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Mobile impurity approach to the optical conductivity in the Hubbard chain
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We consider the optical conductivity in the one-dimensional Hubbard model in the metallic phase close to
half-filling. In this regime, most of the spectral weight is located at frequencies above an energy scale Eopt

that tends towards the optical gap in the Mott insulating phase for vanishing doping. Using the Bethe ansatz,
we relate Eopt to thresholds of particular kinds of excitations in the Hubbard model. We then employ a mobile
impurity model to analyze the optical conductivity for frequencies slightly above these thresholds. This entails
generalizing mobile impurity models to excited states that are not the highest weight with regards to the SU(2)
symmetries of the Hubbard chain, and that occur at a maximum of the impurity dispersion.
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I. INTRODUCTION

Electron-electron interactions play a crucial role in deter-
mining the physical response to external probes of various
quasi-one-dimensional materials, e.g., organic semiconduc-
tors [1]. In order to successfully describe the mechanisms
and excitations responsible for distinct physical phenomena,
it is imperative to have a microscopic model capturing the
essence of the physics involved; providing a framework
within which realistic physical systems may be interpreted.
The one-dimensional Hubbard model [2] offers an excellent
theoretical laboratory in which a comprehensive microscopic
understanding of the origin of various behaviors can be
developed. The Hamiltonian for the Hubbard model is given
by

H = −t
∑
i,σ

c
†
i+1,σ ci,σ + c

†
i,σ ci+1,σ + U

∑
i

ni,↑ni,↓

−μ
∑

i

(ni,↑ + ni,↓) − B
∑

i

(ni,↑ − ni,↓). (1)

Here, cj,σ annihilates a fermion with spin σ = ↑,↓ at site

j , nj,σ = c
†
j,σ cj,σ is the number operator, t is the hopping

parameter, μ is the chemical potential, B is the magnetic field,
and U � 0 is the strength of the on-site repulsion.

The low-energy degrees of freedom in the metallic phase
of the Hubbard chain are described [2–4] by a (perturbed)
spin-charge separated Luttinger liquid [5–8], with Hamiltonian

H =
∑
α=c,s

vα

16π

∫
dx

[
1

Kα

(
∂�α

∂x

)2

+ Kα

(
∂�α

∂x

)2]
+ irrelevant operators. (2)

The parameters Kα , vα can be calculated for the Hubbard
model by solving a system of linear integral equations (see
Appendix A). The Bose fields �α(x) and dual fields �α(x)
obey the commutation relation

[�α(x),�β(y)] = 4πiδαβsgn(x − y). (3)

The spectrum of low-lying excitations relative to the ground
state for a large but finite system of length L in zero magnetic

field is given by [2–4]


E = 2πvc

L

[
(
Nc)2

8Kc

+ 2Kc

(
Dc + Ds

2

)2

+ N+
c + N−

c

]

+ 2πvs

L

[(

Ns − 
Nc

2

)2
2

+ D2
s

2
+ N+

s + N−
s

]
, (4)

where 
Nα , Dα , and N±
α are integers or half-odd integers

subject to the “selection rules”

N±
α ∈ N0, 
Nα ∈ Z, Dc = 
Nc + 
Ns

2
mod 1,

Ds = 
Nc

2
mod 1. (5)

At low energies, correlation functions can be calculated
from (2) and generically exhibit singularities at the thresholds
of the allowed collective spin and charge degrees of freedom,
with power-law exponents given in terms of the quantities

Nα , Dα , and N±

α . However, when working at a finite energy
scale RG irrelevant terms have a nonzero coupling and may
(and in fact generically do) significantly alter the predictions
of the unperturbed Luttinger-liquid [9–35]. Over the last
decade or so, a fairly general method for taking into account
the effects of certain irrelevant operators in the vicinities of
kinematic thresholds has been developed, which is reviewed
in Refs. [36,38]. The case of spin-charge separated Luttinger
liquids has very recently been revisited [35] in order to make
it explicitly compatible with exactly known properties of
the Hubbard model. The essence of this approach is that,
when considering a response function, there are thresholds
in the (k,ω) plane that correspond to particular excitations. In
integrable models, these excitations hold privileged positions:
they are stable (i.e., have infinite lifetimes) and can be
identified in terms of the exact solution. If the kinematics
near the threshold are described by a case in which small
number of high-energy excitations carry most of the energy
[in the precise sense of up to corrections of O(L−1)] then
the problem becomes analogous to that of the x-ray edge
singularity problem for a mobile impurity [39].
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In this work, we employ mobile impurity methods to study
the optical conductivity

σ1(ω) = − Im χJ (ω)

ω
,

χJ (ω) = −ie2
∫ ∞

0
dt eiωt

L/2−1∑
l=−L/2

〈GS|[Jl(t),J0(0)]|GS〉, (6)

where Jj is the density of the current operator

Jj = −it
∑

σ

[c†j,σ cj+1,σ − c
†
j+1,σ cj,σ ]. (7)

In the Mott insulating phase of the Hubbard model, the optical
conductivity has been previously determined [40–44]: σ1(ω)
vanishes inside the optical gap 2
, where 
 is the Mott
gap. At frequencies ω > 2
, there is a sudden power-law
onset σ1(ω) ∼ √

ω − 2
. Away from half-filling, the system
is a metal and therefore has a finite conductivity for all ω,
specifically acquiring a Drude peak [45,46] at ω = 0. The
low-frequency behavior has been previously studied [47–49]
in the framework of Luttinger liquid theory, predicting ω3

behavior for 0 < ω 
 t . Close to half-filling, one expects
most of the spectral weight in σ1(ω) to be located above an
energy scale Eopt that tends to 2
 as we approach half-filling.
The scale Eopt has been previously correctly identified in
Ref. [50]. In the same work, it was conjectured that the optical
conductivity increases in a power-law fashion above Eopt

σ1(ω) ∼ (ω − Eopt)
ζ �(ω − Eopt). (8)

As we will see in the following, the mobile impurity approach
leads to different results.

The outline of this paper is as follows. In Sec. II, we
consider the spectral representation of the optical conductivity
and identify the quantum numbers of the states contributing
nonzero spectral weight. In Sec. III, we review the Bethe ansatz
description of the ground state and construct the excited states
considered in Sec. II, specifically identifying the thresholds
of these continua. In Sec. IV, we calculate the threshold/edge
behavior for the associated excitations via the mobile impurity
approach, fixing the coupling constants using the Bethe ansatz
to determine the finite-size corrections to the energy in the
presence of the high-energy excitation.

II. SPECTRAL REPRESENTATION OF THE
CURRENT-CURRENT CORRELATOR

In considering the optical conductivity as defined in Eq. (6),
the basic quantity of interest is

〈GS|Jj+�(t)Jj (0)|GS〉
=
∑

n

〈GS|Jj+�|n〉〈n|Jj |GS〉e−i(En−EGS)t , (9)

where {|n〉} constitute a complete set of energy eigenstates.
To understand threshold behaviors, we wish to identify the
states contributing to this sum. A crucial insight to this
end are global continuous symmetries and their relation to
the energy eigenstates provided by the exact Bethe ansatz
solution [51–55]. In the case of zero magnetic field and chem-
ical potential, the Hubbard model possesses two independent

SU(2) symmetries [2,56,57]:

Sz = 1

2

L∑
i=1

(c†i,↑ci,↑ − c
†
i,↓ci,↓), S+ =

L∑
i=1

c
†
i,↑ci,↓,

S− =
L∑

i=1

c
†
i,↓ci,↑, ηz = 1

2

L∑
i=1

(c†i,↑ci,↑ + c
†
i,↓ci,↓ − 1),

η+ =
L∑

i=1

(−1)ic†i,↓c
†
i,↑, η− =

L∑
i=1

(−1)ici,↑ci,↓. (10)

The Sα generate the well-known spin rotational SU(2) symme-
try, while the ηα are known as η-pairing generators. The Bethe
ansatz provides us with the lowest weight states (LWS) [51],
which we denote by |LWS; m〉. Here, m is a multi-index, which
labels all distinct regular Bethe ansatz states in the sense of
Ref. [51]. The states are the lowest weight with respect to the
two SU(2) algebras in the sense that

η−|LWS; m〉 = 0 = S+|LWS; m〉 . (11)

Each state |LWS; m〉 is defined on a system of length
L and has a well-defined number of electrons N and z

component of spin Sz. A complete basis of states is given by
{(η+)k(S−)l|LWS; m〉 | k = 0, . . . ,L − N ; l = 0, . . . ,2Sz}.
For the repulsive Hubbard model below half-filling, the
ground state in zero magnetic field and finite chemical
potential is a spin singlet and a lowest-weight η-pairing state,
i.e.,

S−|GS〉 = S+|GS〉 = η−|GS〉 = 0. (12)

Using the algebra defined in Eq. (10), it is readily verified that
[η−,[η−,Jj ]] = 0 and therefore for integer m � 0

〈LWS; n|(η−)m+1Jj |GS〉 = 〈LWS; n|(η−)m[η−,Jj ]|GS〉
= δm,0〈LWS; n|[η−,Jj ]|GS〉. (13)

This shows that the only states that may have a nonzero overlap
with Jj |GS〉 are lowest weight states |LWS; m〉 or η-pairing
descendant states of the form η+|LWS; m〉, which implies the
expansion

Jj |GS〉 =
∑

m

(am|LWS; m〉 + bmη+|LWS; m〉), (14)

where am, bm are complex coefficients. Substituting this
into (9) provides further constraints on the subset of energy
eigenstates that may make nonvanishing contributions to the
correlator. The subset consists of (1) lowest-weight states with
NGS electrons with S2 = Sz = 0 and (2) states of the form
η+|LWS; m〉, with |LWS; m〉 having NGS − 2 electrons and
S2 = Sz = 0.
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Using that [H,η+] = −2μη+, we can thus express the current-current correlator in the form

CJJ(�,t) = 〈GS|Jj+�(t)Jj (0)|GS〉
=
∑

m

〈GS|Jj+�|LWS; m〉〈LWS; m|Jj |GS〉e−i(Em−EGS)t

+
∑

m

1

2ηz
m

〈GS|Jj+�η
+|LWS; m〉〈LWS; m|η−Jj |GS〉e−i(Em−EGS−2μ)t . (15)

The factor of (2ηz
m)−1 arises from the normalization of the state η+|LWS,m〉. We note that μ < 0 and hence −2μ is a positive

energy shift. It is not obvious how to understand the second term in the framework of a mobile impurity model. However, using
the lowest-weight property η−|GS〉 = 0, we can rewrite (15) in the form

CJJ(�,t) =
∑

m

〈GS|Jj+�|LWS; m〉〈LWS; m|Jj |GS〉e−i(Em−EGS)t

+
∑

m

1

2ηz
m

〈GS|[Jj+�,η
+]|LWS; m〉〈LWS; m|[η−,Jj ]|GS〉e−i(Em−EGS−2μ)t . (16)

The main advantage of the representation (16) is that it only
involves regular Bethe ansatz states, which can be constructed
by standard methods. As we concern ourselves only with the
threshold behaviors of the optical conductivity, we need only
focus on the lower edges of the various excitation continua.
As a consequence of kinematic constraints and matrix-element
effects, processes with a small number of excitations above
the ground states give the dominant contributions to response
functions. Defining

Oj = [η−,Jj ] = 2it(−1)j (cj,↓cj+1,↑ + cj+1,↓cj,↑), (17)

we can recast (16) in the form

CJJ(�,t) =
∑

m

|〈GS|Jj |LWS; m〉|2e−i(Em−EGS)t+iPm�

+
∑

m

1

2ηz
m

|〈GS|O†
j |LWS; m〉|2

× e−i(Em−EGS−2μ)t+i(Pm−π)�

≡ C
(1)
JJ (�,t) + C

(2)
JJ (�,t). (18)

Here the additional contribution to the momentum arises
because acting with η+ shifts the momentum by π . If the
ground state contains N fermions, the contribution C

(2)
JJ (�,t) is

proportional to 1/(L − N + 2), and can therefore be dropped
in the thermodynamic limit away from half-filling. However, as

we are interested in densities close to one fermion per site it is
useful to retain it in view of potential comparisons to numerical
results for finite-size systems. The optical conductivity can
then be written as

σ1(ω) = e2

2ω

[
2∑

a=1

∑
�

∫ ∞

−∞
dt eiωt C

(a)
JJ (�,t) − {ω → −ω}

]

≡
2∑

a=1

σ
(a)
1 (ω). (19)

III. BETHE ANSATZ FOR THE HUBBARD MODEL

To gain further insight into the representation (18), we
now construct the ground state and low-lying excitations
above it. We first calculate the energy of such excitations in
the thermodynamic limit. This will allow us to identify, on
kinematic grounds, which states within the manifold identified
earlier are important with respect to the threshold behaviors we
aim to describe. We therefore recapitulate some results from
Ref. [2] to allow a self-contained discussion.

