − E + F. (5)

In Eq. (5), V is the number of vertices in the closed tessellating
polyhedron, or graph, E is the number of edges, and F the
number of polygonal faces. Assume that on each of the E

edges of the graph there is a spin S degree of freedom, defining
a local Hilbert space of size dimH = dQ, and that on each of
the V vertices and F faces we will have a number of conditions
to be satisfied by the ground states of a model that we define
next.

We now explicitly define, on a general lattice or graph �,
the “general toric code model”. Towards this end, we consider
the Hamiltonian

Hμ,ν = −J
∑

s

Aμ
s − J ′ ∑

p

Bν
p, (6)

where J and J ′ are coupling constants (although it is
immaterial, in the remainder of this work we will assume these
to be positive). The interaction terms of edges in Eq. (6) are
so-called “star” (“s”) terms (Aμ

s ) associated with the V vertices
(labelled by the letter i) and the F “plaquette” (“p”) terms
(Bν

p). In the S = 1/2 case, these are given by the following
products of Pauli operators σ

μ

ij , μ,ν = x,y,z,

Aμ
s =

∏
i∈ vertex(s)

σ
μ

is ,

Bν
p =

∏
(ij )∈ face(p)

σ ν
ij . (7)

The product defining A
μ
s spans the spins on all edges (is) that

have vertex s as an endpoint, and the plaquette product Bν
p is

over all spins lying on the edges (ij ) that form the plaquette
p (see Fig. 1 for an illustration). A key feature of this system
[both the well known [3] quantum variant (μ = x �= ν = z)
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x x x

Aμ
s

Bν
p

σij

C1 C2

C2

C1

FIG. 1. General toric code lattice model with spins S = 1/2
placed on the edges (bonds). The red cross-shaped object corresponds
to the star operator Aμ

s . The plaquette operator Bν
p is depicted in the

top-left corner in blue color. Dark solid and dashed lines represent
the loops C1, C2 and C ′

1, C ′
2, defining the symmetry operators Z1, Z2,

and X1, X2, respectively.

as well as, even more trivially, the classical version that we
introduce in this paper (μ = ν = z)] is that each of the bonds
A

μ
s and Bν

p can assume dQ = 2S + 1 = 2 independent values.
Apart from global topological constraints [35,36] that we will
expand on below, the bonds {Aμ

s } and {Bν
p} are completely

independent of one another. Not only, trivially, in the classical
but also in the quantum (q) rendition of the model [3] all of
these operators commute with one another. That is ∀s,p ∈ �,[

Aμ
s ,Bν

p

] = 0. (8)

In the quantum version of the model, these terms commute
as the products defining the star and plaquette operators
must share an even number of spins. As the individual Pauli
operators σx and σ z appearing in the product of Eq. (7)
anticommute, an even number of such anticommutations
trivially gives rise to the commutativity in Eq. (8). Even more
simply, one observes that[

Aμ
s ,A

μ

s ′
] = [

Bν
p,Bν

p′
] = 0. (9)

Lastly, from Eq. (7), it is trivially seen that(
Aμ

s

)2 = (
Bν

p

)2 = 1. (10)

Apart from a number (C�
g ) of constraints, Eqs. (8), (9), and

(10) completely specify all the relations amongst the operators
of Eq. (7). As we will illustrate, Hμ,ν is a minimal model
that embodies all of the elements in Eq. (5) such that its
minimum degeneracy will only depend on the genus number
g. As all terms in the Hamiltonian Hμ,ν commute with one
another, the general toric code model can be related quite
trivially to a classical model. Intriguingly, as may be readily
established by a unitarity transformation (a particular case of
the bond-algebraic dualities [66]), the quantum version, which
includes Kitaev’s toric code model as a particular example, on
a graph having E edges spanning the surface of genus g � 1

is identical [35–37], i.e., is isomorphic, to two decoupled
classical Ising chains (with one of these chains having V

classical Ising spins and the other chain composed of F Ising
spins) augmented by 2(g − 1) decoupled single Ising spins.
Perusing Eq. (6), it is clear that, if globally attainable, within
the ground state(s), |gα〉,

Aμ
s |gα〉 = (+1)|gα〉, Bν

s |gα〉 = (+1)|gα〉, (11)

on all vertices s and faces p and, thus, the ground state energy
is E0 = −JV − J ′F . The algebraic relations above enable the
realization of Eq. (11) for all s and p.

We now turn to the constraints that augment Eqs. (8)–(10).
For any lattice � on any closed surface of genus g � 1, there
are Cuniversal

g�1 = 2 universal constraints given by the equalities∏
s

Aμ
s =

∏
p

Bν
p = 1. (12)

For the quantum variant [3] no further constraints appear
beyond those of Eq. (12) (that is, C�

g = 2 irrespective of the
lattice �). By contrast, for the classical variant of the theory
realized on the relatively uncommon “commensurate” lattices,
additional constraints will augment those of Eq. (12) (i.e.,
for classical systems, C�

g � 2). Invoking the C�
g constraints

as well as the trivial algebra of Eqs. (8) and (9), we may
transform from the original variables—the spins on each of
the E edges—{σμ

ij } to new basic degrees of freedom—all
Nind.bonds independent “bonds” {Aμ

s �=s ′ },{Bν
p �=p′ } that appear in

the Hamiltonian and Nredundant = (E − Nind.bonds) remaining
redundant spins of the original form {σμ

ij } on which the energy
does not depend (and thus relate to symmetries). If the bonds
A

μ
s and Bν

p do not adhere to any constraint apart from that
in Eq. (12) then Nind.bonds = (V + F − 2) of the (V + F )
bonds in the Hamiltonian of Eq. (6) will be independent of one
another. Correspondingly, Nredundant = [E − (V + F − 2)] =
2g. As all bonds must satisfy the constraint of Eq. (12) and
thus Nind.bonds � (V + F − 2), the number of redundant spin
degrees of freedom Nredundant � 2g. In the general case, if
there are (C�

g − 2) constraints that augment the two restric-
tions already present in Eq. (12), then we may map the original
system of E spins to Nind.bonds = (V + F − C�

g ) independent
bonds in Eq. (6) and Nredundant = (E − Nind.bonds) = 2(g −
1) + C�

g spins that have no impact on the energy. Thus, for
genus g � 1 surfaces, the degeneracy of each energy level is
an integer multiple of the minimal degeneracy possible,

min(ng.s.) = 2Nredundant = nmin
g.s.×2C�

g −2, (13)

with nmin
g.s. = 4g . Equation (13) will lead to a global redundancy

factor in the partition functionZ = Tr exp(−βHμ,ν) with β the
inverse temperature.

We now focus on the ground state sector. If there are no
constraints apart from Eq. (12), then to obtain the ground
states it suffices to make certain that Nind.bonds of the bonds
are unity in a given state. Once that occurs, we are guaranteed a
ground state in which each bond in the Hamiltonian of Eq. (6)
is maximized [i.e., Eqs. (11) are satisfied]. A smaller number
of bonds fixed to one will not ensure that only ground states
may be obtained. Thus the values of all Nind.bonds independent
bonds need to be fixed in order to secure a minimal value of
the energy. The lower bound of the degeneracy on each level
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[Eq. (13)] is saturated for the ground state sector where it
becomes an equality. That is, very explicitly, the ground state
degeneracy is given by

nGeneralToric−Code
g.s. = 4g×2C�

g −2. (14)

The equalities of Eqs. (13) and (14) are basic facts that will be
exploited in the present paper. The degeneracy of Eq. (14) is
in accord with the general result

n
g�1
g.s. = d

−χ+(C�
g −C�

1 )
Q n

g=1
g.s. , (15)

and differs from that of Kitaev’s toric code model [3] [Eq. (2)]
by a factor of 2C�

g −2. As each of the C�
g constraints as well

as increase in genus number leads to a degeneracy of the
spectrum, a simple “correspondence maxim” follows: it must
be that we may associate a corresponding independent set
of symmetries with any individual constraint. Similarly, as
Eqs. (13) and (14) attest, elevating the genus number g must
introduce further symmetries. Thus, the global degeneracy of
Eq. (13) is a consequence of all of these symmetries.

Given Eq. (6) it is readily seen that the system has a gap
of magnitude 	 = 4(J + J ′) between the ground state E0 and
the lowest lying excited state E1. All energy levels E
, defining
the spectrum of Hμ,ν , are quantized in integer multiples of J

and J ′.

