
PHYSICAL REVIEW B 93, 205109 (2016)

Classification of stable Dirac and Weyl semimetals with reflection and rotational symmetry
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Three-dimensional (3D) Dirac and Weyl semimetals are novel states of quantum matter. We classify stable 3D
Dirac and Weyl semimetals with reflection and rotational symmetry in the presence of time reversal symmetry
and spin-orbit coupling, which belong to seventeen different point groups. They have two classes of reflection
symmetry, with the mirror plane parallel and perpendicular to rotation axis. In both cases two types of Dirac
points, existing through accidental band crossing (ABC) or at a time reversal invariant momentum (TBC), are
determined by four different reflection symmetries. We classify those two types of Dirac points with a combination
of different reflection and rotational symmetries. We further classify Dirac and Weyl line nodes to show in which
types of mirror plane they can exist. Finally we discuss that Weyl line nodes and Dirac points can exist at the
same time taking C4v symmetry as an example.
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I. INTRODUCTION

Dirac semimetals are new states of quantum matter. They
have gap closing (points or line nodes) of conduction and
valence band which show pseudorelativistic physics of 3D
Dirac fermions near the Fermi energy. Before the discovery of
Dirac semimetals, the topological quantum states, such as 3D
topological insulator [1,2], have two-dimensional (2D) Dirac
fermions on the surface. Different from topological insula-
tors and superconductors, Dirac semimetals hold nontrivial
features in the bulk states [3–22].

Stable 3D Dirac semimetals have been theoretically pre-
dicted [5,17] and observed experimentally in Cd3As2 and
Na3Bi [18–22] by angle-resolved photoemission spectroscopy
(ARPES). In these materials there are two stable Dirac points
(DPs) in the kz axis stabilized by rotational symmetry. While
in β-cristobalite structure such like BiO2 [3], the DPs exist at
a time reversal invariant momentum (TRIM). Recently, a new
type of Dirac semimetal, Dirac line nodes (DLNs), has been
proposed in AIrO3, 3D graphene networks, LaN, and Cu3NPd
[6–13]. DLNs can exist in the system with or without spin-orbit
coupling (SOC) [23]. Meanwhile, theoretical prediction shows
that time reversal symmetry (TRS) breaking systems including
HgCr2Se4 [24] has Weyl nodes and a Weyl line node (WLN)
in its mirror plane. Also systems with TRS breaking such as
pyrochlore iridates [25] and (CdO)2(EuO)2 [26] or with TRS
such as TaAs, NbAs, NbP, TaP and WTe2 [27–39] have Weyl
nodes.

Inspired by these works, we ask which point group can
protect Dirac and Weyl semimetals. Only ten out of thirty-two
point groups have both inversion and rotational symmetry
which have been classified [40]. Here we classify 3D stable
DPs and newly predicted DLN [23] and WLN [24] in the
systems preserving TRS, reflection symmetry, and uniaxial
rotational symmetry, which include seventeen point groups
both with and w/o inversion symmetry. Known that the
reflection symmetry plays an important role in classification
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of topological phases [41–43], we first study the classification
of reflection symmetries in seventeen different point groups,
covering all point groups with inversion symmetry apart from
C3i . There are two classes of reflection symmetry, with the
mirror plane parallel and perpendicular to rotation axis. In
both cases two types of DPs, created by ABC or by TBC, are
determined by four different reflection symmetries. Then we
show that in both mirror parallel and perpendicular cases, C2,3

symmetry can only protect stable DPs via TBC, while C4,6

symmetry can have stable DPs as ABC or TBC. We further
classify DLNs and WLNs to show in which types of mirror
plane they can exist. Finally we discuss the coexistence of DPs
and WLNs.

II. HAMILTONIAN

A 4 × 4 Hamiltonian describing the four energy bands of a
system preserving TRS and uniaxis rotational symmetry in a
general form,

H =
(

h↑↑(�k) h↑↓(�k)
h↓↑(�k) h↓↓(�k)

)
=

3∑
i,j=0

aij (�k)τiσj ,

where σi represents the spin space and τi represents orbital
space. hσσ ′(σ = ↑,↓) is a 2 × 2 matrix and ↑↓ represent
opposite spin in kz direction. All the aij (�k) are real functions
and we can determine the parity of each coefficient aij (�k)
through TRS H (−�k) = T H (�k)T −1, where T = iσyK . The
system is invariant under Cn rotational symmetry which gives
CnH (�k)C−1

n = H (Rn
�k), where Rn is the rotation operator

for 3D n-fold rotation in k space and the basis vectors are
chosen to be eigenstates of Cn. We choose the rotation axis
as the kz axis, therefore Rnkz = kz. Rotational symmetry
suggests commutation relation CnH (kz)C−1

n = H (kz) on the
kz axis between the Hamiltonian H (kz) and Cn operators.
Therefore we choose a basis to make Cn a diagonal form Cn =
diag(αp,αq,αr ,αs), where αp = exp[i 2π

n
(p + 1

2 )], p is the
effective orbital angular momentum for rotational symmetry.
Here each basis vector is a Cn rotation eigenstate and has a
definite rotation eigenvalue p + 1

2 .
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FIG. 1. (a) Schematic diagrams of reflection symmetries in space groups: the mirror plane parallel to rotation axis as shown in aI and aII

and the mirror plane perpendicular to rotation axis as shown in aIII and aIV . The reflection operators are not the same as the intuitive ones
because of the phase factor stemming from spin. In both cases, for normal mirror plane aI and aIII , there is only one equivalent site. As for
glide mirror plane aII and aIV , which are reflection symmetries with t translation, there are two inequivalent sites in the lattice. (b) The phase
transition determined by a control parameter m and Dirac semimetal created by accidental band crossing (ABC). When m is in a proper range,
two Dirac points show up on the kz axis. This phase lays between two gapped phase such as normal insulator and weak topological insulator
(WTI)/topological crystalline insulator (TCI). (c) For ABC, when the conduction band and valence band have the same rotation eigenvalue, i.e.,
p = q, they will never cross each other because of strong level repulsion. (d) The Dirac semimetal phase is protected by crystalline symmetry
(TBC).