For large system sizes, the eigenstates of the repulsive
Hubbard model can be expressed in terms of solutions of
the Takahashi equations, expressed in terms of so-called
counting functions. In the case of N electrons, M of which
are spin-down, these are defined by

zc(kj ) = kj + 1

L

∞∑
n=1

Mn∑
α=1

θ

(
sin kj − �n

α

nu

)
+ 1

L

∞∑
n=1

M ′
n∑

α=1

θ

(
sin kj − �′n

α

nu

)
, j = 1, . . . ,N − 2M ′, (20)

zn

(
�n

α

) = 1

L

N−2M ′∑
j=1

θ

(
�n

α − sin kj

nu

)
− 1

L

∞∑
m=1

Mm∑
β=1

�nm

(
�n

α − �m
β

u

)
, α = 1, . . . ,Mn, (21)

z′
n

(
�′n

α

) = − 1

L

N−2M ′∑
j=1

θ

(
�′n

α − sin kj

nu

)
− 1

L

∞∑
m=1

M ′
m∑

β=1

�nm

(
�′n

α − �′m
β

u

)
+ 2Re

[
arcsin

(
�′n

α + niu
)]

, α = 1, . . . ,M ′
n, (22)
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where θ (x) = 2 arctan(x), u = U/4t ,

�nm(x) =
{

θ
(

x
|n−m|

)+ 2θ
(

x
|n−m|+2

)+ · · · + 2θ
(

x
n+m−2

)+ θ
(

x
n+m

)
, n �= m

2θ
(

x
2

)+ 2θ
(

x
4

)+ · · · + 2θ
(

x
2n−2

)+ θ
(

x
2n

)
, n = m

, (23)

and

M =
∞∑

n=1

n(Mn + M ′
n), M ′ =

∞∑
n=1

nM ′
n. (24)

Takahashi’s equations are

zc(kj ) = 2πIj

L
, zn

(
�n

α

) = 2πJn
α

L
, z′

n

(
�′n

α

) = 2πJ ′n
α

L
. (25)

Here, the sets {Ij }, {J n
α }, {J ′n

α} consist of integers or half-odd integers depending on the particular state under consideration,
obeying the “selection rules”

Ij ∈
{
Z + 1

2 if
∑

m(Mm + M ′
m) odd

Z if
∑

m(Mm + M ′
m) even

, − L

2
< Ij � L

2
,

J n
α ∈

{
Z if N − Mn odd

Z + 1
2 if N − Mn even

,
∣∣J n

α

∣∣ � 1

2

(
N − 2M ′ −

∞∑
m=1

tnmMm − 1

)
,

J ′n
α ∈

{
Z if L − N + M ′

n odd

Z + 1
2 if L − N + M ′

n even
,
∣∣J ′n

α

∣∣ � 1

2

(
L − N + 2M ′ −

∞∑
m=1

tnmM ′
m − 1

)
,

(26)

where tnm = 2 min(m,n) − δmn. The energy and momentum, measured in units of t , of an eigenstate characterized by the set of
roots {kj ,�

n
α,�′m

β } are given by

E = −
N−2M ′∑

j=1

(2 cos kj + μ + 2u + B) + 2BM + 4
∞∑

n=1

M ′
n∑

β=1

Re
√

1 − (�′n
β + niu

)2 + Lu, (27)

P =
⎡⎣N−2M ′∑

j=1

kj −
∞∑

n=1

M ′
n∑

β=1

(
2 Re arcsin

(
�′n

β + niu
)− (n + 1)π

)⎤⎦mod 2π. (28)

The monotonicity of the counting functions ensures that
specifying a set of integers/half-odd integers in accordance
with the “selection rules” uniquely determines a solution of
the Takahashi equations.

A. Ground state

We consider the case where L is even, the total number
of electrons NGS is even and the number of down spins MGS

is odd. The ground state is then obtained by choosing the set
{Ij ,J

n
α ,J ′m

β } to be [2]

Ij = −NGS

2
− 1

2
+ j, j = 1, . . . ,NGS, (29)

J 1
α = −MGS

2
− 1

2
+ α, α = 1, . . . ,MGS. (30)

This configuration is shown for the example L = 16 and
NGS = 2MGS = 10 in Fig. 1. We denote the ground state, in

the previously established notation, by

|GS〉 = ∣∣LWS; {Ij },
{
J 1

α

}〉
. (31)

1. Thermodynamic limit

On taking the thermodynamic limit at fixed density nGS

and magnetisation mGS the roots become dense and we can
describe the ground state in terms of root densities ρc,0 and

FIG. 1. Configuration of the integers for the ground state, explicit
numbers given are for L = 16, NGS = 10, and MGS = 5.
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ρs,0, which satisfy the linear integral equations [2]

ρc,0(k) = 1

2π
+ cos k

∫ A

−A

d�a1(sin k − �)ρs,0(�), (32)

ρs,0(�) =
∫ Q

−Q

dk a1(� − sin k)ρc,0(k)

−
∫ A

−A

d�′ a2(� − �′)ρs,0(�′). (33)

Here, an(x) = 2nu
2π

1
(nu)2+x2 and the integration boundaries Q

and A are determined by∫ Q

−Q

dk ρc,0(k) = nGS,∫ A

−A

d�ρs,0(�) = 1

2
(nGS − 2mGS). (34)

The energy density of the system is given to o(1) by [2]

eGS =
∫ Q

−Q

dk

2π
εc(k) + u, (35)

where

εc(k) = −2 cos k − μ − 2u − B

+
∫ A

−A

d�a1(sin k − �)εs(�), (36)

εs(�) = 2B +
∫ Q

−Q

dk cos k a1(� − sin k)εc(k)

−
∫ A

−A

d�′ a2(� − �′)εs(�
′). (37)

The dressed energies εc(k) and εs(�) satisfy εc(±Q) =
εs(±A) = 0. The dressed momenta are given by [2]

pc(k) = k +
∫ A

−A

d�ρs,0(�)θ

(
sin k − �

u

)
, (38)

ps(�) =
∫ Q

−Q

dk ρc,0(k)θ

(
� − sin k

u

)
−
∫ A

−A

d�′ ρs,0(�′)θ
(

� − �′

2u

)
. (39)

B. Excitations contributing to C (1)
JJ (�,t).

We now turn to excited states that contribute to the spectral
representation (18) of C

(1)
JJ (�,t). These are lowest weight

states of the spin and η-pairing SU(2) algebras with quantum
numbers N = NGS and M = MGS.

1. “Particle-hole” excitation with N = NGS and M = MGS.

Creating a particle-hole excitation in the charge degrees of
freedom yields a state with the same charge and spin quantum
numbers as the ground state, but with a finite momentum
and energy difference. The (half-odd) integers for this type

FIG. 2. Configuration of the integers for the particle-hole excita-
tion above the ground state, explicit numbers given are for L = 16,
NGS = 10, and MGS = 5.

of excitation are given by

Ij =
{−NGS+1

2 +j+�
(−NGS+1

2 +j−Ih
)
, j=1, . . . ,NGS−1

Ip, j = NGS

,

(40)

Jα = −MGS + 1

2
+ α, α = 1, . . . ,MGS, (41)

where �(x) = 1 for x � 0 and 0 otherwise. The arrangement
for these integers is shown in Fig. 2. This excitation is two-
parametric and has an energy and momentum of the form

E = eGSL + εc(kp) − εc(kh) + o(1),

P = pc(kp) − pc(kh) + o(1), (42)

where the rapidities are determined by zc(kh) = 2πIh

L
, zc(kp) =

2πIp

L
. This forms a continuum of excitations above the ground

state, shown in Fig. 3.

2. “k-� string” excitation

We start by considering excitations with N = NGS, M =
MGS involving a single (“k-� string”) bound state. This
excitation has been considered previously, e.g., in Sec. 7.7.2
of Ref. [2]. It involves having a single (half-odd) integer in
the sector corresponding to the set {J ′1

α }. The lowest-energy
bound state, which can be created, comprises of two ks and
one � forming a string pattern in the complex plane. The
Takahashi equations describe the real centres of these and

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
−

L
e G

S

p/π

Particle-hole continuum for U = 8, n = 0.8

FIG. 3. Particle-hole excitation continuum above the ground state.
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FIG. 4. Configuration of the integers for the k-� string excited
state.

other root patterns. The case we consider is realized by the
integer configuration

Ij = −NGS − 2

2
− 1

2
+ j, j = 1, . . . ,NGS − 2, (43)

J 1
α = −MGS − 1

2
− 1

2
+ α, α = 1, . . . ,MGS − 1, (44)

J ′1
β = J ′p, β = 1, (45)

which is displayed in Fig. 4. In the notations used above, we
can denote this excited state by |LWS; {Ij },{J 1

α },{J ′1
β}〉.

We can again take the thermodynamic limit and compare
the energy of this excited state with that of the ground state.
Following similar manipulations to the case of the ground-state
energy, the O(1) corrections can be calculated [2]. The energy
is given by

E = LeGS + εk�(�p) + o(1), (46)

where

εk�(�) = 4Re
√

1 − (� − iu)2 − 2μ − 4u

+
∫ Q

−Q

dk cos k a1(sin k − �) εc(k). (47)

The momentum is given by P = pk�(�p), where

pk�(�′) = −2Re arcsin(�′ + iu)

+
∫ Q

−Q

dk ρc,0(k)θ

(
�′ − sin k

u

)
, (48)

and �p is determined by z′
1(�p) = 2πJ ′p

L
. This form can be

readily interpreted physically as a particlelike excitation above
the ground state. The k-� string dispersion describes the
threshold of an excitation continuum obtained by adding, e.g.,
particle-hole excitations in the charge sector. The dispersion
relation for this excitation and the particle-hole continuum is
shown in Fig. 5. The existence of such a continuum at p = 0
is necessary to understand the problem within the mobile
impurity approach to threshold singularities.

C. Excitations contributing to C (2)
JJ (�,t)

We now turn to excited states that contribute to the spectral
representation (18) of C

(2)
JJ (�,t). As we have re-expressed

C
(2)
JJ (�,t) in terms of matrix elements of the operatorO†

j defined
in Eq. (17), we will focus on excited states |LWS; m〉 that
have nonvanishing matrix elements 〈GS|O†

j |LWS; m〉 �= 0.
These are the lowest weight states of the spin and η-pairing
SU(2) algebras and their quantum numbers are N = NGS − 2,
M = MGS − 1. It is of course straightforward to translate back
to excitations contributing to the original spectral representa-
tion (15): all that is required is to act with η† on the states we
discuss in the following.

1. “Particle-hole” excitation with N = NGS − 2 and
M = MGS − 1.