III. GROUND STATES OF THE QUANTUM
TORIC CODE MODEL

In Kitaev’s toric code model [3] the symmetries associated
with the constraints of Eq. (12) are rather straightforward, and
cogently relate to the topology of the surface on which the
lattice is embedded. An illustration for the square lattice is
depicted in Fig. 1. For such a model on a simple torus (i.e.,
one with genus g = 1), the four canonical symmetry operators
are

Z
q

1,2 =
∏

(ij )∈C1,2

σ z
ij , X

q

1,2 =
∏

(ij )∈C ′
1,2

σx
ij . (16)

These two sets of noncommuting operators [3]{
X

q

1 ,Z
q

1

} = 0 = {
X

q

2 ,Z
q

2

}
,[

X
q

1 ,X
q

2

] = 0 = [
Z

q

1 ,Z
q

2

]
, (17)[

X
q

1 ,Z
q

2

] = 0 = [
X

q

2 ,Z
q

1

]
,

realize a Z(2)×Z(2) symmetry and ensure a fourfold degener-
acy (or, more generally a degeneracy that is an integer multiple
of four) of the whole spectrum.

To see this, we may, for instance, seek mutual eigenstates
of the Hamiltonian Hx,z along with the two symmetries Z

q

1
and Z

q

2 with which it commutes. Noting the algebraic relations
amongst the above operators, a moment’s reflection reveals that
a possible candidate for a normalized ground state is given by

|g1〉 = 1√
2

∏
s

(
1 + Ax

s√
2

)
|F〉, (18)

where σ z
ij |F〉 = |F〉, for all E edges, and 〈F|F〉 = 1. This corre-

sponds to Z
q

1,2|g1〉 = |g1〉. Now, because X
q

1,2 are symmetries,
by the algebraic relations of Eq. (17), the three additional

orthogonal states

|g2〉 = X
q

1 |g1〉, |g3〉 = X
q

2 |g1〉, |g4〉 = X
q

1 X
q

2 |g1〉, (19)

are the remaining ground states. That is, the C�
g=1 = 2 lattice

(�) independent constraints of the quantum model [Eq. (12)]
correspond to the two sets of symmetry operators associated
with the γ = 1,2 toric cycles ({Zq

γ ,X
q
γ }) of Eq. (16). This

correspondence is in agreement with the simple maxim
highlighted above. The symmetry operators X

q

1 and Z
q

1
are independent (and trivially commute) with the symmetry
operators X

q

2 and Z
q

2 . Notice that in the spin (σμ

ij ) language
the ground states above are entangled, and they are connected
by d = 1 symmetry operators [35,36]. Moreover, the anyonic
statistics of its excitations are linked to the entanglement
properties of those ground states [35,36]. As mentioned above,
the model can be trivially related, by duality, to two decoupled
classical Ising chains so that in the dual language the mapped
ground states are unentangled [35,36].

For a Riemann surface of genus g, we may write down
trivial extensions of Eqs. (16) for the (2g) cycles circumnavi-
gating the g handles of that surface. That is, instead of the four
operators of Eq. (16), we may construct 2g operators pairs
with each of these pairs associated with a particular handle h

(where 1 � h � g), containing the four operators {Zq

γ,h} and
{Xq

γ,h} with γ = 1,2. A generalization of Eqs. (17) leads to
an algebra amongst the 2g independent pairs of symmetry
operators. The multiplicity of independent symmetries leads
to the first factor in Eq. (14). The number of constraints is, in
the quantum case, lattice independent and given by C�

g�1 = 2
[there are no constraints beyond those in Eq. (12)]. It is
rather straightforward to establish that when g = 0 (i.e., for
topologically trivial surfaces), the ground state of the quantum
model is unique. Putting all of these pieces together, the well
known degeneracy of Eq. (2) follows.

IV. GROUND STATES OF THE CLASSICAL
TORIC CODE MODEL

We now finally turn to the examination of the ground states
of the classical rendering of Eq. (6) in which only a single
component μ = ν = z of all spins appears. We will explain
how the degeneracy of Eqs. (13) and (14) emerges. The upshot
of our analysis, already implicitly alluded to above, consists
of two main results:

(i) In the most frequent lattice realization of this classical
model, its degeneracy will still be given by Eq. (2), i.e., 4g .
That is, in the most common of geometries, the number of
ground states will depend on topology alone (i.e., the genus
number g of the embedding manifold). For arbitrary square
lattice or graph, as our considerations universally mandate,
the minimal possible ground state degeneracy will be given by
the topological figure of merit of Eq. (2).

(ii) In the remaining lattice realizations, the degeneracy
of the system will typically be holographic. That is, in these
slightly rarer lattices, the ground state degeneracy will scale
as O(2L) where L is the length of one of the sides of the
two-dimensional lattice.

As will be seen, for the square lattice, depending on
the parity of the length of the lattice sides, the number of
constraints C�

g may exceed its typical value of two. This will
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then lead to an enhanced degeneracy vis a vis the minimal
possible value of 4g . In the next subsection we first broadly
sketch the constraints and symmetries of the classical system.
As it will be convenient to formulate our main result via the
“correspondence maxim,” we will then proceed to explicitly
relate the constraints and symmetries to one another. The
symmetry ↔ constraint consonance, along with Eqs. (13)
and (14), will then rationalize all of the degeneracies found
for general square lattices embedded on Riemann surfaces
of arbitrary genus number. Exhaustive calculations for these
degeneracies will then be reported in the subsections that
follow.

A. Symmetries and constraints

We next list the general symmetries and constraints of
the classical toric code model in square lattices of varying
sizes. Consider first a lattice � of size Lx×Ly on a torus (i.e.,
having V = LxLy vertices and E = 2LxLy edges). We will
then examine more general lattices of arbitrary genus g. The
square lattice on the torus will be categorized as being one of
two types: ⎧⎨

⎩
Type I, Lx �= Ly where at least

one of Lx or Ly is odd
Type II, otherwise.

(20)

Type I lattices, as defined for the g = 1 case above and their
generalizations for higher genus numbers g > 1, only admit
two constraints C�

g and thus by the correspondence maxim
only two symmetries. For these lattices, we will show that the
ground state degeneracy is 4g . By contrast, Type II lattices
have a larger wealth of constraints, C�

g > 2, and therefore a
larger number of symmetries and a degeneracy higher than 4g .

The centers of all nearest neighbor edges on the square
lattice (of lattice constant a) form yet another square lat-
tice �′ (of lattice constant a/

√
2) at an angle of 45◦

relative to the original lattice (Fig. 2). The spins are located at
the vertices of the rotated square lattice �′. In order to describe
the symmetries and constraints of this system, let us denote
the two (standard) sublattices of the square lattice �′ by �±.
That is, both �+ and �− are, on their own, square lattices with
�

′ = �+ ∪ �− and �+ ∩ �− = ∅. Let us furthermore denote
the sites of �± by ı±, respectively.

With these preliminaries, it is trivial to verify that

T x
+ =

∏
ı+∈�+

σx
ı+ ,

(21)
T x

− =
∏

ı−∈�−

σx
ı− ,

are, universally, both symmetries of the classical (μ = ν = z)
version of the Hamiltonian of Eq. (6). Most square lattices
[those of Type I in Eq. (20)] will only exhibit the two
symmetries of Eq. (21). The more commensurate Type II
lattices admit diagonal contours (connecting nearest neighbors
of sites ı of �′) that close on themselves before threading all
of the lattice sites of �′. That is, in Type II lattices, it is
possible to find diagonal loops �m at a constant 45◦ angle (or a
more nontrivial alternating contour) that contain only a subset
of all sites of �′ [or, equivalently, a subset of all edges (ij )

x x x

WP

WP

σı+

σı−

∈ Λ+ ∈ Λ−

FIG. 2. Dotted lines represent the rotated lattice �′. The spin
degrees of freedom �σ reside on the vertices of the rotated bipartite
lattice �′, formed out of two sublattices �+ and �−.

of the original square lattice �]. Associated with each such
independent contour �m, there is a symmetry operator,

T x
m =

∏
ı∈�m

σ x
ı , (22)

augmenting the symmetries of Eq. (21).
The form of the symmetries suggests the distinction

between Type I and Type II lattices on general surfaces. On
Type II lattices, it is possible to find at least one diagonal
contour �m that contains a subset of all edges (ij ) of the
lattice �. Conversely, due to the lack of the requisite lattice
commensurability, on Type I lattices, it is impossible to find
any such contour.

We now turn to the constraints associated with Type I and
II lattices. These are in one-to-one correspondence with the
symmetries of Eqs. (21) and (22). Specifically for Type I
lattices, the only universal constraints present are those of
Eq. (12) which we rewrite again for clarity,

C+ :
∏

s

Az
s = 1,

(23)
C− :

∏
p

Bz
p = 1.

These two constraints match the two symmetries of Eq. (21).
In the case of the more commensurate lattices �, additional
constraints appear. In order to underscore the similarities to
the symmetries of Eq. (22), we will now aim to briefly use the
same notation concerning the lattice �′. Within the framework
highlighted in earlier sections, the spin products {Az

s} and {Bz
p}

of Eq. (7) are associated with geometrical objects that look
quite different (i.e., “stars” and “plaquettes”), see Fig. 1. If we
now label the plaquettes of �′ by P then, we may, of course,
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trivially express Eq. (6) as a sum of local terms,

H = −J
∑
P

WP − J ′ ∑
P ′

WP ′ , (24)

where WP = ∏
ı∈P σ z

ı are the products of all Ising spins at sites
ı belonging to plaquette P . This trivial description renders
the original star and plaquette terms of Eq. (6) on a more
symmetric footing, see Fig. 2.