III. CLASSIFICATION OF REFLECTION SYMMETRY

Point groups with reflection symmetries can be distin-
guished in two classes by the relative positions between
the mirror plane and rotation axis kz: In the first class,
kz axis parallels the mirror plane, and the system doesn’t
preserve inversion symmetry which correspond to point groups
C2v,C3v,C4v,C6v , D2d , and Td . In these systems, reflection
symmetry can be a point group symmetry as shown in
Fig. 1.(aI) or a nonsymmorphic glide plane symmetry which
is the combination of a reflection operation and a translation
t as shown in Fig. 1.(aII). Neupane et al. [18] realized Dirac
semimetal Cd3As2 which belongs to nonsymmorphic space
group I41cd (C4v). Whereas in the second class, when the kz

axis is perpendicular to the mirror plane, inversion symmetry
will emerge through the combination of reflection symmetry
and C2 rotational symmetry [40,44]. Here the point group
reflection symmetry is shown in Fig. 1. (aIII) and the glide
plane symmetry in nonsymmorphic space group is shown in
Fig. 1.(aIV).

Mirror operator is an inversion operation followed by a
C2 rotation whose rotation axis is perpendicular to the mirror
plane. It should satisfy the following constraints: (1) [M,T ] =
0, (2) M+M = 1, (3) MM = eiφ . If we set the mirror plane
as the yz plane or xy plane, the reflection operators will
have the form: (A) Mk = ±τ0 ⊗ iσk , (B) Mk = ±τz ⊗ iσk ,
(C) Mk = ±τx ⊗ iσk , and (D) Mk = ±iτy ⊗ iσk (k = x,z).
They are not the same as the intuitive mirror operators because
of the phase generated by spin. It is also worth mentioning
that the subtle reflection operator Mk = ±iτy ⊗ iσk can be
constructed through glide mirror operation with a translation.
Glide plane operator will produce a phase factor after being
applied twice. (See Appendix B for detailed examples.) Note
that the basis in our framework is after considering spin-orbit
coupling (SOC).

IV. CLASSIFICATION TABLE OF STABLE DIRAC POINTS

After applying TRS and rotational symmetry, the Hamil-
tonian in kz axis becomes a diagonal form with the above
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FIG. 2. Dirac or Weyl semimetals protected by reflection symmetry. (a),(b) Examples of Dirac points as ABC (a) and TBC (b). (c) For
mirror Mz = iτy ⊗ iσz, conduction (valence) band consists of two bands with the same mirror eigenvalues. There isn’t level repulsion between
conduction and valence bands and the crossing of two bands generates a DLN. (d),(e) For various kinds of mirrors (e.g., iτy ⊗ iσx and τx ⊗ iσx),
WLNs can be protected as long as the crossing bands have different mirror eigenvalues and so level repulsion doesn’t happen (Table IV).

basis

H (kz) = a00 + a03σ3 + a33τ3σ3 + a30τ3. (1)

The DPs are created only when a03,33,30(kz,m) = 0, where
m is a control parameter. There are three equations and
two variables, so we need additional symmetry constraints
to guarantee these equations having at least one solution
that can generate stable DPs. After we impose reflection
symmetry, H (kz) can be further constrained and will reveal the

Dirac semimetal phase. As shown in the Appendix, different
reflection operators will hold different types of DPs. When
the reflection operator is Mk = τ0/τz ⊗ iσk(k = x,z), only
a30(kz,m) survives. a30(kz) is an even function with respect
to kz, so a30(kz,m) ≈ M0 − M1k

2
z for the leading order. Two

DPs will emerge in the kz axis at kz = ±√
M0/M1. This kind of

Dirac semimetal is created through the two bands accidentally
crossing each other (ABC) when the conduction band and
valence band have different rotation eigenvalues (p 	= q).

TABLE I. Classification table of Dirac points when kz is parallel to mirror plane. Here we choose kz as the rotation axis and assume
that the yz plane is a mirror plane. (p,q,r,s) can be regarded as a set of orbital angular momentum in z direction and j is the total
angular momentum. For compact presentation, we assume n/2 � q � p < n and consider the equivalence between {p,r} and {q,s}. The
2 × 2 Hamiltonian h↑↑(�k) = f0(�k) + f+(�k)τ+ + f−(�k)τ− + fz(�k)τz, and h↑↓(�k) = g0(�k) + g+(�k)τ+ + g−(�k)τ− + gz(�k)τz. The leading order of
f±,g±,g0 + gz,g0 − gz are shown in the table. Each term should be multiplied by an coefficient function of kz respecting to the parity of aij (k)
when constructing the elements of the Hamiltonian.