The integer configuration for this type of excitation is given
by

Ij =
{−NGS

2 + j + �
(−NGS

2 + j−Ih
)
, j=1, . . . ,NGS − 3

Ip, j=NGS−2
,

(49)

0

0.03

0.06

0.09

0.12

n = 0.8

0
0.1
0.2
0.3
0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ε k
Λ

+
2μ

p/π

n = 0.6

U = 8
U = 10
U = 20

U = 8
U = 10
U = 20

5.5

(a) (b)

6

6.5

7

7.5

8

8.5

9

9.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
−

L
e G

S

p/π

k-Λ string and particle-hole continuum for U = 8, n = 0.8

k-Λ + particle-hole continuum
k-Λ dispersion

FIG. 5. k-� string dispersion for various U and n, and particle-hole excitation continuum above this for U = 8 and n = 0.8. For small
momenta, the k-� string dispersion marks the lower edge of a continuum described by additional excitations, e.g., particle-hole excitations in
the charge sector.
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FIG. 6. Integer configuration for the particle-hole excitation,
explicit numbers for L = 16, NGS = 10, and MGS = 5.

Jα = −MGS

2
+ α, α = 1, . . . ,MGS − 1. (50)

This is shown graphically in Fig. 6.
In complete analogy to the previous case, the energy and

momentum of this state are given by

E = LeGS + εc(kp) − εc(kh) + o(1),

P = pc(kp) − pc(kh) ± 2kF + o(1), (51)

where kp and kh are determined by zc(kp) = 2πIp

L
, zc(kh) =

2πIh

L
. The contributions ±2kF arise from the asymmetry of

the charge “Fermi sea,” leaving a choice of two parity-related
states. The continuum of excitations given by (51) is shown
in Fig. 7, and consists of the union of two copies of the
continuum depicted in Fig. 3 shifted by ±2kF , respectively.
We note that in order to make closer contact with the spectral
representation (18) we have shifted the momentum by π .

2. “Two-particle” excitation with N = NGS − 2 and
M = MGS − 1.

A closely related type of excitation corresponds to the
choice of (half-odd) integers

Ij =

⎧⎪⎪⎨⎪⎪⎩
−NGS−4

2 + j, j = 1, . . . ,NGS − 4

Ip1 , j = NGS − 3,

Ip2 , j = NGS − 2

, (52)

FIG. 7. Continuum for particle-hole excitation with momentum
shifted for clarity.

FIG. 8. Integer configuration for the particle-particle excitation,
explicit numbers for L = 16, NGS = 10, and MGS = 5.

Jα = −MGS

2
+ α, α = 1, . . . ,MGS − 1. (53)

Such a configuration is shown in Fig. 8 and can be thought
of as involving two particles associated with Ip1 and Ip2 ,
respectively. The energy and momentum of this excitation are

E = LeGS + εc(kp1 ) + εc(kp2 ) + o(1),

P = pc(kp1 ) + pc(kp2 ) ± 2kF + o(1), (54)

with zc(kpi ) = 2πIpi

L
. The continua corresponding to (54) are

shown in Fig. 9. We note that both possible choices ±2kF

have been taken into account, and we have again shifted the
total momentum by π in order to make closer contact with the
spectral representation (18) of our correlator.

3. “Two-hole” excitation with N = NGS − 2, M = MGS − 1.

Finally, we consider excitations characterized by the distri-
bution of (half-odd) integers

Ij = −NGS

2
+ j + �

(
−NGS

2
+ j − Ih1

)
w

+�

(
−NGS

2
+ j − Ih2

)
, j = 1, . . . ,NGS − 2,

(55)

Jα = −MGS

2
+ α, α = 1, . . . ,MGS − 1, (56)

which is displayed in Fig. 10. We see that these states can
be viewed as involving two holes associated with Ih1 and Ih2

FIG. 9. Continuum for particle-particle excitation with momen-
tum shifted for clarity.
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FIG. 10. Integer configuration for two hole excited state, explicit
numbers for L = 16, NGS = 10, and MGS = 5.

respectively. The energy and momentum of this excitation are
given by

E = LeGS − εc(kh1 ) − εc(kh2 ) + o(1),

P = −pc(kh1 ) − pc(kh2 ) ± 2kF + o(1), (57)

with zc(khi ) = 2πIhi

L
. The continua for these excitations are

shown in Fig. 11, where we have taken both possible choices
of ±2kF into account and we again have shifted the total
momentum by π in order to make closer contact with the
spectral representation (18) of our correlator.

D. Excitation thresholds at commensurate fillings

By considering additional excitations around the “Fermi
points” in the charge sector we can construct other excitations
that are degenerate in energy [to o(1)], but differ in their
momenta by integer multiples of 4kF . As we consider the
case of zero magnetic field, there is no freedom to rearrange
the integers in the spin sector that leads to a lower energy for a
given momentum. In this way, we can determine the thresholds
for a given class of excited states.

(1) The absolute threshold is obtained by combining
the particle-hole excitation of Sec. III B 1 with zero-energy
particle-hole excitations at the “Fermi points” in the charge
sector, which shift the momentum by multiples of 4kF . It is
depicted by a dashed red line in Fig. 12. At zero momentum,
the relevant value for the optical conductivity, the absolute
threshold occurs at zero energy. At low energies, the optical
conductivity is dominated by particle-hole excitations. Close to

FIG. 11. Continuum for two hole excitation with momentum
shifted for clarity.

FIG. 12. The continuum of lowest-lying excitations of the Hub-
bard model involving only the charge sector for n = 0.8, U = 10.
As the optical conductivity is defined at zero momentum, only the
features encountered at P = 0 are relevant. The k-� string dispersion
defines the lower edge of a continuum of excitations involving the k-�
string. The contributions to σ (2)(ω) are shifted by −2μ, in accordance
with the spectral representation (18).

half-filling, the spectral weight of this contribution is small and
tends to zero for n → 1. In the vicinity of half-filling, most of
the spectral weight concomitantly occurs above a “pseudogap”
that is close in value to the Mott gap of the half-filled system.

(2) Above an energy scale that tends to the Mott gap
as the band filling approaches one from below, excitations
involving a single k-� string of length two exist. Their
threshold is shown as a dashed black line in Fig. 12. Precisely
at half-filling, these excitations do not contribute to the optical
conductivity [2,40,41] as a result of the enhanced symmetry:
at half-filling this excitation describes a singlet of the η-pairing
SU(2) algebra and does not contribute to σ1(ω).

(3) For band fillings close to n = 1 there are other
excitations of the form η+|LWS,m〉 that contribute to the
optical conductivity. At half-filling, these are the only states
contributing to σ1(ω) in the frequency regime 2
 � ω � 4
,
where 
 is the Mott gap. Below half-filling, their contribution
to σ1(ω) can be cast in the form of C

(2)
JJ (�,t) in Eq. (18), and the

states to be considered are then given by Sec. III C 1–III C 3.
The thresholds shown in Fig. 12 are at a high commen-

surability: 5(4kF ) = 8π . We note that thresholds involving
high-order umklapp processes are suppressed in σ1(ω), cf.
Refs. [10,14,15]. Analytic forms for the “high-energy” thresh-
olds are given below in Eqs. (65), (F1), and (F17). These results
show that the contributions from σ (2)(ω) do not constitute the
“pseudogap threshold,” and, moreover, are suppressed by a
factor 1/L as we have pointed out before. Hence they do not
play an important role in the initial growth of σ1(ω), even for
finite-size systems, and we therefore relegate their discussion
to Appendix F.

IV. MOBILE IMPURITY APPROACH TO THRESHOLD
SINGULARITIES

Our goal is to determine the behavior of the optical
conductivity in the metallic phase of the Hubbard model close
to half-filling above the excitation thresholds occurring in the
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vicinity of the Mott gap at n = 1. This can be achieved by
following the mobile impurity approach to the Hubbard chain
set out in Ref. [35]. In the main cases of interest to us here,
the mobile impurity model describes low-energy degrees of
freedom in the presence of a single high-energy excitation
with momentum q and takes the general form

H = HLL + Himp + Hint, (58)

HLL =
∫

dx

[∑
α=c,s

vα

16π

(
1

2Kα

(∂x�
∗
α)2 + 2Kα(∂x�

∗
α)2

)]
,

(59)

Himp =
∫

dx B†(x)

[
ε(q) − iε′(q)∂x − 1

2
ε′′(q)∂2

x

]
B(x),

(60)

Hint =
∫

dx B†(x)B(x)[fα(q)∂xϕ
∗
α(x)

+ f̄α(q)∂xϕ̄
∗
α(x)] + · · · . (61)

Here, vc,s and Kc,s are, respectively, the velocities and
Luttinger parameters of low-energy collective spin and charge
degrees of freedom, ϕ∗

c,s and ϕ̄∗
c,s are chiral charge and spin

Bose fields, and

�∗
α = ϕ∗

α + ϕ̄∗
α, �∗

α = ϕ∗
α − ϕ̄∗

α, α = c,s. (62)

The high-energy excitation under consideration has a “bare”
dispersion ε(q) and is described in terms of the field B(x).
Finally, the functions fc,s(q) and f̄c,s(q) parametrize the inter-
actions between the high-energy excitation and the low-energy
degrees of freedom. Our Bose fields are related to the usual
spin and charge bosons [7,8] by a canonical transformation

�α = �∗
α√
2
, �α =

√
2�∗

α, (63)

and were introduced in Ref. [35] by bosonizing the physical
fermionic spin and charge excitations in the Hubbard model.
The form of Hint is fixed by symmetry considerations and
assuming the high-energy excitation to be a pointlike object.
Within the mobile impurity model the current operator is
represented as

Jj → B†(x)OLL(x), (64)

where OLL(x) is an operator acting in the Luttinger liquid
sector of the model (61) only. In order to fully specify our
problem, we proceed as follows.

(1) The spin and charge velocities and Luttinger parameters
are determined directly from the exact solution of the Hubbard
model, see Appendix A for a brief summary.

(2) The relevant (“dressed”) dispersion relations for the
various excitations we need to consider have already been
determined above in Sec. III.

(3) For a given threshold, the projection OLL of the
current operator onto the Luttinger liquid sector is determined
by bosonization/refermionisation techniques. This is done in
Secs. IV A 1, F 1 a, and F 2 a below.

(4) Finally, the interaction parameters fc,s(q) and f̄c,s(q)
are determined in Secs. IV A 4, F 1 d, and F 2 d by comparing
finite-size corrections to excitation energies in the Hubbard
model and the mobile impurity model (58).

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε k
Λ
(0

)

n

U = 1.5
U = 4
U = 10
U = 20

FIG. 13. The threshold of the k-� string εk�(0) is shown for
various U and n.

A. k-� threshold in σ (1)(ω)

This threshold is obtained when the entireO(1) contribution
to the excitation energy and momentum are carried by the k-�
string. The functional form of the threshold is

Ek-�
thres(q) = εk�

(
�(q)

)
,

q = −2 Re arcsin(� + iu)

+
∫ Q

−Q

dk θ

(
� − sin k

u

)
ρc,0(k), (65)

where ρc,0(k) is the ground-state root density (32). It important
to note that in the case relevant for the optical conductivity the
k-� string sits at q = 0, which corresponds to a maximum of
εk�(�). The mobile impurity Hamiltonian appropriate for the
description of this case is therefore of the form

Himp =
∫

dx B†(x)

(
ε(0) − 1

2
ε′′(0)∂2

x

)
B(x), (66)

where ε′′(0) < 0. We note that by virtue of the interactions
between the mobile impurity and the Luttinger liquid degrees
of freedom, the bare dispersion ε(q) is differs from the
actual threshold εk�(�(q)). The relationship between the two
quantities is established below. The threshold εk�(0) is shown
in Fig. 13 for various U and n.