Associated with each of the symmetries of Eq. (22) there is
a corresponding constraint,

Cm :
∏
ı∈�m

Wm = 1. (25)

In accordance with our earlier maxim, insofar as counting is
concerned, we have the following correspondence between the
symmetries and the associated constraints,⎧⎪⎨

⎪⎩
T x

+ ↔ C+,

T x
− ↔ C−,

T x
m ↔ Cm.

(26)

In Type I systems, wherein only the C�
g = 2 universal

constraints appear, the degeneracy of the spectrum is exactly
4g . In Type II lattices, C�

g > 2 (with the difference of (C�
g − 2)

equal to the number of additional independent contours �m

that do not contain all edges of the original lattice �) and,
as Eq. (14) dictates, the ground state degeneracy exceeds the
minimal value of 4g multiplied by two raised to the power of
the number of the additional independent loops.

B. Ground state degeneracy on g = 1 surfaces

Thus far, our discussion has been quite general and,
admittedly, somewhat abstract. We now turn to simple concrete
examples. We first consider the classical Toric Code model on
a simple torus (i.e., a surface with genus g = 1), and examine
small specific square lattices of dimension Lx×Ly . We find
that for general lattices � [with reference to Eq. (20)], the total

FIG. 3. A square lattice with eight spins along with its embedding
on a torus. Because of periodic boundary conditions, spins on
boundary edges (dashed-blue) display numbers identical to those
in the bulk. In this figure As = Az

s and Bp = Bz
p . In the right panel,

each edge has been labeled according to the left panel, and the solid
red squares represent the vertices labeled by As . Since B3 and B4 are,
respectively, behind B1 and B2, we cannot see them here.

FIG. 4. (a) Lattice of size Lx = 2, Ly = 2, E = 8 and (b) Lx = 2,
Ly = 3, E = 12. Diagonal lines with arrows represent possible paths
realizing constraints on As = Az

s and Bp = Bz
p .

number of independent constraints is

C�
g=1 =

⎧⎨
⎩

2, � is a Type I lattice

2 min{Lx,Ly}, � is a Type II lattice.
(27)

Thus, from Eq. (14), our two earlier stated main results follow:
while for the more “incommensurate” Type I lattices, the
degeneracy will be “topological” (i.e., given by 4g), for Type
II lattices, the degeneracy will be “holographic” (viz., the
degeneracy will be exponential in the smallest of the edges
along the system boundaries). As discussed in Sec. IV A, the
additional constraints in Type II lattices are of the form of
Eq. (25). Expressed in terms of the four spin interaction terms
Az

s and Bz
p of Eq. (6), a constraint of the form of Eq. (25) states

that there is a subset �m ⊂ � for which
∏

s,p∈�m
Az

sB
z
p = 1.

An illustration of a constraint of such a type is provided, e.g.,
in Fig. 3. Here, by virtue of the defining relations of Eq. (7),
the product

Az
1B

z
1A

z
4B

z
4 = 1. (28)

Similarly, in panel (a) of Fig. 4, colored arrows are drawn
along the diagonals. These colors code the constraints on the
specific Az

s and Bz
p interaction terms. For example, along the
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TABLE I. Computed ground state degeneracy (ng.s.) for the
classical Toric Code for different lattice sizes with genus one. Type I
corresponds to the case Lx �= Ly where at least one of them is odd.
We put any other possibility under Type II which in general covers
the case Lx �= Ly where both Lx and Ly are even plus all cases
with Lx = Ly . In this table, C�

g=1 denotes the number of independent
constraints (see text).

Type Lx Ly E C�
g=1 ng.s.

3 2 12 2 4
5 2 20 2 4I 4 3 24 2 4
5 3 30 2 4

2 2 8 4 4×22

4 2 16 4 4×22

II 6 2 24 4 4×22

3 3 18 6 4×24

4 4 32 8 4×26

green arrows,

Az
1B

z
1A

z
4B

z
4 = 1 green (dashed), (29)

and the constraints associated with the other diagonals

Az
2B

z
2A

z
3B

z
3 = 1 brown (dashed-dotted),

Az
2B

z
1A

z
3B

z
4 = 1 red (dashed-doubled-dotted),

Az
1B

z
2A

z
4B

z
3 = 1 black (dotted). (30)

We provide another example in panel (b) of Fig. 4. The
simplest visually appealing realization of Eq. (25) is that of
the subset �m being a trivial closed diagonal loop. Composites
(i.e., products) of independent constraints of the form of
Eq. (25) are, of course, also constraints. We aim to find
the largest number (C�

g − 2) of such independent constraints.
Nontrivial constraints formed by the product of bonds along
real-space diagonal lines may appear. For example, in Fig. 3,
the product Az

1B
z
1A

z
3B

z
2 = 1 is precisely such a constraint.

These constraints are more difficult to determine due to the
periodic boundary conditions. Generally, not all constraints
are independent of each other (e.g., multiplying any two
constraints yield a new constraint). The number of independent
constraints, C�

g may be generally found by calculating the
“modular rank” of the linear equations formed by taking the
logarithm of all constraints found. The qualified “modular”
appears here as the Az

s and Bz
p eigenvalues may only be

(±1) and thus, correspondingly, their phase is either 0 or
π . Many, yet generally, not all, of the C�

g independent
constrains are naturally associated with products along the 45◦
lattice diagonals (as it appears on the torus). Table I lists the
numerically computed ground state degeneracies for numerous
lattices of genus g = 1. All of these are concomitant with
Eq. (27).

C. Construction of ground states

Given the symmetry operators of Eqs. (21) and (22), we
may rather readily write down all ground states of the system.
Denote the ferromagnetic ground state (i.e., one with all spins

up (|↑〉(ij )) on all edges (ij )) by

|F〉 ≡
∏
(ij )

|↑〉(ij ); (31)

then, the four ground states of Type I lattices are

|Gn+,n−〉 = (T x
+)n+ (T x

−)n−|F〉, (32)

where n± = 0,1. Clearly, since (T x
±)2 = 1, only the parity of

the integers n± is important. As (i) [T x
±,H ] = 0 and (ii) the fer-

romagnetic state |F〉 minimizes the energy in Eq. (6), it follows
that all four binary strings (n+,n−) = (0,0),(0,1),(1,0),(1,1)
in Eq. (32) lead to ng.s. = 22 = 4 ground states. The situation
for Type II lattices is a trivial extension of the above. That
is, if there are (C�

g=1 − 2) additional independent symmetries
T x

m=1,T
x
m=2, . . . ,T

x
m=(C�

g=1−2)
of the form of Eq. (22) then, with

the convention of Eq. (31), the ground states will be of the
form∣∣Gn+,n−,n1,n2,··· ,nC�

g=1−2

〉 = (T x
+)n+ (T x

−)n−
(
T x

1

)n1

×(
T x

2

)n2 · · · (T x
C�

g=1−2

)n
C�

g=1−2 |F〉,
(33)

with 2C�
g=1 binary strings (n+,n−,n1,n2, · · · ,nC�

g=1−2), where

nm = 0,1. These strings span all possible ng.s. = 2C�
g=1 orthog-

onal ground states.
Given the set of all orthonormal ground states {|gα〉}ng.s.

α=1,
it is possible to find quasilocal operators V composed of σ z

ij

“operators” on a small number of edges such that

〈gα|V|gα〉 = vα (34)

assumes different values vα in at least two different ground
states. Equation (34) highlights that the expectation value of
V is not state independent. In other words, Eq. (3) [35–37]
is violated. Thus, our classical system is, rather trivially, not
topologically ordered.

D. Ground state degeneracy on g > 1 surfaces

Having understood the case of the simple torus (g = 1), we
will now study lattices on surfaces � of genus g � 2. We first
explain how to construct a finite size lattice of genus g [67].
Such lattices on genus g (g � 2) surfaces may be formed by
“stitching together” g simple parts aj , j = 1, . . . ,g, each of
which largely looks like that of a simple torus [i.e., each region
aj represents a set of vertices, edges and faces of Type I or II
in the notation of Eq. (20)], via (g − 1) “bridges” {bj }g−1

j=1. In
Figs. 5 and 6, the integer number bj denotes the number of
edges that regions aj and aj+1 share.