Mx Cn (p,q,r,s) Total j f± g± g0 + gz g0 − gz Dirac Type Materials Dispersion in ky

±τ0/τz C2/C3

C4 (3,2,0,1) (± 1
2 ,± 3

2 ) k+ k2
± k− k+ ABC Cd3As2(I41cd) Linear Dirac

C6 (5,4,0,1) (± 1
2 ,± 3

2 ) k+ k2
− k− k3

± ABC Linear Dirac

C6 (5,3,0,2) (± 1
2 ,± 5

2 ) k2
+ k3

± k− k+ ABC Linear Dirac

C6 (4,3,1,2) (± 3
2 ,± 5

2 ) k+ k2
+ k3

± k+ ABC Linear Dirac

±τx C2

±τx/iτy C3 (2,1,0,1) (± 1
2 ,± 3

2 ) k+ k+ k− k+k− TBC Linear Dirac
C4 (3,2,0,1) (± 1

2 ,± 3
2 ) k+ k2

± k− k+ TBC Linear Dirac
C6 (5,4,0,1) (± 1

2 ,± 3
2 ) k+ k2

− k− k3
± TBC Linear Dirac

C6 (5,3,0,2) (± 1
2 ,± 5

2 ) k2
+ k3

± k− k+ TBC Linear Dirac

C6 (4,3,1,2) (± 3
2 ,± 5

2 ) k+ k2
+ k3

± k+ TBC Linear Dirac
±iτy C2 (1,1,0,0) (± 1

2 ,± 1
2 ) k+k− k+ k± k± TBC Linear Dirac

C3 (2,2,0,0) (± 1
2 ,± 1

2 ) k+k− k− k− k− TBC Linear Dirac
C4 (3,3,0,0) (± 1

2 ,± 1
2 ) k+k− k− k− k− TBC Linear Dirac

C4 (2,2,1,1) (± 3
2 ,± 3

2 ) k+k− k+ k+ k+ TBC Linear Dirac
C6 (5,5,0,0) (± 1

2 ,± 1
2 ) k+k− k− k− k− TBC Linear Dirac

C6 (4,4,1,1) (± 3
2 ,± 3

2 ) k+k− k3
± k3

± k3
± TBC Quadratic Dirac

C6 (3,3,2,2) (± 5
2 ,± 5

2 ) k+k− k+ k+ k+ TBC Linear Dirac
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TABLE II. Classification table of Dirac points when kz is perpendicular to the mirror plane. Here we choose kz as the rotation axis and
assume that the xy plane is a mirror plane. We use the same notation as in Table I. For compact presentation, we assume q � p < n and
consider the equivalence between {p,r} and {q,s}.

Mz C2 P Cn (p,q,r,s) Total j f± g± g0 ± gz Dirac Type Materials Dispersion in ky

τ0/τz τ0 τ0/τz C2

C4 (2,0,1,3) (± 3
2 ,± 1

2 ) k2
± k+ 0 ABC Cd3As2(I41acd) Linear

C6 (2,0,3,5) (± 5
2 ,± 1

2 ) k2
+ k3

± 0 ABC Quadratic

C6 (3,1,2,4) (± 5
2 ,± 3

2 ) k2
+ k− 0 ABC Linear

C6 (4,0,1,5) (± 3
2 ,± 1

2 ) k2
− k− 0 ABC Linear

τz τz/τ0 C2

C4 (1,0,2,3) (± 3
2 ,± 1

2 ) k+ k2
± 0 ABC Linear

C6 (1,0,4,5) (± 3
2 ,± 1

2 ) k+ k2
+ 0 ABC Linear

C6 (2,1,3,4) (± 5
2 ,± 3

2 ) k+ k2
− 0 ABC Linear

C6 (3,0,2,5) (± 5
2 ,± 1

2 ) k3
± k2

− 0 ABC Quadratic
iτy τ0 iτy C2/C6

C4 (2,0,1,3) (± 3
2 ,± 1

2 ) k2
± k− k+ TBC Linear

τz τx C2 (1,0,0,1) (± 1
2 ,± 1

2 ) k± 0 k± TBC Distorted spinels [45] Linear
C4

C6 (3,0,2,5) (± 5
2 ,± 1

2 ) k3
± 0 k+ TBC Linear

C6 (4,1,1,4) (± 3
2 ,± 3

2 ) k3
± 0 k3

± TBC Cubic
τx τ0 τx C2/C6

C4 (2,0,1,3) (± 3
2 ,± 1

2 ) k2
± 0 k+ TBC BiO2 Linear

τz iτy C2/C4

C6 (3,0,2,5) (± 5
2 ,± 1

2 ) k3
± k2

− k+ TBC Linear

It can be understood as a phase between normal insulator
and weak topological insulator (WTI) [46–48]/topological
crystalline insulator (TCI) [49,50] [Fig. 2(a)]. When reflection
operator is Mk = iτy/τx ⊗ iσk , only a33(kz,m) survives which
is an odd function with respect to kz. The leading order
is a33 = M2kz. There is one Dirac point at TRIM (TBC)
generated by band crossing. Under this scenario, the DPs are
created and stabilized by the crystalline symmetry [Fig. 2(b)].
We will use the tables below to show the physical properties
of all kinds of DPs.