1. Projection of the current operator

Having identified the state involving the k-� string as con-
tributing to σ

(1)
1 (ω), we wish to project the current operator (7)

onto the operators involved in the mobile impurity model. To
this end we introduce the Hubbard projection operators [2],
defined on site j as

Xab
j := |a〉j j 〈b|, a,b = 0,↑,↓,2 (↑↓). (67)

The current operator is expressed in terms of the Xab
j as

Jj = −it
∑

σ

(
σX2σ̄

j + Xσ0
j

)(
σXσ̄2

j+1 + X0σ
j+1

)
− (σX2σ̄

j+1 + Xσ0
j+1

)(
σXσ̄2

j + X0σ
j

)
. (68)
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In order to proceed further, we now consider the large-U limit,
in which the k-� string corresponds to a doubly-occupied site.
The current operator J can be decomposed into three terms:
a piece, which increases the double occupancy by one (J+), a
piece, which decreases it by one (J−) and a piece that leaves
the double occupancy unchanged (J 0), i.e.,

Jj = J+
j + J−

j + J 0
j . (69)

As we are concerned with creating an excitation involving
double occupation, we are interested in J+

j only. This is given
by

J+
j = −it

∑
σ

σX2σ̄
j X0σ

j+1 − σX2σ̄
j+1X

0σ
j , (70)

and can be suggestively rewritten as

J+
j = −it

[
X20

j

(
X

0↓
j X

0↑
j+1 − X

0↑
j X

0↓
j+1

)
−X20

j+1

(
X

0↓
j+1X

0↑
j − X

0↑
j+1X

0↓
j

)]
. (71)

As, in the large-U limit, a k-� string corresponds to a
doubly occupied site, while the ground state has zero double
occupancy, we can identify the operator creating the k-� string
as B†(x) ∼ X20

j . This allows us to recast J+ in the form

J+
j ∼ −it[B†

j − B
†
j+1](cj,↓cj+1,↑(1 − nj,↑)(1 − nj+1,↓)

− cj,↑cj+1,↓(1 − nj,↓)(1 − nj+1,↑)). (72)

In order to complete the projection of the current operator onto
the mobile impurity model, we simply bosonize all remaining
electron operators. The final result is

Jk�(x) ∼ (∂xB
†(x))e−i�∗

c (x)/
√

2 sin

(
�∗

s

2
√

2

)
+ · · · . (73)

2. Finite-size corrections to excitation energies
in the mobile impurity model

Energies of excited states in the mobile impurity model in a
large, finite volume can be calculated following Refs. [20,35].
The chiral spin and charge Bose fields have mode expansions

ϕ∗
α(x) = ϕ∗

α,0 + x

L
Q∗

α

+
∞∑

n=1

√
2

n

[
ei 2πn

L
xaα,R,n + e−i 2πn

L
xa

†
α,R,n

]
, (74)

ϕ̄∗
α(x) = ϕ̄∗

α,0 + x

L
Q̄∗

α

+
∞∑

n=1

√
2

n

[
e−i 2πn

L
xaα,L,n + ei 2πn

L
xa

†
α,L,n

]
. (75)

Here, Q∗
α , Q̄∗

α , ϕα,0, ϕ̄α,0 are zero-mode operators, obeying the
commutation relations

[ϕ∗
α,0,Q

∗
α] = −[ϕ̄∗

α,0,Q̄
∗
α] = −4πi. (76)

The eigenvalues qα and q̄α of the operators Q∗
α and Q̄∗

α

depend on the boundary conditions of the fields ϕ∗
α(x) and

ϕ̄∗
α(x). These boundary conditions are, crucially, influenced by

the presence of a mobile impurity: coupling the impurity to
the Luttinger liquid will change the boundary conditions and
therefore modify the eigenvalue spectrum, causing a shift in

the O(L−1) spectrum. It is precisely this relationship that will
allow us to determine the coupling constants by examining the
finite-size spectrum of the Hubbard model in the presence of a
high-energy excitation. An important distinction from previous
calculations is that the dispersion of the mobile impurity is
quadratic in our case and has negative curvature.

The interactions between the impurity and the LL degrees
of freedom in Eq. (58) can be removed by a unitary transfor-
mation of the form [35,36]

U = e−i
∫∞
−∞ dx

∑
α (γα ϕ∗

α (x)+γ̄α ϕ̄∗
α (x))B†(x)B(x). (77)

The transformed fields are given by

ϕ◦
α = Uϕ∗

αU † = ϕ∗
α(x) − 2πγα C(x),

ϕ̄◦
α = Uϕ̄∗

αU † = ϕ̄∗
α(x) + 2πγ̄α C(x),

B̃(x) = UB(x)U †

= B(x)ei
∑

α(γαϕ∗
α (x)+γ̄α ϕ̄∗

α (x))e−iπ
∑

α(γ 2
α −γ̄ 2

α )C(x), (78)

where

C(x) =
∫ ∞

−∞
dy sgn(x − y)B†(y)B(y). (79)

By choosing the parameters γα , γ̄α to fulfill(
fα

f̄α

)
=
(−v+

α −v−
α

v−
α v+

α

)(
γα

γ̄α

)
, v±

α = vα

2

(
2Kα ± 1

2Kα

)
,

(80)

we find that, retaining only the most relevant terms, the
impurity decouples in the new basis, i.e.,

H =
∫

dx

[∑
α=c,s

vα

16π

(
1

2Kα

(
∂x�

◦
α

)2 + 2Kα

(
∂x�

◦
α

)2)]

+
∫

dx B̃†(x)

[̃
ε(q) − 1

2
ε̃′′(q)∂2

x

]
B̃(x) + · · · . (81)

We note that the “dressed” impurity dispersion for momenta
k ≈ q is ε̃(q) − 1

2 ε̃′′(q)(k − q)2 and differs from its “bare”
value ε(k) by a constant [37]. Importantly, it is the dressed
dispersion that relates directly to the Bethe ansatz result for
Ek-�

thres(k) in Eq. (65). In the decoupled theory of (81) it is a
straightforward matter to calculate the spectrum of low-energy
excitations above the ground state in the presence of an
impurity. The result is [35]


ELL =
∑
α=c,s

2πvα

L

[
1

4Kα

(
qα + q̄α

4π
− γα + γ̄α

)2

+Kα

(
qα−q̄α

4π
−γα−γ̄α

)2

+
∑
n>0

n[M+
n,α+M−

n,α]

]
.

(82)

Here, M±
n,α are non-negative integers corresponding to

particle-hole excitations at the edge of the Fermi seas. Any
operator acting on the ground state will, in general, produce a
superposition of energy eigenstates. Noting that the ground
state is annihilated by Q∗

α , Q̄∗
α , the state O(x)|GS〉 has

well-defined quantum numbers q(0)
α , q̄(0)

α if O(x) satisfies the
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relations

[Q∗
α,O(x)] = q(0)

α O(x), [Q̄∗
α,O(x)] = q̄(0)

α O(x). (83)

If the operator satisfies such a property then all states in the
superposition defined by O(x)|GS〉 must have the same qα and

q̄α , namely, q(0)
α and q̄(0)

α . The only difference in the energies
comes from having different M±

n,α . We can therefore identify
the “minimal” excitation [35]: this is the state with all M±

n,α =
0, i.e., no particle-hole excitations. For the specific case of
interest here, namely, acting with the projected current operator
Jk�(x) on the ground state, this can be represented pictorially
as

JkΛ(x)

∣∣∣∣∣
c

s

kΛ

〉
∼ A

∣∣∣∣∣
c

s

kΛ

〉

︸ ︷︷ ︸
qα=q(0)

α , q̄α=q̄(0)
α

“minimal”

+B

∣∣∣∣∣
c

s

kΛ

〉

︸ ︷︷ ︸
qα=q(0)

α , q̄α=q̄(0)
α

M+
n,s �=0

+C

∣∣∣∣∣
c

s

kΛ

〉

︸ ︷︷ ︸
qα=q(0)

α , q̄α=q̄(0)
α

M+
n,c �=0

+D

∣∣∣∣∣
c

s

kΛ

〉

︸ ︷︷ ︸
qα=q(0)

α , q̄α=q̄(0)
α

M+
n,s �=0, M+

n,c �=0

+ . . .

(84)

From the bosonized expression for Jk�(x), and focusing only on the ei�∗
s /2

√
2 term with the other following from parity, it

follows that

q(0)
c = q̄(0)

c = 2π
√

2; q(0)
s = −q̄(0)

s = −π
√

2. (85)

The total momentum can also be calculated using the mode expansion, and is found to be of the form

P = kF

π
√

2
(q̄c − qc) + Pimp

(
k

p

L

)+ 2π

L

∑
α=c,s

[(
qα + q̄α

4π
− γα + γ̄α

)(
qα − q̄α

4π
− γα − γ̄α

)
+ (N+

α − N−
α )

]
, (86)

where k
p

L includes finite-size shifts to the rapidity kp. We
can identify the “minimally excited” state with the Bethe
ansatz excitation at the relevant threshold. By matching the
expressions for the finite-size energies, we will be able to
constrain the parameters γα , γ̄α .

3. Finite-size corrections to excitation energies from Bethe ansatz

Finite-size corrections to the energies of states involving
both high- and low-energy excitations can be determined from
the Bethe ansatz solution of the Hubbard model following
Ref. [25]. The details for the excitations of interest here
involving a k-� string are given in Appendix B. The final result
for zero magnetic field and total momentum P = O(L−1) is

E = eGSL + εk�(0) − π

6L
(vc + vs) + 2πvc

L

[(

Nc − N

imp
c

)2
8Kc

+ 2Kc

(
Dc − Dimp

c + Ds − D
imp
s

2

)2]

+ 2πvs

L

[
1

2

(

Ns − 
Nc

2

)2

+
(
Ds − D

imp
s

)2
2

]
. (87)

Here, eGS is the ground-state energy per site in the thermo-
dynamic limit, while εk�(0) is the contribution due to the
(high-energy) k-� string excitation and is obtained from the
solution of the integral equations

εk�(�) = 4Re
√

1 − (� − iu)2 − 2μ − 4u

+
∫ Q

−Q

dk cos k a1(sin k − �) εc(k),

εc(k) = −2 cos k − μ − 2u

+
∫ Q

−Q

dk′ cos k′ R(sin k − sin k′)εc(k′), (88)

where the function R(x) is given by

R(x) =
∫ ∞

−∞

dω

2π

eiωx

1 + exp(2u|ω|) . (89)

The spin and charge velocities vs,c and the Luttinger parameter
Kc are given in Appendix A, while the quantities N

imp
c and

D
imp
c,s are given by

Dimp
c = 0, Dimp

s = 0, N imp
c =

∫ Q

−Q

dk ρc,1(k), (90)

where

ρc,1(k) = cos k a1(sin k − �′p)

+ cos k

∫ Q

−Q

dk′ ρc,1(k′)R(sin k − sin k′). (91)

Finally, the quantities 
Nc, 
Ns , Dc, and Ds characterize low-
energy excitations of the spin and charge degrees of freedom
and for the “minimal” excitation of interest are given by


Nc = −2, Dc = 0, 
Ns = −1, Ds = 0. (92)

We note that in order to fully specify the mobile impurity
model we require the value of the curvature of the impurity
dispersion at its maximum. This is given by

1

m
= ∂2εk�(�)

∂p2

∣∣∣∣
�=0

= ε′′
k�(0)(

2πσ ′h
1 (0)

)2 , (93)
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where

ε′′
k�(0) = − 4

(1 + u2)3/2
−
∫ Q

−Q

dk a′
1(sin k)ε′

c(k),

2πσ ′h
1 (0) = 2√

1 + u2
− 2π

∫ Q

−Q

dk a1(sin k)ρc,0(k). (94)

The total momentum of the state of interest can also be
calculated from the Bethe ansatz and for the case of interest
results in

P = qL + 2kF (2Dc + Ds)

+2π

L

∑
α=c,s

[(

Nα − N imp

α

)(
Dα − Dimp

α

)+ (N+
α − N−

α )
]
,

(95)

with qL the contribution, including finite-size shifts of the
rapidities, from the high-energy impurity and N±

α are integers
corresponding to particle-hole pairs at the edge of the Fermi
seas. The method used for deriving this result is summarized
in Appendix E.