To lucidly illustrate the basic construct, we start first with a
g = 2 lattice. In Fig. 5, identical edges are labeled by the same
number as a consequence of the periodic boundary conditions.
Here, there are E = 96 edges, V = 48 vertices, and F = 46
plaquettes. As in the case of the simple torus (g = 1), the
typical vertices are endpoints of four edges. Similarly, in Fig. 5,
all plaquettes (with the exception of two) are comprised of four
edges as in the situation of the simple torus. The exceptional
cases are colored green (dashed-dotted) and red (dashed). As
seen in the figure, the lattice may be splintered into two regions
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FIG. 5. A genus two (g = 2) lattice. Identical bonds are labeled
by the same number (as a result of periodic boundary conditions).
Thick solid (blue) lines represent the boundary. The two plaquettes
with eight bonds are shown by dashed (red) and dashed-dotted (green)
lines.

FIG. 6. A genus three (g = 3) lattice. Identical bonds are labeled
by the same number (as a result of periodic boundary conditions).
Thick solid (blue) lines represent the boundary. The two plaquettes
with 12 bonds are shown by dashed (red) and dashed-dotted (green)
lines.

TABLE II. Computed ground state degeneracy (ng.s.) for square
lattices with g > 1. The g denotes “genus” (see text).

g E ng.s. Type a1 b1 a2 b2 a3 b3 a4 b4 a5

8 4g 2 I 2×1 1 2×1
10 4g 2 I 3×1 1 2×1
12 4g 2 I 3×1 1 3×1
16 4g 2 I 3×2 1 2×1
18 4g 2 I 3×2 1 3×1
24 4g 2 I 3×2 1 3×2
24 4g 2 I 5×2 1 2×1
12 4g×2 2 I 3×1 2 3×1
12 4g×2 II+I 2×2 1 2×12 14 4g×2 II+I 2×2 1 3×1
20 4g×2 I+II 3×2 1 2×2
20 4g×2 II+I 4×2 1 2×1
22 4g×2 II+I 4×2 1 3×1
24 4g×2 2 I 3×2 2 3×2
24 4g×2 II+I 3×3 2 3×1
16 4g×23 2 II 2×2 1 2×2
24 4g×23 II+I 3×3 1 3×1
24 4g×23 2 II 4×2 1 2×2
12 4g 3 I 2×1 1 2×1 1 2×1
14 4g 3 I 3×1 1 2×1 1 2×1
16 4g 3 I 3×1 1 3×1 1 2×1
16 4g 3 I 3×1 2 3×1 1 2×1
18 4g 3 I 3×1 1 3×1 1 3×1
18 4g 3 I 3×1 2 3×1 1 3×1
18 4g 3 I 3×1 1 3×1 2 3×1
18 4g 3 I 3×1 2 3×1 2 3×1

3 20 4g 3 I 3×2 1 2×1 1 2×1
24 4g 3 I 3×2 1 3×1 1 3×1
24 4g 3 I 3×2 2 3×1 2 3×1
16 4g×2 2 I+II 2×1 1 2×1 1 2×2
18 4g×2 2 I+II 3×1 1 2×1 1 2×2
20 4g×2 2 I+II 3×1 1 3×1 1 2×2
20 4g×22 2 II+I 2×2 1 2×2 1 2×1
22 4g×22 2 II+I 2×2 1 2×2 1 3×1
24 4g×24 3 II 2×2 1 2×2 1 2×2

16 4g 4 I 2×1 1 2×1 1 2×1 1 2×1
18 4g 4 I 2×1 1 2×1 1 2×1 1 3×14 24 4g 4 I 3×2 1 2×1 1 2×1 1 2×1
20 4g×2 II+3 I 2×2 1 2×1 1 2×1 1 2×1

20 4g 5 I 2×1 1 2×1 1 2×1 1 2×1 1 2×15 24 4g×2 II + 4 I 2×2 1 2×1 1 2×1 1 2×1 1 2×1

(labeled by a1 and a2) where one end of some of the bonds
belonging to a1 are connected to a2 as shown and labeled in the
picture under b1. Each of the regions a1 and a2 looks, by itself,
like a square lattice on a genus g = 1 surface. Generally, the
regions a1 and a2 may be composed of a different number of
edges. Employing the taxonomy of Eq. (20), we may classify
these regions {aj }gj=1 to be of either Type I or II. We remark
that the number of edges b1 must be always at least one less
than the minimum of the number of bonds of a1 and a2 along
the horizontal (x) axis. This algorithm trivially generalizes to
higher genus number. The cartoon of Fig. 6 represents a lattice
with g = 3.

A synopsis of our numerical results for the ground state
degeneracy for surfaces of genus 2 � g � 5 appears in
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Table II. The ground state degeneracy depends on the type
of each aj and the number of bonds of each bj . When all
fragments {aj } are of Type I and are interconnected by only
single common edges, the degeneracy attains will its minimal
possible value [Eq. (14)] of 4g .

If, in Eq. (6), we set J to zero, we will obtain the
Hamiltonian of the Ising gauge model. As this theory does not
have a star term, this Hamiltonian involves more symmetries
and, therefore, one expects the ground state subspace to
have a larger degeneracy. We numerically verified it to be
n

gauge
g.s. = 4g×2Nsite−1-fold degenerate (Nsite = E/2) [68].

E. Lattice defects

When dislocations and/or any other lattice defects are
present in the classical toric code model, the degeneracy
is, of course, still bounded by the geometry independent
result of 4g . On Type I lattice (and their composites), the
degeneracy is typically equal to this bound yet it may go
up upon the introduction of defects. Similarly, in most cases
introducing such lattice defects lowers the degeneracy of the
more commensurate Type II lattices (and their composites).

Table III provides the numerical results for such defective
lattices. For example, in Fig. 7 we see the original lattice, panel
(a), along with two types of defects as in panels (b) and (c).
These are obtained by replacing three squares by two adjacent
or separated pentagons as in panels (b) and (c), respectively.
To avoid confusion, we will use “�” sign for the first case and
“��” for the second case. By putting a “�” (“��”) sign beside
a 3×2 lattice, we mean it exhibits a defect of type one (two).
That is, represented as “3×2 �” (“3×2 � �”).

TABLE III. Computed ground state degeneracy (ng.s.) of defec-
tive square lattices. The g denotes “genus.” By “2�” we mean there
are 2 defects of type “�” (see text).

g E ng.s. Type a1 b1 a2 b2 a3 b3 a4

11 4g I 3×2 �

15 4g II 4×2 �

19 4g I 5×2 �

23 4g I 6×2 �

1 23 4g I 4×3 �

16 4g×2 II 3×3 2�

17 4g×2 II 3×3 �

19 4g×2 I 5×2 � �

22 4g×2 I 6×2 2�

15 4g 2 I 3×2 � 1 2×1
17 4g 2 I 3×2 � 1 3×1
21 4g 2 I 4×2 � 1 3×1
22 4g 2 I 3×2 � 1 3×2 �

2 23 4g 2 I 3×2 � 1 3×2
23 4g 2 II 4×2 � 1 2×2
23 4g II+I 3×3 � 2 3×1
23 4g 2 I 5×2 � 1 2×1
23 4g×2 II+I 3×3 � 1 3×1

19 4g 3 I 3×2 � 1 2×1 1 2×1
3 23 4g 3 I 3×2 � 1 3×1 1 3×1

23 4g 3 I 3×2 � 2 3×1 2 3×1

4 23 4g 4 I 3×2 � 1 2×1 1 2×1 1 2×1

(a) (b)

(c)

FIG. 7. Sketch of a part of a square lattice (a) with two types of
defects (b) and (c). The defective lattices in (b) and (c) have one bond
less than in (a).

V. THERMODYNAMICS OF THE CLASSICAL TORIC
CODE MODEL

Previous sections largely focused on the ground states of the
classical Toric Code model. As our earlier considerations make
clear, however, a minimal topology (and general constraint)
dependent degeneracy Nglobal ≡ min(ng.s.) appears for all
levels [see, e.g., Eq. (13)]. This “global” degeneracy must
manifest itself as a prefactor in the computation of the partition
function. That is, if the whole spectrum has a global degeneracy
Nglobal then the canonical partition function may be expressed
as

Z = Nglobal

∑

=0

n
e
−βE
 , (35)

where Nglobal n
 � Nglobal is the number of states having total
energy E
. In “incommensurate” lattices, when no constraints
{Cm} augment those of Eq. (12), we find that, similar to the
partition function of the quantum toric code model [35–37],
the partition of the classical toric code model is given by

Zinc. = 4g−1[(2 cosh βJ )V + (2 sinh βJ )V ]

× [(2 cosh βJ ′)F + (2 sinh βJ ′)F ]. (36)

The prefactor of 4g−1 embodies the increase in degeneracy by
a factor of four as g is elevated in increments g → (g + 1)
beyond a value of g = 1. On the simple torus (i.e., when g =
1), this partition function (similar to the partition function of
the quantum toric code model [35–37]) is that of two decoupled
Ising chains with one of these chains having V spins and the
other composed of F spins. As each such Ising chain has a
twofold degeneracy, it thus follows that the degeneracy of the
(more “incommensurate”) Type I g = 1 system is fourfold
and that the degeneracy of the classical Toric Code model on
incommensurate lattices on Riemann surfaces of genus g is 4g

for all g � 1. The latter value saturates the lower bound on
the degeneracy of Eq. (13). In Appendix, we list the partition
function for several other more commensurate finite size lattice
realizations.
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VI. CLASSICAL TORIC CLOCK MODELS AND THEIR
CLOCK GAUGE THEORY LIMITS

In this section, we introduce and study a clock model (ZdQ
)

extension of the classical toric code model. To that end, we
consider what occurs when each spin S may assume dQ > 2
values. Specifically, on every oriented (i → j ) edge [that we
will hereafter label as (ij )], we set

σij = exp

[
i

2π

dQ

αij

]
, (αij = 0,1, . . . ,dQ − 1), (37)

σji = σ ∗
ij . (38)

The last equality reflects that a change in the orientation (i.e.,
a link in the direction from j → i as opposed to i → j ) is
associated with complex conjugation. At each vertex “s,” we
define As as

As = 1

2
(σsiσsjσskσsl + H.c.)