The classification of DPs when the mirror plane is parallel
to the kz axis is shown in Table I. C2 and C3 rotational systems
can only generate DPs via TBC. C4 and C6 symmetries can
protect DPs as ABC or TBC in the presence of all those four
reflection symmetries. Table II demonstrate the classification
of 3D DPs when the mirror plane is perpendicular to the
kz axis. Inversion symmetry can emerge through P = C2mz,
where C2 is a twofold rotation along the kz axis in systems
preserving C2,C4,C6 symmetry. Yang and Nagaosa [40] have
already considered unitary inversion operator P = τ0,τx,τz.
We show that in Table II the same results hold when inversion
operators are unitary. However, the mirror operators can also

generate the antiunitary inversion operator P = iτy . P = iτy

is an inversion operator with a translation in nonsymmorphic
space groups. Similar to Table I, C2 rotational systems can
only generate DPs via TBC, and C4 and C6 symmetries can
protect DPs as ABC or TBC in the presence of all those four
reflection symmetries in combination with certain rotational
eigenvalues. One special case is the D3h group, which does
not involve inversion symmetry. As shown in Table III, only
Mz = iτy ⊗ iσz can protect a Dirac point at TRIM.

V. DIRAC AND WEYL LINE NODES IN MIRROR PLANE

DLNs [23] in the mirror plane emerge in systems with
inversion, TRS, and reflection symmetry. Due to the combi-
nation of inversion symmetry and TRS, two bands related by
TRS actually stick together and make up a twofold degenerate
band. When we study the Hamiltonian in the mirror plane,
if the conduction (valence) band consists of two bands with
different mirror eigenvalues, the bands with the same (positive
or negative) mirror eigenvalue from the conduction and valence
bands will have strong level repulsion and open up a gap
[Figs. 2(a) and 2(b)]. Otherwise when the sub-bands have

TABLE III. Classification table of topological phase for D3h. Here we choose kz as the rotation axis and assume that the xy plane is a
mirror plane. For compact presentation, we assume q � p < n and consider the equivalence between {p,r} and {q,s}.

Mz Cn (p,q,r,s) Total j f± g± g0 + gz g0 − gz Dirac Type Dispersion in ky direction

iτy C3 (2,0,0,2) (± 1
2 ,± 1

2 ) k− 0 k− k+ TBC Linear Dirac
C3 (2,1,0,1) (± 1

2 ,± 3
2 ) k+ 0 k− k+k− TBC Linear Dirac
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TABLE IV. The possible protected semimetal phases by reflection
symmetry. The reflection operators with σx stands for mirror parallel
to rotation axis z and σz for mirror perpendicular to rotation axis z.
(k = x,z.)

Mirror operator ABC TBC WLN DLN

τ0 ⊗ iσk

√ √
τx ⊗ iσk

√ √
iτy ⊗ iσk

√ √ √
τz ⊗ iσk

√ √

the same mirror eigenvalues, the conduction band will have a
different mirror eigenvalue from the valence band, and the level
repulsion will be relaxed [Fig. 2(c)]. The band crossing will
create DLNs in the mirror plane which can only be protected by
the nonsymmorphic reflection operators Mx,z = ±iτy ⊗ iσx,z

(Table IV). For SrIrO3 with SOC of space group #62, DLN
is located around point U (0,π,π ) of the mirror plane ky = π

in the Brillouin zone [6,23], which belongs to this type of
reflection.

Either breaking inversion symmetry or TRS can produce
Weyl semimetals. Different from WLNs in HgCr2Se4 [24]
and (CdO)2(EuO)2 [26], which breaks TRS, we construct
WLNs in the presence of TRS. WLNs are protected when
the crossing bands have different mirror eigenvalues. As is
shown in [Figs. 2(d) and 2(e)] and Table IV, WLNs may
emerge on various kinds of mirror plane because of its twofold
degeneracy nature. Note that DLNs and WLNs protected
by mirror symmetry also apply to two-dimensional systems,
because in 3D systems we just take a plane in the Brillouin
zone into consideration.

VI. THE COEXISTENCE OF DIRAC POINTS
AND WEYL LINE NODES

For now we can construct DPs in the systems preserving
reflection symmetry but without inversion symmetry. We
expect in some cases DPs and WLNs can exist simultaneously

with SOC. We illustrate this distinctive properties in materials
with C4v point group like Cd3As2 with angular momentum
(± 1

2 ,± 3
2 ) through k · p perturbation method. The detailed

calculations are shown in the Appendix. By choosing some
proper parameters, the band structure shown in Figs. 3(a) and
3(b) exhibits two DPs along the �-Z direction and two WLNs
in the yz plane and xz plane. Figure 3(c) shows the phase
transition between different topological phases. Obviously the
phase transition of WLNs is independent of the emergence of
DPs in kz direction. The simultaneous appearance of DPs and
WLNs indicates a new class of topological phase with TRS
and SOC.

This k · p Hamiltonian can have different topological
phases depending on the SOC term D0 and inversion breaking
term B0. In the gray area, the system breaks inversion
symmetry but cannot protect Weyl semimetal. In the blue
areas depending on the value of A0, the conduction band and
valence band will cross to form a WLN. When the inversion
breaking term B0 is small, the system will not have WLNs
phase, but it can protect Dirac semimetal phase just like in
Cd3As2(I41acd). This phase diagram is independent of the
creation of the Dirac semimetal phase in bulk band structure.
Numerical calculation shows that the two crossing bands of
WLNs in blue areas have different mirror eigenvalues, which
protects the gap closing on the WLNs.