4. Fixing the parameters γα and γ̄α

By equating the Bethe ansatz results (87) and (95) for en-
ergy and momentum with the ones obtained in the framework
of the mobile impurity model (82) and (86), we can fix the
parameters γα , γ̄α to be

γc = −γ̄c = 1√
2

+
(

Nc − N

imp
c

)
2
√

2
, γs = γ̄s = − 1

2
√

2
.

(96)

5. Current-current correlator in the mobile impurity model

We are now in a position to work out the current-current
correlation function (15) in the mobile impurity model
framework. Given the expression (73) for the projection of
the current operator, we have

C
(1)
JJ (�,t) ∼ G(x,t) = 〈J †

k�(x,t)Jk�(0,0)〉. (97)

In order to evaluate G(x,t) we go over to the transformed
basis, in which the impurity decouples from the LL degrees of

freedom. Given (96), the leading contribution takes the form

Jk�(x) ∼ ∂xB̃
†(x)ei�◦

c (x) 
Nc−N
imp
c

2
√

2

+ iγcB̃
†(x)∂x�

◦
c(x)ei�◦

c (x) 
Nc−N
imp
c

2
√

2

− i

2
√

2
B̃†(x)∂x�

◦
s (x)ei�◦

c (x) 
Nc−N
imp
c

2
√

2 . (98)

Substituting this back into (97) leads to three kinds of
contributions to the correlator

G(x,t) = G1(x,t)〈∂xB̃(x,t)∂xB̃
†(0,0)〉

+G2(x,t)〈B̃(x,t)B̃†(0,0)〉
+G3(x,t)i[〈∂xB̃(x,t)B̃†(0,0)〉
− 〈B̃(x,t)∂xB̃

†(0,0)〉]. (99)

Here, Gj (x,t) are correlation functions in the LL sector of the
theory and can be evaluated by standard methods. The results
are

G1(x,t) = 1(
x2 − v2

c t
2
)γ ,

G2(x,t)

G1(x,t)
= −2γ 2

c

Kc

[
x2 + v2

c t
2(

x2 − v2
c t

2
)2 + 2γ x2(

x2 − v2
c t

2
)2
]

− 1

2

x2 + v2
s t

2(
x2 − v2

s t
2
)2 ,

G3(x,t)

G1(x,t)
= iγc

√
γ

Kc

sgn
(
N imp

c + 2
) 2x

x2 − v2
c t

2
, (100)

where we have defined

γ = 1

2Kc

(
1 + N

imp
c

2

)2

. (101)

The free impurity correlator is given by

〈B̃(x,t)B̃†(0,0)〉 =
∫ �

−�

dp

2π
e−ipxe−iε(p)t , (102)

where ε(p) is the dispersion relation for the k-� string
and � is a momentum cutoff for the impurity excitation.
Using (97), (99), (100), and (102), we may now determine
the contribution from the k-� string excitation to the retarded
correlator (6). The result can be written in the form

σ1(ω)|k� ∼ 1

ω

∫ �

−�

dp

{
γ 2

c

Kc

(
(1 + γ )

[
G̃c

γ+2,γ (ω − ε(p),p) + G̃c
γ,γ+2(ω − ε(p),p)

]− 2γ G̃c
γ+1,γ+1(ω − ε(p),p)

)
+
√

4γ

Kc

γcp
[
G̃c

γ+1,γ (ω − ε(p),p) − G̃c
γ,γ+1(ω − ε(p),p)

]+ p2G̃c
γ,γ (ω − ε(p),p)

+ γ 2
s

[
G̃s

γ (ω − ε(p),p) + G̃s
γ (ω − ε(p),−p)

]}
, (103)

where we have defined

G̃c
γ+,γ− (ω,p) = (2π )2

�(γ+)�(γ−)(2vc)γ++γ−−1
(ω + vcp)γ+−1(ω − vcp)γ−−1�(ω − vc|p|), (104)
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G̃s
γ (ω,p) =

∫ 1

0
ds

[
2π

�(γ )

]2 (ω − vsp)2γ−1(
v2

c − v2
s

)γ �(ω − vsp)sγ−1(1 − s)γ−1

×
[

2vc(ω − vsp)

v2
c − v2

s

s − ω − vcp

vc − vs

]
�

(
2vc(ω − vsp)

v2
c − v2

s

s − ω − vcp

vc − vs

)
. (105)

The dependence of (103) on the momentum cutoff � is
shown in Fig. 14. We see that over a wide range the result
is only weakly cutoff-dependent. Unfortunately, the mobile
impurity method provides no simple way of predicting how
large the cutoff should be. The only obvious constraint is that
it should fulfill � 
 π (1 − n). If we approach the threshold
from above, i.e. consider the limit ω → εk�(0), the remaining
integral in Eq. (103) can be carried out and yields a power-law
behavior of the form

lim
ω→εk�(0)

σ1(ω)
∣∣∣
k�

∼ 1

ω
[ω − εk�(0)]γ−1�(ω − εk�(0)).

(106)

This is shown in Fig. 14 together with numerical evaluations
of (103) for several values of the cutoff �, and is seen to
provide a good approximation across the entire frequency
range examined. Importantly, the exponent γ − 1 is always
larger than one, which is in disagreement with that of Ref. [50].
Additionally, the exponent γ can be calculated for a variety of
parameters, as presented in Fig. 15.

V. COMPARISON WITH NUMERICAL RESULTS

In Ref. [59], the optical conductivity of the one dimen-
sional Hubbard model has been computed by matrix product
methods. The approach requires introduction of a damping
parameter η > 0 and provides Im χJ (ω + iη) for a chain of
finite length. In order to facilitate a comparison with the results
obtained here it is necessary to remove this broadening. In
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1(
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Onset behaviour forU = 10, n = 5/6 for various cutoffs Λ

Λ = π(1 − n)/5
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Λ = π(1 − n)/100
Power-law

FIG. 14. Optical conductivity (103) for U = 10, n = 5/6 and
several values of the cutoff �. The different curves have been
normalized such that σ1(εk� + 0.5)|

k�
= 1. For comparison, we show

the power-law behavior (106), valid for ω → εk�. We see that the
power law in fact provides a good approximation over the entire
range of comparison.

order to do this approximately, we proceed as follows. For
positive frequencies, the zero temperature optical conductivity
can be expressed as

σ1(ω > 0) = − Im χ+(ω)

ω
,

χ+(ω) = e2

L

∑
n

|〈GS|J |n〉|2
ω + i0 − En + EGS

. (107)

Reference [59] provides results for the quantity

χ+(ω; L,η) =
∫ ∞+i0

−∞+i0

dω′

2π

2η

η2 + (ω − ω′)2
Im χ+(ω′),

(108)

where L is the chain length and ω takes values on a regular
grid of frequencies. We first use rational function interpo-
lation to extract a continuous function from the numerical
data, which we then deconvolve using the Richardson-Lucy
algorithm [60,61].

The deconvolved numerical results obtained in this way can
then be compared to the onset predicted at the lowest threshold,
as given by (103). We allow for an unknown scale factor in
the calculation, as well as a small constant contribution from
the particle-hole excitations. We choose a specific value of the
cutoff �, but as noted earlier, the results do not depend strongly
on the precise choice. Due to the soft nature of the onset
predicted, it is only realistic to compare the initial onset due
to the k-� string, as when moving away from this point
less relevant operators will begin to contribute. Comparisons
between the prediction of the MIM and numerical results are
shown in Fig. 16. The agreement is not perfect, but the results
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FIG. 15. Value of the exponent γ in Eq. (106) characterizing the
power-law behavior of σ1(ω) just above the pseudogap, for several
values of U and n.
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FIG. 16. Comparison of deconvolved DMRG data with the onset as predicted in Eq. (103), varying the offset and overall scale factor and
choosing � = (1 − n)π/10.

are seen to be compatible. As usual the size of the frequency
window in which the MIM prediction applies is not known.
The theoretical and numerical results of the onset being convex
are in stark contrast to the results of Ref. [50], which for the
parameters we consider predicts concave power-law behavior.

VI. AWAY FROM q = 0

One can easily generalize the results here to examine the
conductivity at finite momentum, i.e., consider

χJ (ω,q) = −ie2
∫ ∞

0
dt

×
L/2−1∑
l=−L/2

ei(ωt−qla0)〈GS|[Jl(t),J0(0)]|GS〉,

(109)

for q �= 0. The analysis proceeds in an identical manner
to identify the quantities N

imp
c,s , D

imp
c,s , as the high-energy

impurity simply shifts its momentum. However, in order to find
the threshold away from q ∈ [(n − 1)π,(1 − n)π ], umklapp
processes must be involved. For an arbitrary filling, these will
generically be of a very large order, which will suppress the
contributions. The dispersion relation is generically no longer
a saddle point and therefore in the region where one impurity
is involved and one can linearize, power-law behavior for
the onset will be obtained. For the k-� string at momentum
q, one must first solve for �p such that pk�(�p) = q, and
then N

imp
c (�p), D

imp
c (�p) can be calculated. γ is still given

by (101). The most relevant contribution will then have the
form

Im χ (ω,q �= 0) ∼ 1

[ω − ωth(q)]γ (�p)
, (110)

where γ (�p) is a function of the quantities N
imp
α , D

imp
α , and

Kα .

VII. SUMMARY AND CONCLUSIONS

We have studied the optical conductivity σ1(ω) in the one
dimensional Hubbard at zero temperature and close to half

filling. Recent DMRG computations [59] have shown that
in this regime σ1(ω) is very small within a “pseudogap”
and exhibits a rapid increase above an energy scale Eopt

that depends on doping as well as the interaction strength
U . Using the Bethe ansatz, we have identified the relevant
excitations that contribute to σ1(ω) for ω > Eopt. One of these,
the k-� string excitation, had been previously proposed to
describe the scale Eopt [50]. We then followed Ref. [35] to
construct a mobile impurity model describing the behavior of
σ1(ω) above Eopt. The analysis of this model entailed several
generalizations relating to the projection of lattice operators to
local fields in the MIM, the treatment of excitations that are
not highest weight states with respect to the η-pairing algebra
of the Hubbard model, and considering the mobile impurity
to be located at a maximum of its dispersion. We also derived
an explicit expression for the finite-size momentum of the
relevant Bethe ansatz states, which is useful in determining
the various unknown parameters in the MIM. Our main result
is to show that the MIM approach predicts a smooth, slow
increase in σ1(ω) for frequencies above Eopt. This is in contrast
to the half-filled case [40] and previous predictions [50], but
consistent with recent dynamical DMRG computations [59].
The results presented in this work are by construction specific
to the Hubbard model. However, we expect the gross features
seen in the optical conductivity to be quite general for weakly
doped Mott insulators. In particular, we expect that such
systems to exhibit a rapid increase of σ1(ω) above a pseudogap.
As the functional form of the increase is nonuniversal, it is
conceivable that for other models it could be considerably
steeper than in the case considered here.
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APPENDIX A: VELOCITIES AND LUTTINGER
PARAMETERS IN ZERO MAGNETIC FIELD

In zero magnetic field, the charge and spin velocities
are given in terms of the solutions to the linear integral
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equations (32), (33), (36), and (37) for the dressed energies
and root densities as

vc = ε′
c(Q)

2πρc,0(Q)
, vs = ε′

s(∞)

2πρs,0(∞)
. (A1)

The spin Luttinger parameter is fixed by spin rotational
symmetry to be

Ks = 1. (A2)

We stress that all spin excitations relevant to our mobile
impurity model description occur at (approximately) zero

energy, so that corrections to (A2) are negligible. The charge
Luttinger parameter is

Kc = ξ 2(Q)

2
, (A3)

where ξ (k) is the solution of the linear integral equation

ξ (k) = 1 +
∫ Q

−Q

dk′ cos k′ R(sin k − sin k′) ξ (k′). (A4)

Here, R(x) is defined in Eq. (89).