= cos

(
2π

dQ

(αsi + αsj + αsk + αsl)

)
, (39)

and for each plaquette p

Bp = cos

(
2π

dQ

(αij + αjk + αkl + αli)

)
, (40)

composed of edges (ij ),(jk),(kl),(li), such that the loop i →
j → k → l is oriented counter-clockwise around about the
plaquette center. Table IV provides our numerical results for
ground state degeneracy (D0

dQ
) for different size lattices of

varying genus numbers g. The dQ = 2 case is that investigated
in the earlier sections (i.e., that of the classical Toric Code
model with Ising variables σij = ±1).

It is readily observed that the minimal ground state
degeneracy is set by the genus number,

nmin
g.s. = min

{
D0

dQ

} =
⎧⎨
⎩

d2g−1
Q , odd dQ,

2d2g−1
Q , even dQ.

(41)

We next introduce a simple framework that rationalizes
Eq. (41) and enables us to furthermore derive the results of
the previous sections (i.e., the Ising case of dQ = 2) in a
unified way. Furthermore, this approach will allow us to better
understand not only the degeneracies in the ground sector but
also those of all higher energy states. In the up and coming,
we will study the Hamiltonian

HdQ
= −

∑
s

As −
∑

p

Bp

= −
∑

s

cos

(
2πms,dQ

dQ

)
−

∑
p

cos

(
2πmp,dQ

dQ

)
.

(42)

Here, {
ms,dQ

= αsi + αsj + αsk + αsl,

mp,dQ
= αij + αjk + αkl + αli,

(43)

constitute a system of linear equations. A pair of fixed integers
m


s,dQ
and m


p,dQ
defines an energy E
. There are n


dQ
such

pairs.
For each fixed pair r , r = 1, . . . ,n


dQ
, we may express these

linear equations as

WXr = Y r, (44)

where W is a rectangular [(V + F )×E] matrix. The matrix
elements of W are either 0 or ±1. Generally, the form of

TABLE IV. Computed departure from the minimal ground state degeneracy, N0
M = D0

M/nmin
g.s., where D0

M denotes the ground state degeneracy

for dQ = M, and nmin
g.s. is equal to d2g−1

Q (2d2g−1
Q ) for odd (even) dQ.

g E Type a1 b1 a2 b2 a3 b3 a4 N0
3 N0

4 N0
5 N0

6 N0
7 N0

8 N0
9 N0

10 N0
11 N0

12 N0
13 N0

14 N0
15 N0

16

4 I 2×1 1 2 1 1 1 2 1 1 1 2 1 1 1 2
6 I 3×1 3 1 1 3 1 1 3 1 1 3 1 1 3 1
8 I 4×1 1 2 1 1 1 4 1 1 1 2 1 1

1 8 II 2×2 32 42 52 62 72 82 92 102 112 122 132 142

12 I 3×2 3 2 1
16 II 4×2 32 2×42

18 II 3×3 34

8 2 I 2×1 1 2×1 1 2 1 1 1 2 1 1 1 2 1 1
12 2 I 3×1 1 3×1 3 1 1
12 2 I 3×1 2 3×1 3 2 12 12 II+I 2×2 1 2×1 1 4 1
16 2 II 2×2 1 2×2 32 2×42

18 2 I 3×2 1 3×1 3

12 3 I 2×1 1 2×1 1 2×1 1 2 1
16 3 I 3×1 1 3×1 1 2×1 1 13 16 2 I+II 2×1 1 2×1 1 2×2 1 4
18 2 I+II 3×1 1 2×1 1 2×2 1

16 4 I 2×1 1 2×1 1 2×1 1 2×1 1 24 18 4 I 2×1 1 2×1 1 2×1 1 3×1 1
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the matrix W depends on both the size and type of lattice. The
dimension of the vector Xr is equal to the number (E) of edges;
Y r is a (V + F )−component vector. Specifically, following
Eq. (43), these two vectors are defined as: Xr = �α, with
components αij , and Y r = m


s,dQ
, for its first V components

and Y r = m

p,dQ

, for the remaining F components.
The number of linearly independent equations (rdQ

) is equal
to the rank of the matrix W . Typically, the rank rdQ

is less than
the number of unknown αij . Therefore, we cannot determine
all αij from Eq. (44). We should note that the rank of the matrix
W is computed modularly, “moddQ”. This latter modular rank
is of pertinence as the edge variables αij may only take on
particular modular values (αij = 0,1, . . . ,dQ − 1).

Our objective is to calculate the degeneracy D

dQ

of each
energy level 
 [or sector of states that share the same energy
of Eq. (42)]. Equation (44) imposes rdQ

constraints on the dQ

possible values of αij . Thus, for each set of integers m

s,dQ

and

m

p,dQ

, the degeneracy is equal to d
E−rdQ

Q . As there are n

dQ

such
sets of integers [see Eq. (44)], the degeneracy of each level 


is

D

dQ

= n

dQ

d
E−rdQ

Q . (45)

We may recast Eq. (45) to highlight the effect of topology
and invoke the Euler relation [Eqs. (4) and (5)] to write the
degeneracy as

D

dQ

= n

dQ

d
2(g−1)+C�

g

Q , (46)

where we define

C�
g ≡ V + F − rdQ

. (47)

The modular rank of the matrix W lies in the interval 1 �
rdQ

< V + F . It thus follows that

1 � C�
g � V + F − 1. (48)

From Eqs. (46) and (48), it is readily seen that

D

dQ

� d2g−1
Q . (49)

The degeneracy of Eq. (49) [stemming from the spectral
redundancy of each level 
 seen in Eq. (46)] is consistent
with an effective composite symmetry

G = ZdQ
⊗ ZdQ

⊗ · · · ⊗ ZdQ
, (50)

i.e., the product of (2g − 1) symmetries of the ZdQ
type. That

is, if each element of such a ZdQ
symmetry gave rise to a

dQ-fold degeneracy then the result of Eq. (46) will naturally
follow.

The nonlocal symmetry of Eq. (50) compound the standard
local symmetries that appear in the gauge theory limit of
Eq. (42) in which the As terms are absent, i.e., HdQ

=
−∑

p Bp. The latter gauge theory enjoys the local symmetries

θij → θij + φi − φj , (51)

with, at any lattice vertex (site) i, the angle φi being an arbitrary
integer multiple of 2π/dQ. In this case, we find that the ground
state degeneracy (Dgauge,0

dQ
) is purely topological (i.e., not

holographic),

D
gauge,0
dQ

= n
gauge,0
dQ

d
2(g−1)+ E

2
Q , (52)

where, ⎧⎪⎨
⎪⎩

1 � n
gauge,0
dQ

� dQ, odd dQ,

2 � n
gauge,0
dQ

� dQ, even dQ.

(53)

These equations extend the degeneracy ngauge
g.s. found in

Sec. IV D for the Ising (dQ = 2) lattice gauge theory [68].