VII. CONCLUSION

We show that reflection symmetry can protect Dirac and
Weyl semimetal phases with or without inversion symmetry.
We have classified these phases in systems preserving reflec-
tion, rotational symmetry, and TRS. Table IV can be referred
to for an overall possible protection of semimetal phases by
reflection symmetry. There are two kinds of DPs created via
ABC and TBC. In C2 and C3 rotation invariant systems, DPs
can be created only via TBC. Whereas in C4 and C6 systems,
DPs can be created via not only ABC but also TBC. We also
show that DLNs in mirror plane can be protected only by
Mz = iτy ⊗ iσx,z and WLNs can be protected by any reflection

FIG. 3. (a) The electronic structure of C4v system with SOC from k · p model shows the coexistence of Dirac points and WLNs. (b)
Schematic diagram of the distribution of Dirac points (yellow points) and WLNs (red or blue circles) in the Brillouin zone. Dirac points locate
on the interception of four WLNs. (c) Phase diagram with respect to B0 (inversion breaking term), D0 (SOC) and A0 results from the k · p

model. WLNs exist in the blue areas, among which the dark blue area represents the situation when the parameter A0 = −0.06 eV (Cd3As2)
[19] and the light blue area (partially covered by the dark one) for A0 = −0.00922 eV (HgTe) [51].
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operator. Finally, we find that in C4v point group system,
Dirac semimetal phase can coexist with WLNs. These new
classes of Dirac and Weyl semimetals in inversion breaking and
preserving systems can guide the search for novel materials
with exotic quantum properties [52–57] and applications [58].
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APPENDIX A: HAMILTONIAN CONSTRAINED BY TIME
REVERSAL SYMMETRY AND ROTATIONAL SYMMETRY

In this section we first constrain the Hamiltonian with
time reversal symmetry (TRS) and rotational symmetry. Then
we impose rotational symmetry Cn to the whole system to
determine the leading order of the elements in h↑↑(�k) and
h↑↓(�k). The Hamiltonian and the basis we use here is the same
as that in the main text. Time reversal symmetry will constrain
the Hamiltonian H (�k): H (−�k) = T H (�k)T −1, where the time
reversal operator T = iσyK . We will have [40]

H =
(

h↑↑(�k) h↑↓(�k)
−h∗

↑↓(−�k) h∗
↑↑(−�k)

)
.

At the same time, we know the parity of each coefficient
with respect to momentum a01,02,03,11,12,13,20,31,32,33(−�k) =
−a01,02,03,11,12,13,20,31,32,33(�k) and a00,10,21,22,23,30(−�k) =
a00,10,21,22,23,30(�k). We set the rotation axis as kz and choose
the eigenstates of the rotation operator Cn as the basis of
matrices. Then the matrix representation of Cn is

Cn = diag[αp,αq,αr ,αs]

=

⎛
⎜⎜⎜⎝

ei 2π
n

(p+1/2) 0 0 0
0 ei 2π

n
(q+1/2) 0 0

0 0 ei 2π
n

(r+1/2) 0
0 0 0 ei 2π

n
(s+1/2)

⎞
⎟⎟⎟⎠

=
(

eiπ( 1+p+q

n
+ p−q

n
τz) 0

0 eiπ( 1+r+s
n

+ r−s
n

τz)

)
(A1)

where p,q,r,s ∈ {0,1, . . . ,n − 1} and can be regarded as
effective orbital angular momentum of different states. In
general, Cn commutes with TRS [Cn,T ] = 0, thus p and r , q

and s are related by:

αp = ᾱr , αq = ᾱs

exp

[
i
2π

n
(p + r + 1)

]
= 1, exp

[
i
2π

n
(q + s + 1)

]
= 1.

(A2)

Next we derive the constraint relations between rotational
symmetry and elements of the Hamiltonian. The 2 × 2 block
Hamiltonian h↑↑,h↑↓ can be expanded in the following way
[59]:

h↑↑(�k) = f0(�k) + f+(�k)τ+ + f ∗
+(�k)τ− + fz(�k)τz

h↑↓(�k) = g0(�k) + g+(�k)τ+ + g−(�k)τ− + gz(�k)τz (A3)

where τ± = τx ± iτy , f0,z are real functions and f+,g0,gz,g±
are complex functions. Then the rotational symmetry
CnH (k±,kz)C−1

n = H (k±e±i2π/n,kz) gives the constraints of
elements of the Hamiltonian:

fz(k±,kz) = fz(k±e±i2π/n,kz)

exp

[
i
2π

n
(p − q)

]
f+(k±,kz) = f+(k±e±i2π/n,kz)

exp

[
i
2π

n
(p − r)

]
g0+z(k±,kz) = g0+z(k±e±i2π/n,kz) (A4)

exp

[
i
2π

n
(q − s)

]
g0−z(k±,kz) = g0−z(k±e±i2π/n,kz)

exp

[
i
2π

n
(q − r)

]
g±(k±,kz) = g±(k±e±i2π/n,kz)

where k± = kx ± iky , g0±z = g0 ± gz.
On kz axis, these constraints become

fz(kz) = fz(kz)

exp

[
i
2π

n
(p − q)

]
f+(kz) = f+(kz)

exp

[
i
2π

n
(p − r)

]
g0+z(kz) = g0+z(kz)

exp

[
i
2π

n
(q − s)

]
g0−z(kz) = g0−z(kz)

exp

[
i
2π

n
(q − r)

]
g±(kz) = g±(kz).