APPENDIX B: BETHE ANSATZ RESULTS FOR k-� STRING

Having established that the threshold above the low-energy continuum can be explained by a k-� string excitation, the simplest
equations to consider are the Takahashi equations [2] in the presence of a single k-� string of length 2, i.e., consisting of 1 �

and 2 ks. It is also clear that as the correlator is a zero momentum quantity, the k-� string is pinned to zero momentum. The
Takahashi equations can be analyzed for large L, keeping terms to O(L−2) in order to calculate the finite-size corrections to the
energy. The counting functions in this specific case are given by

Lzc(kj ) = kjL +
M−1∑
α=1

θ

(
sin kj − �α

u

)
+ θ

(
sin kj − �′p

u

)
, j = 1, . . . ,N − 2,

Lzs(�α) =
N−2∑
j=1

θ

(
� − sin kj

u

)
−

M−1∑
β=1

θ

(
�α − �β

2u

)
, α = 1, . . . ,M − 1. (B1)

Employing the Euler-Maclaurin summation formula

1

L

n2∑
n=n1

f

(
n

L

)
=
∫ n+

L

n−
L

dx f (x) + 1

24L2

(
f ′
(

n−
L

)
− f ′

(
n+
L

))
+ · · · , (B2)

where n+ = n2 + 1
2 and n− = n1 − 1

2 , it can be seen that

zc(k) = k +
∫ A+

A−
d� θ

(
sin k − �

u

)
ρs(�) + 1

L
θ

(
sin k − �′p

u

)
+ 2π

24L2

[
a1(sin k − A+)

ρs(A+)
− a1(sin k − A−)

ρs(A−)

]
, (B3)

zs(�) =
∫ Q+

Q−
dk θ

(
� − sin k

u

)
ρc(k) −

∫ A+

A−
d�′ θ

(
� − �′

2u

)
ρs(�

′)

+ 2π

24L2

[
a1(� − sin Q+) cos Q+

ρc(Q+)
− a1(� − sin Q−) cos Q−

ρc(Q+)
− a2(� − A+)

ρs(A+)
+ a2(� − A−)

ρs(A−)

]
. (B4)

Taking derivatives, equations for the root densities can be found

ρc(k) = 1

2π
+
∫ A+

A−
d� cos k a1(sin k − �)ρs(�) + 1

L
cos k a1(sin k − �′p)

+ 1

24L2

[
cos k a′

1(sin k − A+)

ρs(A+)
− cos k a′

1(sin k − A−)

ρs(A−)

]
, (B5)

ρs(�) =
∫ Q+

Q−
dk a1(� − sin k)ρc(k) −

∫ A+

A−
d�′ a2(� − �′)ρs(�

′)

+ 1

24L2

[
a′

1(� − sin Q+) cos Q+
ρc(Q+)

− a′
1(� − sin Q−) cos Q−

ρc(Q−)
− a′

2(� − A+)

ρs(A+)
+ a′

2(� − A−)

ρs(A−)

]
. (B6)

As the integral equations are linear, we can write

ρα(zα) := ρα,0(zα) + 1

L
ρα,1(zα) + 1

24L2

∑
β,σ

f
(σ )
αβ (z)

ρβ

(
X

β
σ

) , (B7)

here Xc
σ = Qσ , Xs

σ = Aσ . The integral equations satisfied by the first two terms in Eq. (B7) are

ρα,a(z) = ρ(0)
α,a(z) + Kαβ ∗ ρβ,a, a = 0,1, (B8)
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with Kαβ ∗ fβ denoting the convolution
∑

β

∫ X
β
+

X
β
−

dzβ Kαβ(zα,zβ)fβ(zβ), the kernels defined by

Kcc(k,k′) = 0, Kcs(k,�) = cos k a1(sin k − �),

Ksc(�,k) = a1(� − sin k), Kss(�,�′) = −a2(� − �′), (B9)

and the driving terms given by

ρ
(0)
α,0 = δα,c

2π
, (B10)

ρ
(0)
α,1 = δα,c cos k a1(sin k − �′p). (B11)

The final integral equation is determined by

f
(σ )
αβ = d

(σ )
αβ + Kαγ ∗ f

(σ )
γβ , (B12)

where

d
(σ )
αβ = −σ

∂

∂z′ Kαβ(z,z′)
∣∣∣∣
z′=X

β
σ

. (B13)

The exact finite-size energy of the system is given by (27). Using the Euler-Maclaurin summation formula (B2) again, corrections
can be kept to O(L−1), yielding

E = Lu + L
∑

α

∫ Xα
+

Xα−
dz ε(0)

α (z)ρα(z) + ε
(0)
k�(�′p). (B14)

Expanding in powers of L and exploiting the identical kernels of the integral equations for dressed charge and root density
equations, if the energy is now considered as a functional of the integration boundaries, performing an expansion about σXα to
second order (the first order term vanishes) [25], it can be shown that

E = LeGS({Xα}) + εk�(�′p) + Lπ
∑

α

vα{(ρα,0(Xα)(Xα
+ − Xα))2 + (ρα,0(Xα)(Xα

− + Xα))2} (B15)

1. Impurity densities

The following are taken as definitions:

nα =
∫ Xα

+

Xα−
dz ρα(z), (B16)

2Dc = I+ + I− = L

2π
[zc(Q+) + zc(Q−)], (B17)

2Ds = J+ + J− = L

2π
[zs(A+) + zs(A−)]. (B18)

The corrections from adding the “impurity,” i.e., the high-energy excitation can be identified and separated off from the terms
that would be present without it. This is achieved by using that

lim
�→∞

zs(�) = − lim
�→−∞

zs(�), (B19)

lim
k→±π

zc(k) = −
∫ A+

A−
d� θ

(
�

u

)
ρs(�) − θ

(
�′p

u

)
. (B20)

This allows the “quantum numbers” to be expressed in terms of integrals of the root densities, which can then be split off
order-by-order in 1/L. More explicitly, one finds that

2Ds = L

(∫ A−

−∞
d� ρs(�) −

∫ ∞

A+
d� ρs(�)

)
,

= L

(∫ A−

−∞
d� ρs,0(�) −

∫ ∞

A+
d� ρs,0(�)

)
+ 2Dimp

s , (B21)

where

2Dimp
s =

∫ −A

−∞
d� ρs,1(�) −

∫ ∞

A

d� ρs,1(�). (B22)
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Similarly for the charge sector

2Dc = L

2π

(
zc(Q+) + zc(Q−) − zc(π ) − zc(−π ) − 2

∫ A+

A−
d� ρs(�)θ

(
�

u

)
− 2

L
θ

(
�′p

u

))
,

= L

(∫ Q−

−π

dk ρc,0(k) −
∫ π

Q+
dk ρc,0(k) − 1

π

∫ A+

A−
d� ρs,0(�)θ

(
�

u

))
+ 2Dimp

c , (B23)

2Dimp
c =

∫ −Q

−π

dk ρc,1(k) −
∫ π

Q

dk ρc,1(k) − 1

π

∫ A

−A

d� ρs,1(�)θ

(
�

u

)
− 1

π
θ

(
�′p

u

)
. (B24)

Similarly,

N imp
α =

∫ Xα

−Xα

dz ρα,1(z). (B25)

2. Relation between Xα
σ − σ Xα and the impurity densities

Following Ref. [25], considering the variation of the integration bounds Xα
σ with respect to nβ , it can be seen that, in terms of

the dressed charge matrix [2] Zαβ , defined by

Zαβ = ξαβ(Xβ),

ξαβ(zβ) = δαβ + ξαγ ∗ Kγβ, (B26)

with Kαβ given by (B9), one finds

Xα
σ − σXα = σ

1

2

Z−1
αβ

ρα,0(Xα)

(

nβ − 1

L
N

imp
β

)
+ Z�

αβ

ρα,0(Xα)

(
dβ − 1

L
D

imp
β

)
. (B27)

These results can be inserted into the finite-size energy, which now reads as

E = LeGS({Xα}) + εk�(0) + 1

L

(
−π

6
(vs + vc) + 2π

[
1

4

Ñα(Z�)−1

αγ vγ Z−1
γβ 
Ñβ + D̃αZαγ vγ Z�

γβD̃β

])
, (B28)

where

D̃α = Dα − Dimp
α , (B29)


Ñα = 
Nα − N imp
α . (B30)

3. Simplifications for zero magnetic field

In the B → 0 limit, the integration boundary A → ∞ and many results simplify by use of Fourier transforms. Useful identities
used can be found in Ch. 17 of Ref. [2]. First, the dressed charge matrix adopts the simple form

Z =
(

ξ 0
ξ

2
1√
2

)
, (B31)

where ξ = ξ (Q) and ξ (k) obeys (A4). Following a similar method to Ref. [25], the root densities can be shown to simplify as

ρc,1(k) = cos k a1(sin k − �′p) + cos k

∫ Q

−Q

dk′ ρc,1(k′)R(sin k − sin k′), (B32)

ρs,1(�) =
∫ Q

−Q

dk ρc,1(k) s(� − sin k), (B33)

where

s(x) = 1

4u cosh
(

πx
2u

) . (B34)

Considering the Fourier transform of (B33), it can be shown that

N imp
s = 1

2N imp
c . (B35)

In the �′p → 0 limit, both ρc,1(k) and ρs,1(�) are even functions and therefore

Dimp
c = Dimp

s = 0. (B36)

205101-17



THOMAS VENESS AND FABIAN H. L. ESSLER PHYSICAL REVIEW B 93, 205101 (2016)

It is useful to note that the dressed energies take the form

εc(k) = −2 cos k − μ − 2u +
∫ Q

−Q

dk′ cos k′ R(sin k − sin k′)εc(k′), (B37)

εs(�) =
∫ Q

−Q

dk cos k s[� − sin k] εc(k), (B38)

εk�(�) = 4Re
√

1 − (� − iu)2 − 2μ − 4u +
∫ Q

−Q

dk cos k a1(sin k − �) εc(k). (B39)

The value of εk�(0) provides the location of the threshold at zero momentum in this sector. The finite-size energy can therefore
be simply written as

E = LeGS({Xα}) + εk�(0) − πvc

6L
+ 2πvc

L

[(

Nc − N

imp
c

)2
4ξ 2

+ ξ 2

(
Dc − Dimp

c + Ds − D
imp
s

2

)2
]
. (B40)

APPENDIX C: BETHE ANSATZ RESULTS FOR HIGH-ENERGY CHARGE PARTICLE

1. Bethe ansatz calculation

Starting from the Takahashi equations

Lzc(kj ) = kjL +
M∑

α=1

θ

(
sin kj − �α

u

)
, j = 1, . . . ,N,

Lzs(�α) =
N∑

j=1

θ

(
�α − sin kj

u

)
−

M∑
β=1

θ

(
�α − �β

2u

)
, α = 1, . . . ,M. (C1)

We can use the Euler-Maclaurin formula (B2) to recast this as

zc(k) = k +
∫ A+

A−
d�θ

(
sin k − �

u

)
ρs(�) + 2π

24L2

[
a1(sin k − A+)

ρs(A+)
− a1(sin k − A−)

ρs(A−)