VII. U(1) CLASSICAL TORIC CODE MODEL AND ITS
GAUGE THEORY LIMIT

We next turn to a simple U (1) theory

H = −J
∑

s

cos(�s) − J ′ ∑
p

cos(�p), (54)

where the “fluxes”

�s =
∑

i

θsi , �p =
∑
ij∈p

θij (55)

are, respectively, the sums of the angles on all edges emanating
from site s and the sum of all angles θij on edges that belong
to a plaquette p. In the continuum limit (in which the lattice
constant a tends to zero), the cos �p term may be Taylor
expanded as the flux is small, cos �p ≈ (1 − 1

2�2
p + · · · ) in

the usual way. Then, omitting an irrelevant constant additive
term, the Hamiltonian becomes in the standard manner

H = 1

2

∫
�2

p(x)d2x ≈ a2
∫

B2
3d2x, (56)

where B3 = ∂1A2 − ∂2A1 (with �A a vector potential) is the
conventional magnetic field along the direction transverse to
the plane where the lattice resides. In the dQ → ∞ limit,
the U (1) Hamiltonian of Eq. (54) follows from Eqs. (37),
(39), and (40) where σij = eiθij , and θij = 2παij /dQ with
αij = 0,1, . . . ,dQ − 1. In the dQ → ∞ limit, the discrete
clock symmetry becomes a continuous rotational symmetry,
ZdQ

→ U (1). Rather trivially, yet notably, in this limit, the
system becomes gapless. Repeating mutatis mutandis the
considerations of Eqs. (46) and (49), in the continuous large
dQ limit, a genus dependent symmetry is naturally associated
with the system degeneracy. Peculiarly, in this limit, similar to
Eq. (50), a genus dependent

G = U (1) ⊗ U (1) · · · ⊗ U (1) (57)

symmetry may appear for the Toric U (1) theory of Eq. (54).
In the limiting case in which the star term does not appear in
Eq. (54), i.e., that of J = 0, a symmetry of the type of Eq. (57)
compounds the known local U (1) symmetry,

θij → θij + φi − φj , (58)

similar to Eq. (51) but with an arbitrary real phase φi at each
lattice vertex (site) i. These local symmetries are lifted once
the cos �s term is introduced, as in Eq. (54). Thus, similar
to the Clock gauge theory [whose degeneracy was given by
Eqs. (52), and (53)], this U (1) lattice gauge theory exhibits a
genus dependent degeneracy.
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(a)

(b)

FIG. 8. (a) Hexagonal lattice and (b) triangular lattice. In panel
(a) the star terms Az

s and plaquette terms Bz
p involve three and six spins

S (circles) interactions, respectively, while the opposite happens in
panel (b).

VIII. HONEYCOMB AND TRIANGULAR LATTICES

Thus far, we focused on square lattice realizations of the
Ising, clock, and U (1) theories. For completeness, we now
examine other lattice geometries. Specifically, we study the
honeycomb lattice (H) and triangular lattice (T) incarnations
of our classical theory and determine their ground state
degeneracies. In Fig. 8, Az

s and Bz
p are defined for each lattice.

The Hamiltonians are given by

HH = −Jh

∑
s

Az
s − J ′

h

∑
p

Bz
p,

HT = −Jt

∑
s ′

Az
s ′ − J ′

t

∑
p′

Bz
p′ . (59)

TABLE V. Computed ground state degeneracy D0
M for dQ = M,

for a hexagonal lattice (= triangular lattice).

g E D0
2 D0

3 D0
4 D0

5 D0
6 D0

7 D0
8 D0

9

6 8 27 64 125 216 343 512 729
12 16 271 18 8
24 128

24 1282 30 64

FIG. 9. By connecting the centers of hexagons in an hexagonal
lattice (thick solid lines), we obtain the corresponding dual lattice
which is a triangular lattice (solid lines).

Our numerical results are summarized in Table V. These results
are consistent with Eqs. (46) and (49).

As is well known, the H and T lattices are dual lattices
(Fig. 9). This duality implies that the classical toric code
models of Eq. (59) yield the same results. From Figs. 8 and 9,
as a consequence of duality, what is defined as Az

s (Bz
p) in

H corresponds to some Bz
p′ (Az

s ′ ) in T, and vice versa. This
indicates that

Az
s

Duality←→ Bz
p′ ,

Az
s ′

Duality←→ Bz
p. (60)

After this transformation we can rewrite Eqs. (59) as

HH = −Jh

∑
p′

Bz
p′ − J ′

h

∑
s ′

Az
s ′ ,

HT = −Jt

∑
p

Bz
p − J ′

t

∑
s

Az
s, (61)

and assuming Jh = J ′
t ,J

′
h = Jt , it is seen that HH = HT. This

simple analysis does not take into account potential boundary
terms that may appear in finite lattices, as a result of the duality
transformation.

IX. OTHER CLASSICAL MODELS WITH HOLOGRAPHIC
DEGENERACY

In this section, we dwell on a few more Ising type spin
systems, similar to Type II commensurate lattice realizations
of the classical toric code model [Eq. (27)], in which the degen-
eracy is holographic, i.e., exponential in the system’s boundary.

A. Potts compass model

We now discuss a discretized version of the compass
model [69], the “four-state Potts compass model” on an
Lx×Ly square lattice with periodic boundary conditions. The
Hamiltonian is given by

HPC = −
∑
i,σ,τ

(niσ ni+x̂,σ σiσi+x̂ + niτ ni+ŷ,τ τiτi+ŷ), (62)
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where at each site (vertex) i there are two Ising type spins
σi = ±1, τi = ±1, while the occupation numbers niσ = 0,1
and niτ = 1 − niσ . Then, at each site, there is either a σ or
a τ degree of freedom. The Cartesian unit vectors x̂ and ŷ

link neighboring sites of the square lattice. Spins of the σ

type interact along the x direction (horizontally) while those
of the τ variety interact along the y direction (vertically).
Minimizing the energy is equivalent to maximizing the number
of products in the summand of Eq. (62) that are equal to +1. In
a configuration in which at all sites there is a σ (and no τ ) spin,
the system effectively reduces to that of Ly independent Ising
chains parallel to the x direction. For each such chain, there
are two ground states: σi = +1 or σi = −1 for all lattice sites.
As these chains are independent, there are 2Ly ground states.
Replacing some sites with τ spins some bonds turn into 0 and
energy increases as a result. Repeating the same procedure
where all sites are occupied by τ spins, we find out that there are
Lx independent vertical Ising chains and so 2Lx states giving
the same minimum energy. The ground state degeneracy of
Eq. (62) is 2Lx + 2Ly . For a more general case with genus g

(composed of regions {aj } connected by bridges {bj } (shared
by regions aj and aj+1)), the degeneracy again depends on the
number of independent horizontal (Ly) and vertical (Lx) Ising
chains. If each region aj is of size L

j
x×L

j
y (j = 1, . . . ,g) and

bj (j = 1, . . . ,g − 1) is the number of edges connecting aj

and aj+1, then, the ground state degeneracy will be

n
Potts−compass
g.s = 2Lx + 2Ly , (63)

where

Lx =
g∑

j=1

Lj
x −

g−1∑
j=1

bj ,Ly =
g∑

j=1

Lj
y. (64)

This degeneracy depends on both the geometry and the
topology of the lattice. We briefly highlight the effects of
topology in the degeneracy of Eqs. (63) and (64). Panel (a) of
Fig. 10 depicts a genus one lattice for which Lx = 5,Ly = 12
and N = V = 60. By redefining the way spins are connected
and boundary conditions, as we explained before, we may
transform it into, e.g., g = 2,3 lattices as in Fig. 10 [panels
(b) and (c), respectively]. Here, one may readily verify that
although Ly = 12 and the total number of spins do not change,
Lx varies (increases) as a result of increasing the genus number.

B. Classical Xu-Moore model

As discussed earlier, our classical toric code model of
Eq. (6) is identical to the spin (defined on vertices) plaquette
model of Eq. (24). This latter Hamiltonian is, as it turns out,
a particular limiting case of the so-called “Xu-Moore model”
[70,71], one in which its transverse field is set to zero and the
model becomes classical. In its original rendition, this classical
limit of the Xu-Moore model has a degeneracy exponential in
the system’s boundary. This degeneracy appears regardless
of the parity of the system sides. We now discuss how to
relate the degeneracy in our system to that of the classical
Xu-Moore model. To achieve this, instead of applying periodic
boundary conditions along the Cartesian directions as in the
classical Toric Code model (i.e., along the solid lines of Fig. 2),
we endow the system with different boundary conditions.

FIG. 10. Three lattices with different genus numbers and their
corresponding tori below. All have the same total number of spins,
N = 60. Thick solid (blue) lines represent the boundary, and spins
are located at the vertices. We have, (a) g = 1 and Lx = 5,Ly = 12.
(b) g = 2 and Lx = 7,Ly = 12. (c) g = 3 and Lx = 9,Ly = 12.

Specifically, we examine instances in which periodic boundary
conditions are associated with the diagonal x ′ and y ′ axis (45◦
angle rotation of the original square lattice) of Fig. 2. A simple
calculation then illustrates that the ground state sector as well
as all other energies have a global degeneracy factor,

Nglobal = 2Lx′+Ly′ . (65)

where Lx ′ and Ly ′ are defined as in Eq. (64) but along the
diagonal directions (dotted lines in Fig. 2). A similar (global)
degeneracy appears in the classical 90◦ orbital compass model
[24] (having only nearest neighbor two-spin interactions) to
which the Xu-Moore model is dual.