(A5)

After considering all other symmetry operations (e.g., re-
flection symmetry in C), if nondiagonal f,g terms aren’t
eliminated on the kz axis, the corresponding (p,q,r,s) pairs
(f+ to p,q, g0 + gz to p,r , g0 − gz to q,s, g± to q,r) should
be unequal to obtain Dirac points. For example, if f+ exists
on the kz axis, we should apply p 	= q or a gap will open on
the kz axis.

In order to get the dispersion relation near Dirac points, we
should write the f,g terms in a more explicit form. The matrix
elements can be expanded as polynomial [59]:

f (k+,k−) =
∑
n1,n2

An1n2k
n1+ k

n2− . (A6)

Combined with the constraint relations (A4), we obtain

ei2π(p−q)/nf (k+,k−) = f (k+ei2π/n,k−e−i2π/n)

=
∑
n1,n2

exp

[
i
2π

n
(n1 − n2)

]
An1n2k

n1+ k
n2−

(A7)

205109-6



CLASSIFICATION OF STABLE DIRAC AND WEYL . . . PHYSICAL REVIEW B 93, 205109 (2016)

where An1n2 is a complex coefficient. To satisfy equations
above, the phase factors must cancel each other, i.e., n1 − n2 =
(p − q) mod n. We choose the leading order terms to complete
Tables I and II. For example, in the C4 system with p = 3 and
q = 2, the constraint relation of f+ term is

exp

(
i
2π

n

)
f+(k±,kz) = f+(k±e±i2π/n,kz). (A8)

Obviously the leading order term is given by n1 = 1,n2 = 0,
and so we can replace the f+ term by A1,0k+, neglecting the
higher order terms.

APPENDIX B: EXAMPLES OF REFLECTION
SYMMETRY OPERATORS

We study the general classification of reflection symmetry
operators. The matrix representation of reflection symmetry
can be decomposed to orbital and spin space. The reflection
operators are not the same as the intuitive ones because of the
phase factor stemming from spin. In spin space, reflection
operator is a twofold rotation perpendicular to the mirror
plane n̂: Rπ/2(n̂) = e−iσ̂ j ·n̂π/2, where j indicates the half-
integer spin momentum. At the same time, reflection operators
should satisfy the following constraints: (1) [M,T ] = 0, (2)
M+M = 1, (3) MM = eiφ . Since we only consider four
energy bands, the reflection operators can be decomposed to
the orbital space τ and spin space σ . Therefore, any four by
four matrix M = (t0τ0 + �t · �τ ) ⊗ (s0σ0 + �s · �σ ) satisfying the
above (1)–(3) constraints is a reflection operator, where t0,x,y,z

and s0,x,y,z are complex numbers. If we set the mirror plane as
the yz plane or xy plane, the reflection operators can take four
possible forms: (A) Mk = ±τ0 ⊗ iσk , (B) Mk = ±τz ⊗ iσk ,
(C) Mk = ±τx ⊗ iσk , and (D) Mk = ±iτy ⊗ iσk(k = x,z).

As is shown in Fig. 1, physically there are two classes
of mirrors, the mirror parallel and perpendicular to the
rotation axis, respectively, corresponds to k = x and k = z

above. We can now give the physical examples of these
reflection operators. In the following the p orbital states
along x(y) direction |P	x(y)σ 〉 compose the angular momentum
eigenstates |P	±σ 〉 = |P	xσ 〉 ± i|P	yσ 〉 up to a phase factor,
where 	 = A,B represents two inequivalent atom sites (see
Fig. 1), and σ = ↑,↓ represents spin up and down. For a system
with unit cell consisting of two atoms A and B, each atom with
two orbitals and two spins, the number of basis is eight. We
only consider the four basis composing Dirac point in the
low energy effective model and ignored the other four basis
that are irrelevant, which is often used when modeling energy
bands [60]. The four basis we considered form complete
representations of the symmetry operations.

(1) We set the four basis vectors as (|PA+↑〉,
|PA−↑〉,|PA−↓〉,|PA+↓〉). Then the yz-plane reflection
operation interchange P+,P− and ↑,↓, i.e., the
reflection operation Mx : |PA+↓〉 → −i|PA−↑〉,|PA+↑〉 →
−i|PA−↓〉,|PA−↑〉 → −i|PA+↓〉,|PA−↓〉 → −i|PA+↑〉. The
matrix representation of reflection operator is Mx = −τ0 ⊗
iσx .

(2) We set the four basis vectors as
(|PA+↓〉,|PB+↓〉,−|PA−↑〉,−|PB−↑〉). A glide plane
reflection operator can have the following transformation
Mz : |PA+↓〉 → −i|PB+↓〉, |PB+↓〉 → −i|PA+↓〉,

|PA−↑〉 → i|PB−↑〉, |PB−↑〉 → i|PA−↑〉. Therefore the matrix
representation of reflection operator is Mz = ±τx ⊗ iσz.

In general basis for this reflection operator can be con-
structed as following: There are two inequivalent sites
(A and B) and the distance between them is �t . This
transformation can be provided by setting: |PA±↑(↓)〉 =
e±i�r· �KuA±↑(↓),|PB±↑(↓)〉 = e±iM�r· �KuB±↑(↓), where �K denotes

the point in Brillouin zone, uA±(M�r + �t)e±i�t · �K = uB±(�r),
and uA(�r + M�t + �t) = uA(�r). Mz : �r → M�r + �t , where M

is a symmorphic reflection operation acting on �k space and
�K · (M�t + �t) = 2πn. For BiO2 of space group #227, the Dirac

point appears in the X point of its Brillouin zone with reflection
symmetry belong to this case.