]
, (C2)

zs(�) =
∫ Q+

Q−
dk θ

(
� − sin k

u

)
ρc(k) −

∫ A+

A−
d�′θ

(
� − �′

2u

)
ρs(�

′) + 1

L
θ

(
� − sin kp

u

)
+ 2π

24L2

[
a1(� − sin Q+) cos Q+

ρc(Q+)
− a1(� − sin Q−) cos Q−

ρc(Q−)
− a2(� − A+)

ρs(A+)
+ a2(� − A−)

ρs(A−)

]
. (C3)

Taking derivatives gives the root densities

ρc(k) = 1

2π
+
∫ A+

A−
d�a1(sin k − �)ρs(�) cos k + 1

24L2
cos k

[
a′

1(sin k − A+)

ρs(A+)
− a′

1(sin k − A−)

ρs(A−)

]
, (C4)

ρs(�) =
∫ Q+

Q−
dka1(� − sin k)ρc(k) −

∫ A+

A−
d�′a2(� − �′)ρs(�

′) + 1

L
a1(� − sin kp)

+ 1

24L2

[
a′

1(� − sin Q+) cos Q+
ρc(Q+)

− a′
1(� − sin Q−) cos Q−

ρc(Q−)
+ a′

2(� − A−)

ρs(A−)
− a′

2(� − A+)

ρs(A+)

]
. (C5)

We can again split these linear integral equations into the form (B7), (B8), and (B12) where in this case,

ρ
(0)
α,0 = δα,c

2π
, ρ

(0)
α,1(zα) = δα,sa1(zα − sin kp). (C6)

and the integral kernels are again given by (B9). We can then construct the impurity densities

N imp
α =

∫ Xα

−Xα

dzαρα,1(zα), (C7)

2Dimp
c =

∫ π

Q

dk[ρc,1(−k) − ρc,1(k)] − 1

π

∫ A

−A

d�ρs,1(�) θ

(
�

u

)
, (C8)

2Dimp
s =

∫ ∞

A

d� [ρs,1(−�) − ρs,1(�)]. (C9)
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To determine the thermodynamic rapidity kp and the finite-size correction δkp, we can examine the requirements that

zc

(
k

p

L

) = 2πIp

L
, (C10)

zc,0(kp) = 2πIp

L
, (C11)

with k
p

L = kp + δkp

L
. Expanding (C10) in the deviation δkp and using (C11) yields

δkp = − L

2πρc,0(kp)

⎡⎣∑
β,σ

�
(σ )
β (kp)

(
Xσ

β − σXβ
)⎤⎦− 1

2πρc,0(kp)

∫ A

−A

d�ρs,1(�)θ

(
� − sin kp

u

)
, (C12)

where

�
(σ )
β (k) = σρs,0(A)θ

(
σA − sin k

u

)
δs,β +

∫ A

−A

d�r
(σ )
s,β (�)θ

(
� − sin k

u

)
, (C13)

r
(σ )
αβ = σρβ,0(Xβ)Kαβ(zα,σXβ ) + Kαγ ∗ r

(σ )
γβ . (C14)

Using the results of Appendix E, this can be shown to reduce to

δkp = 1

ρc,0(kp)

∑
α=c,s

(
N imp

α Dα + Dimp
α 
Nα − Dimp

α N imp
α

)
. (C15)

We then have that

E = eGSL + εc(kp) + ε′
c(kp)

δkp

L
− π

6L
(vs + vc) + 2π

L

[
1

4

Ñγ (Z�)−1

γαvαZ−1
αβ 
Ñβ + D̃γ ZγαvαZ�

αβD̃β

]
, (C16)

with the form of D̃α , 
Ñα , and Zαβ given by (B29), (B30), and (B26).

2. Simplification for B → 0

In the B → 0 limit, the integral equations describing the impurity densities are given by

ρc,1(k) = cos k R(sin k − sin kp) + cos k

∫ Q

−Q

dk′ R(sin k − sin k′)ρc,1(k′), (C17)

N imp
c =

∫ Q

−Q

dkρc,1(k), N imp
s = 1

2

(
1 + N imp

c

)
, (C18)

2Dimp
c =

∫ π

Q

dk[ρc,1(−k) − ρc,1(k)] + i

π

{
ln

[
�
(

1
2 − i sin kp

4u

)
�
(
1 + i sin kp

4u

)
�
(

1
2 + i sin kp

4u

)
�
(
1 − i sin kp

4u

)]}

+ i

π

∫ Q

−Q

dkρc,1(k)

{
ln

[
�
(

1
2 − i sin k

4u

)
�
(
1 + i sin k

4u

)
�
(

1
2 + i sin k

4u

)
�
(
1 − i sin k

4u

)]}, (C19)

Dimp
s = 0. (C20)

This gives the finite-size corrections to the energy as

E = eGSL + εc(kp) + ε′(kp)
δkp

L
− πvc

6L
+ 2πvc

L

[(

Nc − N

imp
c

)2
4ξ 2

+ ξ 2

(
Dc − Dimp

c + Ds

2

)2
]

+ 2πvs

L

[
1

2

(

Ns − 
Nc

2
− 1

2

)2

+ D2
s

2

]
, (C21)

where ξ = ξ (Q) and ξ (k) obeys (A4).
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APPENDIX D: BETHE ANSATZ RESULTS FOR TWO HIGH-ENERGY CHARGE HOLE EXCITATIONS

We again start from (C1). Following similar steps to Appendices B and C, applying the Euler-Maclaurin summation
formula (B2) then allows us to write

ρα(zα) = ρα,0(zα) + 1

L
ρα,1(zα) + 1

24L2

∑
β,σ

f
(σ )
αβ (zα)

ρβ

(
X

β
σ

) . (D1)

We can again split these linear integral equations into the form (B7), (B8), and (B12) where in this case,

ρ
(0)
α,0 = δα,c

2π
, (D2)

ρ
(0)
α,1 = −δα,s[a1(� − sin kh1 ) + a1(� − sin kh2 )]. (D3)

and the integral kernels are given by (B9). We can now determine

2Dimp
c =

∫ π

Q

dk[ρc,1(−k) − ρc,1(k)] − 1

π

∫ A

−A

d�θ

(
�

u

)
ρs,1(�), (D4)

2Dimp
s =

∫ ∞

A

d�[ρs,1(−�) − ρs,1(�)]. (D5)

We also have that

zc

(
k

hi

L

) = 2πIhi

L
, zc,0(khi ) = 2πIhi

L
, (D6)

with k
hi

L = khi + δkhi

L
, yielding

δkhi = − L

2πρc,0
(
khi

)
⎡⎣∑

β,σ

�
(σ )
β (khi )

(
Xσ

β − σXβ
)⎤⎦− 1

2πρc,0(khi )

∫ A

−A

d�ρs,1(�)θ

(
� − sin khi

u

)
, (D7)

with �(σ )(k) given by (C13). We now have all of the quantities required to evaluate the finite-size spectrum in the presence of
the two high-energy holons:

E = eGSL − εc(kh1 ) − εc(kh2 ) − ε′
c(kh1 )

δkh1

L
− ε′

c(kh2 )
δkh2

L
− π

6L
(vs + vc)

+ 2π

L

[
1

4

Ñγ (Z�)−1

γαvαZ−1
αβ 
Ñβ + D̃γ ZγαvαZ�

αβD̃β

]
, (D8)

with the form of D̃α , 
Ñα , and Zαβ given by (B29), (B30), and (B26).

1. Zero field

In zero field, the integral equations for the functions ρc,1 and ρs,1 simplify due to A → ∞ allowing the use of a Fourier
transform, specifically

ρc,1(k) = − cos k[R(sin k − sin kh1 ) + R(sin k − sin kh2 )] + cos k

∫ Q

−Q

dk′ R(sin k − sin k′)ρc,1(k′), (D9)

ρs,1 = −s(� − sin kh1 ) − s(� − sin kh2 ) +
∫ Q

−Q

dk s(� − sin k)ρc,1(k). (D10)

We also have

N imp
s = 1

2N imp
c − 1. (D11)

The finite-size spectrum can then be written as

E = eGSL − εc(kh1 ) − εc(kh2 ) − δkh1

L
ε′
c(kh1 ) − δkh2

L
ε′
c(kh2 ) − π

6L
(vc + vs)

+ 2πvc

L

[(

Nc − N

imp
c

)2
4ξ 2

+ ξ 2

(
Dc − Dimp

c + Ds − D
imp
s

2

)2
]

+ 2πvs

L

[
1

2

(

Ns − 
Nc

2
+ 1

)2

+
(
Ds − D

imp
s

)2
2

]
. (D12)
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APPENDIX E: FINITE-SIZE MOMENTUM SPECTRUM

As well as the finite-size energies, it is also possible to match the finite-size momentum spectra. We consider here the simple
case of a single high-energy charge excitation, but the reasoning is the same for other excitations.

1. Mobile impurity model momentum spectrum

We bosonize the Hubbard chain at U = 0, decomposing the fermionic annihilation operator as

cσ (x) = Rσ (x)eikF x + Lσ (x)e−ikF x . (E1)

To identify the momentum operator, we consider it as the generator of translations by one site, i.e.,

e−ia0P cσ (x)eia0P = cσ (x + a0), (E2)

which means that Rσ (x) → Rσ (x + a0)eikF a0 . By utilising the refermionization identities [35]

R↑ ∼
∏

α=c,s

e
− i√

2
ϕ∗

α+ i

4
√

2
�∗

α , L↑ ∼
∏

α=c,s

e
i√
2
ϕ̄∗

α− i

4
√

2
�∗

α , (E3)

we can identify that, in terms of the mode expansion of the spin and charge modes, the momentum operator is given by

P = kF

π
√

2
(Q̄∗

c − Q∗
c ) + 1

8πL

[
Q∗

c
2 − Q̄∗

c
2 + Q∗

s
2 − Q̄∗

s
2
]

+ i

∫
dxB†(x)∂xB(x) +

∑
α=c,s

∞∑
n=1

2πn

L
(c†α,R,ncα,R,n − c

†
α,L,ncα,L,n). (E4)

Employing the unitary transformation, this can be written as

P = kF

π
√

2

(
Q̄◦

c − Q̄◦
c − 4πγc + 4πγ̄c

)+ 1

8πL

[
Q◦

c
2 − Q̄◦

c
2 + Q◦

s
2 − Q̄◦

s
2
]+ i

∫
dxB̃†∂xB̃

+
∑
α=c,s

∞∑
n=1

2πn

L
(c†α,R,ncα,R,n − c

†
α,L,ncα,L,n), (E5)

which therefore predicts a finite-size spectrum of the form

P = kF

π
√

2
(q̄c − qc) + Pmimp(kp) + 2π

L

[(
qc + q̄c

4π
− γc + γ̄c

)(
qc − q̄c

4π
− γc − γ̄c

)
+
(

qs + q̄s

4π
− γs + γ̄s

)(
qs − q̄s

4π
− γs − γ̄s

)]
+ 2π

L

∑
k=c,s

(N+
k − N−

k ), (E6)

where the N±
k are non-negative integers enumerating the number of particle-hole pairs in the vicinity of the “Fermi points.”