C. Second and third nearest neighbor Ising models

We conclude our discussion of holographic degeneracy in
spin models with a brief review of an Ising system even simpler
than the ones discussed above. Specifically, we may consider
an Ising spin system on a square lattice with its lattice constant
a set to unity when it is embedded on a torus (g = 1) with
periodic boundary conditions along the x ′ and y ′ diagonals
with the Hamiltonian

H =
∑
i,j

(2δ|i−j |,√2 + δ|i−j |,2)σiσj . (66)

Here interactions are antiferromagnetic between next-nearest
neighbors (|i − j | = √

2) and next-next-nearest neighbors

205112-14



ROBUST TOPOLOGICAL DEGENERACY OF CLASSICAL . . . PHYSICAL REVIEW B 93, 205112 (2016)

(|i − j | = 2). It is straightforward to demonstrate that this
system has a ground state degeneracy that scales as 2Lx′ + 2Ly′

where Lx ′,y ′ are the lattice sizes along the x ′ and y ′ directions
[18].

X. CONCLUSIONS

In this paper, we demonstrated that a topological ground
state degeneracy (one depending on the genus number of
the Riemann surface on which the lattice is embedded)
does not imply concurrent topological order [i.e., Eq. (3) is
violated and distinct ground states may be told apart by local
measurements]. We illustrated this by introducing the classical
toric code model [Eq. (6) with μ = ν = z]. As we showed in
some detail, under rather mild conditions [those pertaining to
“Type I” lattices in the classification of Eq. (27)], the ground
state degeneracy solely depends on topology. In these classical
systems, however, the ground states [given by, e.g., Eqs. (32)
and (33) on the torus] are distinguishable by measuring the
pattern of σ z

ij on a finite number of nearest neighbor edges;
thus, the ground states do not satisfy Eq. (3) and are, rather
trivially, not topologically ordered. They are Landau ordered
instead and, most importantly, illustrate that the ground states
are related by d = 2 (global) Gauge-like symmetries contrary
to the d = 1 symmetries of Kitaev’s toric code model [35–37].

In the more commensurate Type II lattice realizations of
the classical toric code model as well as in a host of other
systems, the ground state degeneracy is “holographic,” i.e.,
exponential in the linear size of the lattice [18,43]. This
classical holographic effect is different from more subtle
deeper quantum relations, for entanglement entropies, e.g.,
[72–74]. In all lattices and topologies, the minimal ground
state degeneracy (and that of all levels in the system) of the
classical model is robust and bounded from below by 4g

with g the genus number. We find similar genus dependent
minimal degeneracies in clock and U (1) theories (including
lattice gauge theories). For completeness, we remark that a
degeneracy of the form 2η(L) with η a quantity bounded from
above by the linear system size (viz., a holographic entropy)
also appears in bona fide topologically ordered systems such
as the “Haah code” [5–7].

Beyond demonstrating that such degeneracies may arise in
classical theories, we illustrated that these behaviors may arise
in rather canonical clock and U (1) type theories. We provided
a simple framework for studying and understanding the origin
of these ubiquitous topological and holographic degeneracies.

We conclude with one last remark. Our results for classical
systems enable the construction of simple quantum models
with ground states that may be told apart locally [i.e., violating
Eq. (3) for topological quantum order] yet, nevertheless,
exhibit a topological ground state degeneracy). We present one,
out of a large number of possible, routes to write such models
exactly. Consider any one of the different theories studied in
our work. Let us denote the classical Hamiltonian associated
with any of these theories by HClassical and corresponding
local observables that may differentiate ground states apart
by V . One may then apply any product U of local unitary
transformations to both the Hamiltonian and the corresponding
“order parameter” local observableV . That is, we may consider
the “quantum” Hamiltonian HQuantum ≡ U †HClassicalU and

the corresponding local operatorVQuantum ≡ U †VU . By virtue
of the unitary transformation, both in the ground state sector
(as well as at any finite temperature), the expectation value
of the local observable V in the classical system given by
HClassical is identical to the expectation value of the VQuantum
in the quantum system governed by HQuantum. To be concrete,
one may consider, e.g., the classical toric code (CTC) model.
That is, e.g., one may set HClassical = HCTC that contains only
classical Ising (σx

j ) spins. Next, consider the unitary operator
U = ∏

j∈�+ exp[i π
4 σ z

j ] that effects a π/2 rotation of all spins
at sites j that belong to the sublattice �+ about the internal
σ z axis. (That is, indeed, 1√

2
(1 − iσ z

j )σx
j

1√
2
(1 + iσ z

j ) = σ
y

j .)
Thus, trivially, the resulting Hamiltonian HQuantum contains
noncommuting σx and σy and is “quantum” (just as the Kitaev
Toric Code model of Sec. III [3] that may be mapped to two
decoupled classical Ising spin chains [35–37]) contains exactly
these two quantum spin components and is “quantum”). By
virtue of the local product nature of the mapping operator
U , the classical local observables V that we discussed in
our paper become now new local observables VQuantum in
the quantum model. Thus, putting all of the pieces together,
we may indeed generate quantum models with a topological
degeneracy in which the ground state may be told apart by
local measurements.
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APPENDIX: CANONICAL PARTITION FUNCTION
OF THE CLASSICAL TORIC CODE MODEL

In Type I lattices (and their simplest composites), the
canonical partition function of the classical Toric Code model
is given by Eq. (36). The situation is somewhat richer for
other lattices. Below, we briefly write the partition functions
for several such finite size lattices. For simplicity we set
J = J ′ = 1 and dQ = 2 in the classical rendition of Eq. (6)
and perform a high temperature (H − T) and low temperature
(L − T) series expansion which is everywhere convergent for
these finite size systems. One can follow a similar procedure
and find the partition functions for dQ > 2. We start with
H − T series expansion,

ZH−T =
∑
{σ }

e−βHz,z =
∑
{σ }

eβ
∑

s Az
s+β

∑
p Bz

p

=
∑
{σ }

∏
s

eβAz
s

∏
p

eβBz
p

= (cosh β)V +F
∑
{σ }

∏
s

(
1 + T Az

s

) ∏
p

(
1 + T Bz

p

)
,

(A1)

where T = tanh β and β = 1/(kBT ).
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In Eq. (A1) after expanding the products, and summing
over all configurations, the only surviving terms are those for
which the product of a subset of Az

s’s and Bz
p’s is equal to 1

and this corresponds to one constraint or a product of two or
more of them sharing no star or plaquette operators. Thus,

ZH−T = 2E(cosh β)V +F

× (
1 + terms from constraints on Az

s’s and Bz
p’s

)
,

(A2)

where F is the number of faces and V is the number
of vertices. The factor of 2E (with E = N the number of
spins or lattice edges) originates from the summation

∑
{σ } 1

(each σ z
ij has two values (±1), with (ij ) = 1, . . . ,E). The

sole nonvanishing traces in Eq. (A1) originate from the
constraints of Eqs. (23) and (25) and their higher genus
counterparts. While this procedure trivially gives rise to the
partition function of Eq. (36) for simple lattices, the additional
constraints in other lattices spawn new terms in the partition
functions.

In the following we develop the L − T series expansion for
dQ = 2. From Eq. (36),

ZL−T = Nglobal

∑

=0

n
e
−βE


= Nglobale
−βE0

(
1 +

∑

=1

n
e
−β(E
−E0)

)
, (A3)

where E0 is the ground state energy and Nglobal is the ground
state degeneracy. Numerical results illustrate that the integers
n
 are larger than or equal to 1. One can generalize this form
for dQ > 2

ZL−T =
∑

=0

D

dQ

e−βE
 , (A4)

where E
 and D

dQ

indicate energy and degeneracy of energy
level 
 for a given dQ, respectively.

Below is a sample of our numerical results for ZH−T and
ZL−T of lattices with different sizes, dQ’s and genus numbers
(g = 1,2,3). From ZL−T, we can easily see that exited states
have a degeneracy “higher than or equal to” the ground state
degeneracy (J = J ′ and βJ = K).

(I) g = 1:
(a) 3×1,E = 6:

(i) dQ = 2:

ZH−T = (2 cosh β)6(1 + T 6 + 2T 3),

ZL−T = 4(e6K)(1 + 9e−8K + 6e−4K).

(ii) dQ = 3:

ZH−T = (3 cosh β)6

(
1 + T 6

32
+ 3T 4

8

)
,

ZL−T = 9(e6K)
(
1 + 10e−9K + 12e− 15K

2 + 36e−6K

+ 16e− 9K
2 + 6e−3K

)
.

(iii) dQ = 4:

ZH−T = (4 cosh β)6

(
1 + T 6

16

)
,

ZL−T = 8(e6K)(1 + e−12K + 12e−10K + 135e−8K

+ 216e−6K + 135e−4K + 12e−2K).