(3) We set the four basis vectors as
(|PA+↑〉,|PA+↓〉,|PA−↓〉,−|PA−↑〉) yz-plane reflection
operation Mx : |PA+↓〉 → −i|PA−↑〉, |PA+↑〉 → −i|PA−↓〉,
|PA−↑〉 → −i|PA+↓〉, |PA−↓〉 → −i|PA+↑〉 has a matrix form
Mx = −τz ⊗ iσx .

(4) We set the four basis vectors as
(|PA+↓〉,|PB+↓〉,−|PA−↑〉,−|PB−↑〉). The reflection operation
on the xy plane writes Mz : |PA+↓〉 → i|PB+↓〉,|PB+↓〉 →
−i|PA+↓〉,|PA−↑〉 → −i|PB−↑〉,|PB−↑〉 → i|PA−↑〉, with a
matrix representation Mz = iτy ⊗ iσz. This transformation
can be provided when �K · (M�t + �t) = (2n + 1)π in the same
setting of the second example. For SrIrO3 of space group
#62, Dirac line node is located around point U (0,π,π ) of
the mirror plane ky = π [6,23], with reflection symmetry
(x,y,z) → (x + a

2 ,−y + b
2 ,z + c

2 ) satisfying �K · (M�t + �t) =
(2n + 1)π , which belongs to this type of reflection.

APPENDIX C: DIRAC POINTS PROTECTED BY
REFLECTION AND ROTATIONAL SYMMETRY

The phase transition between normal insulator and
WTI/TCI which will generate ABC are shown in Fig. 1(b).
When the p = q the bands will feel strong level repulsion and
open a gap Fig. 1(c). Here we show the detailed calculation
on how Dirac points on kz axis are protected by reflection and
rotational symmetry.

Mirror plane parallel to kz axis: First we set the
mirror plane as the yz plane and the reflection operator
as Mx . The combination of Mx and n-fold rotation
operation generates n − 1 more mirror planes and
therefore all these reflection operators can be denoted as
Mk = Ck

nMx(k = 0,1, . . . ,n − 1). These mirror planes cross
on kz axis and confine the Hamiltonian in the kz axis. For each
Mk , there’s commutation relation MkH (kz)M

−1
k = H (kz).

For the situation where pqrs are chosen to eliminate
off diagonal f,g terms according to constraint relations
(A5), when Mx = τ0/τz ⊗ iσx , the Hamiltonian becomes
H (kz) = diag[a0 + a30,a0 − a30,a0 + a30,a0 − a30]; when
Mx = τx/iτy ⊗ iσx , the Hamiltonian becomes H (kz) =
diag[a0 + a33,a0 − a33,a0 + a33,a0 − a33]. It is notable that at
time reversal invariant momentum (TRIM) all a terms with odd
parity are eliminated due to the relation [H,T ] = 0 and only
a00,a10,a30,a21,a22,a23 survive. Therefore, the constraints on
(p,q,r,s) are less in TBC [see Fig. 1(d)]. All the results of the
physical properties of Dirac semimetal are shown in Table I.
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Mirror plane perpendicular to kz axis: First we set
the mirror plane as the xy plane and the reflec-
tion operator as Mz. Along the kz axis, the reflec-
tion symmetry is MzH (kz)M−1

z = H (−kz). Combined with
C2,C4,C6 rotational symmetry, reflection symmetry can cre-
ate inversion symmetry P = MzĈ2. The rotation operator
for orbital space is Cn = i exp(iπ 1+p+q

n
) exp(iπ p−q

n
τz) =

i exp(iπ 1+p+q

n
)[cos π

n
(p − q) + iτz sin π

n
(p − q)]. Twofold

rotation is Ĉ2 = cos θτ0 + sin θτz where θ = π
2 (p − q). If p −

q = 0,2,4, then Ĉ2 = ±τ0. These conditions can be satisfied
when p = q for C2 symmetry, when p = q or p = q + 2 for
C4 symmetry, when p = q, p = q + 2 or p = q + 4 for C6

symmetry. If p − q = 1,3,5, then Ĉ2 = ±τz. These conditions
can be satisfied when p = 1,q = 0 for C2 symmetry, when
p = q + 1 or p = q + 3 for C4 symmetry, when p = q + 1,
p = q + 3 or p = q + 5 for C6 symmetry. The symmetry
constraints with TRS along the kz axis are MzH (kz)M−1

z =
T H (kz)T −1 and PH (kz)P −1 = T H (kz)T −1. After constraint
relations (A5) are applied for the nonzero a terms, all situations
protecting Dirac points are shown in Table II, holding the same
results as Yang and Nagaosa [40] when P = ±τ0,±τz,±τx .
When P = ±iτy the system can also generate Dirac points.
For C3 symmetry, the system does not have inversion sym-
metry. We only have symmetry constraints MzH (kz)M−1

z =
T H (kz)T −1 together with constraint relations (A5) and the
result is shown in Table III.