(iv) dQ = 5:

ZH−T = (5 cosh β)6

(
1 + T 6

32

)
,

ZL−T = 5(e6K)
(
1 + 90e(−√

5−5)K + 90e(
√

5−5)K

+ 240e( 1
4 (−√

5−1)+√
5−6)K + 30e( 1

2 (−√
5−1)−2)K

+ 210e( 1
2 (−√

5−1)+√
5−7)K + 12e( 5

4 (−√
5−1)−5)K

+ 20e( 3
2 (−√

5−1)−6)K + 240e( 1
4 (

√
5−1)−√

5−6)K

+ 120e( 1
2 (−√

5−1)+ 1
4 (

√
5−1)−3)K

+ 120e( 3
4 (−√

5−1)+ 1
4 (

√
5−1)−4)K

+ 60e( 5
4 (−√

5−1)+ 1
4 (

√
5−1)−6)K

+ 30e( 1
2 (

√
5−1)−2)K

+ 210e( 1
2 (

√
5−1)−√

5−7)K

+ 120e( 1
4 (−√

5−1)+ 1
2 (

√
5−1)−3)K

+ 360e( 1
2 (−√

5−1)+ 1
2 (

√
5−1)−4)K

+ 360e( 3
4 (−√

5−1)+ 1
2 (

√
5−1)−5)K

+ 120e( 1
4 (−√

5−1)+ 3
4 (

√
5−1)−4)K

+ 360e( 1
2 (−√

5−1)+ 3
4 (

√
5−1)−5)K

+ 240e( 3
4 (−√

5−1)+ 3
4 (

√
5−1)−6)K

+ 12e( 5
4 (

√
5−1)−5)K

+ 60e( 1
4 (−√

5−1)+ 5
4 (

√
5−1)−6)K

+ 20e( 3
2 (

√
5−1)−6)K

)
.

(v) dQ = 6:

ZH−T = (6 cosh β)6

(
1 + T 6

32

)
,

ZL−T = 36(e6K)
(
1 + 6e−11K + 12e−10K + 24e− 19K

2

+ 10e−9K + 48e− 17K
2 + 165e−8K + 12e− 15K

2

+ 192e−7K + 168e− 13K
2 + 36e−6K + 96e− 11K

2

+ 282e−5K + 16e− 9K
2 + 114e−4K + 60e− 7K

2

+ 6e−3K + 24e− 5K
2 + 24e−2K)

.

(b) 2×2,E = 8:
(i) dQ = 2:

ZH−T = (2 cosh β)8(1 + 14T 4 + T 8),

ZL−T = 16(e8K)(1 + e−16K + 14e−8K).
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(ii) dQ = 3:

ZH−T = (3 cosh β)8

(
1 + 3T 8

128
+ T 6

8
+ 3T 4

4

)
,

ZL−T = 27(e8K)(1 + 18e−12K + 16e−21K/2

+ 80e−9K + 64e−15K/2 + 56e−6K + 8e−3K).

(iii) dQ = 4:

ZH−T = (4 cosh β)8

(
1 + T 8

16
+ 3T 4

4

)
,

ZL−T = 128(e8K)(1 + e−16K + 44e−12K + 64e−10K

+ 294e−8K + 64e−6K + 44e−4K).

(c) 4×1,E = 8:
(i) dQ = 2:

ZH−T = (2 cosh β)8(1 + 2T 4 + T 8),

ZL−T = 4(e8K)(1 + e−16K + 12e−12K + 38e−8K

+ 12e−4K).

(ii) dQ = 3:

ZH−T = (3 cosh β)8

(
1 + T 8

128

)
,

ZL−T = 3(e8K)
(
1 + 86e−12K + 336e− 21K

2

+ 616e−9K + 560e− 15K
2 420e−6K + 112e− 9K

2

+ 56e−3K
)
.

(iii) dQ = 4:

ZH−T = (4 cosh β)8

(
1 + T 8

64

)
,

ZL−T = 16(e8K)(1 + e−16K + 8e−14K + 252e−12K

+ 952e−10K + 1670e−8K + 952e−6K

+ 252e−4K + 8e−2K).

(d) 3×2,E = 12:
(i) dQ = 2:

ZH−T = (2 cosh β)12(1 + 2T 6 + T 12),

ZL−T = 4(e12K)(1 + e−24K + 30e−20K

+ 255e−16K + 452e−12K + 255e−8K + 30e−4K).

(ii) dQ = 3:

ZH−T = (3 cosh β)12

(
1 + T 12

2048
+ 3T 8

128

)
,

ZL−T = 9(e12K)
(
1 + 466e−18K + 2664e− 33K

2

+ 7668e−15K + 12344e− 27K
2 + 14148e−12K

+ 11232e− 21K
2 + 6720e−9K + 2592e− 15K

2

+ 1026e−6K + 152e− 9K
2 + 36e−3K

)
.

(e) 4×2,E = 16:
(i) dQ = 2:

ZH−T = (2 cosh β)16(1 + T 16 + 14T 8),

ZL−T = 16(e16K)(1 + e−32K + 8e−28K + 252e−24K

+ 952e−20K + 1670e−16K + 952e−12K

+ 252e−8K + 8e−4K).

(f) 3×3,E = 18:
(i) dQ = 2:

ZH−T = (2 cosh β)18(1 + T 18 + 6T 12 + 9T 10

+ 32T 9 + 9T 8 + 6T 6),

ZL−T = 64(e18K)(1 + 9e−32K + 72e−28K + 636e−24K

+ 1296e−20K + 1422e−16K + 552e−12K

+ 108e−8K).

(II) g = 2
(a) 2×1 + 2×1,E = 8:

(i) dQ = 2:

ZH−T = 28(cosh β)6(1 + T 6 + T 4 + T 2),

ZL−T = 16(e6K)(1 + e−12K + 7e−8K + 7e−4K).

(ii) dQ = 3:

ZH−T = 38(cosh β)6

(
1 + T 6

32

)
,

ZL−T = 27(e6K)
(
1 + 22e−9K + 60e− 15K

2

+ 90e−6K + 40e− 9K
2 + 30e−3K)

.

(iii) dQ = 4:

ZH−T = 48(cosh β)6

(
1 + T 6

16

)
,

ZL−T = 256(e6K)
(
1 + e−12K + 4e−10K + 71e−8K

+ 104e−6K + 71e−4K + 4e−2K
)
.

(b) 3×1 + 3×1(b1 = 1),E = 12:
(i) dQ = 2:

ZH−T = 212(cosh β)10(1 + T 10 + T 6 + T 4),

ZL−T = 16(e10K)(1 + e−20K + 21e−16K

+ 106e−12K + 106e−8K + 21e−4K).

(ii) dQ = 3:

ZH−T = 312(cosh β)10

(
1 + T 10

512
+ T 7

32
+ T 6

32

)
,

ZL−T = 81(e10K)
(
1 + 114e−15K + 572e− 27K

2

+ 1266e−12K + 1716e− 21K
2 + 1530e−9K

+ 816e− 15K
2 + 438e−6K + 84e− 9K

2 + 24e−3K
)
.
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(c) 3×1 + 3×1(b1 = 2),E = 12:
(i) dQ = 2:

ZH−T = 212(cosh β)10(1 + T 10 + T 6 + 4T 5 + T 4),

ZL−T = 32(e10K)(1 + 13e−16K + 48e−12K + 58e−8K

+ 8e−4K).

(ii) dQ = 3:

ZH−T = 312(cosh β)10

(
1 + T 10

512
+ T 7

32
+ T 6

32

)
,

ZL−T = 81(e10K)
(
1+114e−15K+572e− 27K

2

+ 1266e−12K + 1716e− 21K
2 + 1530e−9K

+ 816e− 15K
2 + 438e−6K + 84e− 9K

2 + 24e−3K
)
.

(d) 2×2 + 2×1,E = 12:
(i) dQ = 2:

ZH−T = 212(cosh β)10(1 + T 10 + 3T 6 + 3T 4),

ZL−T = 32(e10K)(1 + e−20K + 9e−16K + 54e−12K

+ 54e−8K + 9e−4K).

(ii) dQ = 3:

ZH−T = 312(cosh β)10

(
1 + T 10

512

)
,

ZL−T = 27(e10K)
(
1 + 342e−15K + 1700e− 27K

2

+ 3870e−12K + 5040e− 21K
2 + 4620e−9K

+ 2520e− 15K
2 +1260e−6K+240e− 9K

2 +90e−3K)
.

(III) g = 3:
(a) 2×1 + 2×1 + 2×1,E = 12:

(i) dQ = 2:

ZH−T = 212(cosh β)8(1 + T 8 + T 6 + T 2),

ZL−T = 64(e8K)(1 + e−16K + 16e−12K

+ 30e−8K + 16e−4K).

(ii) dQ = 3:

ZH−T = 312(cosh β)8

(
1 + T 8

128

)
,

ZL−T = 243(e8K)
(
1 + 86e−12K + 336e− 21K

2 + 616e−9K

+ 560e− 15K
2 + 420e−6K + 112e− 9K

2 + 56e−3K
)
.
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