APPENDIX D: k · p MODEL OF C4v GROUP

In this section, we use the four band model to describe
the effective Hamiltonian of material with point group C4v

such as Cd3As2. We write the 4 × 4 effective Hamiltonian
generally as:

Heff =
3∑

i,j=0

dij (k)�ij (D1)

where �ij = τiσj . The basis vectors of effective Hamiltonian
are four angular momentum eigenstates |+ 1

2 〉,|+ 3
2 〉,|− 1

2 〉, and
|− 3

2 〉, among which (|+ 1
2 〉,|− 1

2 〉) belongs to �̃6 representation
and (|+ 3

2 〉,|− 3
2 〉) belongs to �̃7 representation.

Then we investigate the representations of � matrices and
k polynomials with three symmetric operations: the fourfold
rotation along Z axis Ĉ4, the vertical reflection m̂v , and the
dihedral reflection m̂d = Ĉ4m̂v . The matrix operation of these
symmetric operators are: (1) U (Ĉ4) = R 1

2
(Ĉ4) ⊕ R 3

2
(Ĉ4), (2)

U (m̂v) = R 1
2
(m̂v) ⊕ R 3

2
(m̂v), and (3) U (m̂d ) = U (m̂v)U (Ĉ4),

where Rj (Ĉ4) = exp(i π
2 jσz), Rj (m̂v) = exp(i π

2 jσx).
The operators act on the k polynomials dij (k) as: (1)

Ĉ4 : kx → −ky,ky → kx,kz → kz, (2) m̂v : kx → −kx,ky →
ky,kz → kz, (3) m̂d : kx → ky,ky → kx,kz → kz.

The representations of � matrices and k polynomials d(k)
are shown in Table V. Knowing the multiplication rela-
tions of representations �̃6 ⊗ �̃6 = �̃1 ⊕ �̃2 ⊕ �̃5,�̃7 ⊗ �̃7 =
�̃1 ⊕ �̃2 ⊕ �̃5,�̃6 ⊗ �̃7 = �̃3 ⊕ �̃4 ⊕ �̃5, by assembling the
� matrices and d(k) with the same representation and TRS

TABLE V. The representations of C4v group with � matrices and
k polynomials

Reps � matrices d(k) T

�̃1 �00,�30 1,k2
x + k2

y,k
2
z +

�̃1 kz −
�̃2 �03,�33 −
�̃3 �22 k2

x − k2
y +

�̃3 �12 −
�̃4 �21 kxky +
�̃4 �11 −
�̃5 (�10,�23) (kxkz,kykz) +
�̃5 (�32,�01),(�02,�31),(�20,−�13) (kx,ky) −

eigenvalue we obtain our effective Hamiltonian:

Heff(�k)

= ε(�k) +

⎛
⎜⎜⎝

A(�k) −D(�k)k+ B+k− −C(�k)
−D∗(�k)k− −A(�k) C(�k) B−k+

B+k+ C∗(�k) A(�k) D(�k)k−
−C∗(�k) B−k− D∗(�k)k+ −A(�k)

⎞
⎟⎟⎠.

(D2)

In Eqs. (D2) ε(�k) = E0 + E1k+k− + E2k
2
z , A(�k) = A0 +

A1k+k− +
√

A2k
2
z + A2

20 , B± = ±B0 + B1, C(�k) = C0
2 (k2

+ +
k2
−) + i

4C1(k2
+ − k2

−),D(�k) = D0 + iD1kz, and k± = kx ±
iky .

The Hamiltonian (D2) shows the possibility of coexistence
of 3D Dirac points and Weyl line nodes (WLNs). By choosing
proper parameters shown in Table VI (only B0 is different
from Cd3As2) we can verify our statement through the band
structure Fig. 3(a). This figure is accomplished with the
substitutions: ki → 1

Li
sin(kiLi),k2

i → 2
L2

i

[1 − cos(kiLi)] for

a periodic lattice, where Lx = Ly = a = 12.67 Å and Lz =
c = 25.48 Å [18].

In order to solve WLNs, it is convenient to neglect the
symmetric terms ε(�k) and some parameters B1,C0,C1,D1 as
is shown in Table VI. Therefore, explicit calculation gives the
equation of WLNs:

(
B2

0 − D2
0

)
k2
x = [

A0 + A1k
2
x +

√
A2k2

z + A2
20

]2
. (D3)

This is schematically shown in Fig. 3(b).

TABLE VI. Parameters for the 4 × 4 effective Hamiltonian
[Eq. (D2)]. Most parameters can be referred to from Jeon, Sangjun
et al. [19].

E0 (eV) −0.219 B0(eVÅ) 5

E1 (eVÅ
2
) −30 B1(eVÅ) 0

E2 (eVÅ
2
) −16 C0(eVÅ

2
) 0

A0 (eV) −0.060 C1(eVÅ
2
) 0

A1 (eVÅ
2
) 18 D0(eVÅ) −2.75

A2 (eV2Å
2
) 96 D1(eVÅ

2
) 0

A20 (eV2) 0.050
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In Fig. 3, the B1,C0,C1,D1 terms are neglected. B0 and
D0 are two main parameters determining whether there is
a gap or WLNs in Brillouin zone. The phase diagram of
B0 and D0 is shown in Fig. 3(c). The critical line where
WLNs appear and disappear is close to the line D0 = B0,

but B0 is actually slightly larger than D0, which can be
shown more clearly with a smaller A0 [see Fig. 3(c) the dark
blue area]. On the critical line, the two bands pull apart and
the WLNs eventually annihilate accompanied by opening a
gap.
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