2. Bethe ansatz calculation: high-energy charge particle

We wish to know the momentum contribution from the high-energy charge particle: there will be finite-size contributions to
this from interactions with the low-energy sector. As we know precisely the integers forming this state from (50), we can simply
sum these integers to find the momentum. This approach, however, yields no information on which contributions come from the
finite-size shift of the rapidity and which contributions come from interactions between the high-energy and low-energy degrees
of freedom. The solution is to explicitly include the finite-size shift of the rapidity and calculate the remaining corrections in
terms of the quantites N

imp
α , D

imp
α , Nα , and Dα , as we had for the finite-size energy.

a. Basic integral equations

The solution for ρα,1 implicitly defined by (C6), can be formally written as

ρα,1(zα) = (Kαβ ∗ (1 − K̂)−1
βc

)
(zα,kp). (E7)

We introduce the shift functions [58]

F (0)
cc (k,k′) = 0, F (0)

cs (k,�) = 1

2π
θ

(
sin k − �

u

)
,

F (0)
sc (�,k) = 1

2π
θ

(
� − sin k

u

)
, Fss(�,�′) = − 1

2π
θ

(
� − �′

2u

)
, (E8)
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and the “dressed” shift functions

Fαβ(zα,zβ) = F
(0)
αβ (zα,zβ) + (Fαγ ∗ Kγβ)(zα,zβ). (E9)

It is useful to note that

Kαβ(zα,zβ) = ∂zα
F

(0)
αβ . (E10)

Both the finite-size energy and momentum spectra involve the function

r̃
(σ )
αβ (zα) = Kαβ(zα,σXβ) + Kαγ ∗ r̃

(σ )
γβ . (E11)

b. Finite-size momentum spectrum

As for the energy of the system, the momentum can also be expanded as an asymptotic series in powers of L−1. In the analysis
of the finite-size energy calculation, when determining δkp as in Eq. (C12), one finds

zc

(
k

p

L

) = zc,0(kp) + z′
c,0(kp)

δkp

L
+
∑
σ,β

σρβ,0(Xβ)

[
θ

(
sin kp − σXβ

u

)
δβ,s +

∫ A

−A

d�θ

(
sin kp − �

u

)
r̃

(σ )
sβ (�)

][
Xβ

σ − σXβ
]

+ 1

L

∫ A

−A

d�θ

(
sin kp − �

u

)
ρs,1(�). (E12)

We will first look at the term in the sum multiplied by Xβ
σ − σXβ . Equations (E9) and (E11) imply that

Fαβ = F (0)
αγ ∗ (1 − K̂)−1

γβ , r̃
(σ )
αβ = (1 − K̂)−1

αγ ∗ Kγβ(zα,σXβ), (E13)

allowing us to write

F
(0)
cβ (kp,σXβ ) + F (0)

cα ∗ r̃
(σ )
αβ (kp) = Fcβ(kp,σXβ ). (E14)

It can also be shown that ∫ A

−A

d�θ

(
sin k − �

u

)
ρs,1(�) = 2πFcc(k,kp). (E15)

The finite-size momentum can therefore be written in terms of the dressed shift functions as

zc

(
k

p

L

) = zc0 (kp) + z′
c,0(kp)

δkp

L
+
∑
σ,β

σ2πρβ,0(Xβ)Fcβ(kp,σXβ)
[
Xβ

σ − σXβ
]+ 2π

L
Fcc(kp,kp). (E16)

We now wish to relate the functions Fαβ(zα,zβ) to the impurity densities N
imp
α , D

imp
α .

c. Relating shift functions to impurity densities

By using (E7) and (E10) in Eqs. (C7) and (C8), it can be shown that

2Dimp
α = Fαc(Xα,kp) + Fαc(−Xα,kp), (E17)

N imp
α = Fαc(Xα,kp) − Fαc(−Xα,kp), (E18)

i.e.,

Dimp
α ± N

imp
α

2
= Fαc(±Xα,kp). (E19)

d. Determining boundary terms

To express the finite-size momentum Eq. (E16) in terms of the N
imp
α , D

imp
α (E19), we need to relate Fαc(σXα,kp) to

Fcβ(kp,σ ′Xβ). By considering the Neumann series of (E13) and integrating by parts, it can be shown that

Fαβ(zα,zβ) + Fβα(zβ,zα) = −
∑
γ,σ

σFγα(σXγ ,zα)Fγβ(σXγ ,zβ). (E20)

To establish the desired relationship, (E20) implies that we require the values Fαβ(τXα,τ ′Xβ). It is simple to show that

Fαβ(Xα,Xβ ) − Fαβ(−Xα,Xβ ) = Zαβ − δαβ, (E21)

with Z the dressed charge matrix as defined in Eq. (B26). Equation (E20) also implies that

Fαβ(Xα,Xβ) + Fβα(Xβ,Xα) = −
∑

γ

[Fγα(Xγ ,Xα)Fγβ(Xγ ,Xβ) − Fγα(−Xγ ,Xα)Fγβ(−Xγ ,Xβ)]. (E22)
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Substituting (E21) into (E22) and simplifying, if we define F to be the matrix Fαβ(Xα,Xβ ), then it satisfies the equation

Z�F + F�Z = (1 − Z)�(1 − Z). (E23)

Considering

Fβα(−Xβ,Xα) − Fαβ(−Xα,Xβ ) =
∑
σ,γ

σFγα(σXγ ,Xα)Fγβ(−σXγ ,Xβ), (E24)

and using (E21) again, we find the similar equation

Z�F − F�Z = Z − Z�. (E25)

Equations (E23) and (E25) determine F uniquely, giving

Fαβ(τXα,τ ′Xβ) = τ

2
(Z − 1)αβ + τ ′

2
(Z−1� − 1)αβ. (E26)

This therefore allows us to write down the dressed shift functions appearing in Eq. (E16) in terms of the known quantities N
imp
α

and D
imp
α , viz.

Fcc(kp,kp) = −
∑

γ

Dimp
γ N imp

γ , (E27)

Fcα(kp,τXα) = −
∑

γ

(
τ

2
N imp

γ Z−1�
γα + Dimp

γ Zγα

)
. (E28)

Combining the previous results, we find

zc

(
k

p

L

) = zc,0(kp) + z′
c,0(kp)

δkp

L
− 2π

L

∑
α

[
N imp

α Dα + Dimp
α 
Nα − Dimp

α N imp
α

]
. (E29)

Using Eq. (8.38) from Ref. [2], the full finite-size momentum spectrum in the presence of a high-energy charge particle is given
by

P = 2DckF,↑ + 2(Dc + Ds)kF,↓ + zc,0(kp) + 2πρc,0(kp)
δkp

L
+ 2π

L

⎛⎝
Ñ� · 
D̃ +
∑

k∈{c,s}
(N+

k − N−
k )

⎞⎠, (E30)

where the N±
k are non-negative integers enumerating the number of particle-hole pairs in the vicinity of the Fermi points and

kF,↑(↓) = 1
2 (πnc ± 2πm). In the zero-field limit m = 0 and therefore kF,↑ = kF,↓ = kF , giving

P = 2kF (2Dc + Ds) + zc,0(kp) + 2πρc,0(kp)
δkp

L
+ 2π

L

⎛⎝
Ñ� · 
D̃ +
∑

k∈{c,s}
(N+

k − N−
k )

⎞⎠. (E31)

APPENDIX F: MOBILE IMPURITY
CONTRIBUTIONS TO σ (2)(ω)

1. Threshold of the “particle-hole” continuum in σ (2)(ω)

Next we examine the thresholds in the second contribution
Eq. (19) to the optical conductivity. The lowest threshold
arises in the “particle-hole” and “two-particle” excitations
considered in Secs. III C 1 and III C 2 respectively. The
threshold in both cases is given by

E
ph
thres(q) = εc(k(q)) − 2μ,

q = k +
∫ ∞

−∞
d�θ

(
sin k − �

u

)
ρs,0(�), (F1)

where ρs,0(�) is the ground-state root density (33). The
threshold for the particle-hole (two-particle) excitation is
obtained by fixing the position of the hole (one of the particles)
in momentum space at one of the Fermi points, so that it
contributes only at O(L−1) to the excitation energy. Hence the

impurity degree of freedom corresponds to a particle in both
cases.

a. Projection of the operator O j

We will use the representation (18) to determine the
contribution C

(2)
JJ (�,t) to the current-current correlator. Hence

we require the projection of the operatorOj defined in Eq. (17)
to the mobile impurity model Eq. (61). This can be worked out
by following Ref. [35]. We start by taking the continuum limit
of the lattice fermion operators

cj,σ ∼ Rσ (x)eikF x + Lσ (x)e−ikF x + · · · , x = ja0, (F2)

where a0 is the lattice spacing. The continuum limit of Oj then
takes the form

O(x) ∼ eix(2kF −π)Rc∂xRce
iπ
∫ x

−∞ dx ′ Qc(x ′) + · · · , (F3)
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with Qc(x) = R
†
c(x)Rc(x) + L

†
c(x)Lc(x). Next we decompose

the charge part into the low-energy and impurity pieces

Rc(x) ∼ rc + B†(x)ei(π−2kF )x + · · · . (F4)

Substituting this back into (F3) and then bosonizing the low-
energy degrees of freedom, we obtain

O(x) ∼ B†(x)e− i

2
√

2
�∗

c (x) + · · · , (F5)

where we have retained only the most relevant piece in the
sector with a single impurity.

b. Finite-size excitation energy in the mobile impurity model

As the mobile impurity model is again given by (59)
to (61), and the impurity again is located at a maximum of
its dispersion, we can follow through the same steps as in our
analysis of the k-� string threshold. The finite-size spectrum
is, accordingly, of the same form as (82). The values of q(0)

α

follow from the form of the Luttinger liquid part of (F5) to be

q(0)
c = q̄(0)

c = π
√

2; q(0)
s = q̄(0)

s = 0. (F6)

c. Finite-size excitation energy from Bethe ansatz

We consider again the excitation described in Sec. III C 1.
The finite-size corrections to the excitation energy are calcu-
lated in Appendix C. The final result is of the form

E = eGSL + εc(kp) + δkp

L
ε′
c(kp) − π

6L
(vc + vs) + 2πvc

L

[(

Nc − N

imp
c

)2
8Kc

+ 2Kc

(
Dc − Dimp

c + Ds − D
imp
s

2

)2
]

+ 2πvs

L

[
1

2

(

Ns − N imp

s − 
Nc − N
imp
c

2

)2

+
(
Ds − D

imp
s

)2
2

]
. (F7)

Here the ground-state energy per site eGS and dressed energy εc(k) are given in Eqs. (35) and (36) respectively, while the velocities
vs,c and the Luttinger parameter Kc are calculated in Appendix A. The thermodynamic value kp of the impurity rapidity and its
finite-size correction δkp are determined by (C11) and (C15). Finally, we have


Nc = −3, 
Ns = −1, Dc = 0, Ds = 0,

N imp
c = 2N imp

s − 1 =
∫ Q

−Q

dk ρc,1(k), Dimp
s = 0, (F8)

2Dimp
c =

∫ π

Q

dk[ρc,1(−k) − ρc,1(k)] + i

π

{
ln

[
�
(

1
2 − i sin kp

4u

)
�
(
1 + i sin kp

4u

)
�
(

1
2 + i sin kp

4u

)
�
(
1 − i sin kp

4u

)]}

+ i

π

∫ Q

−Q

dk ρc,1(k)

{
ln

[
�
(

1
2 − i sin k

4u

)
�
(
1 + i sin k

4u

)
�
(

1
2 + i sin k

4u

)
�
(
1 − i sin k

4u

)]}, (F9)

where ρc,1(k) is the solution of the integral equation

ρc,1(k) = cos k R(sin k − sin kp) + cos k

∫ Q

−Q

dk′ R(sin k − sin k′)ρc,1(k′). (F10)

In order to fully specify our mobile impurity model we also
require the the curvature of the dispersion relations of εc(k) at
k = π , which is given by

− 1

m
= d2εc(k(q))

dq2

∣∣∣∣
k=π

= 2 + ∫ Q

−Q
dk R′(sin k)ε′

c(k)

(2πρc,0(π ))2
. (F11)

d. Fixing the parameters γα , γ̄α

By matching the expressions (F7) and (82) for the finite-size
energies we can fix the parameters γα and γ̄α:

γc = 1

2
√

2
+ 1

2
√

2

(

Nc − N imp

c

)
, γs = 0,

γ̄c = − 1

2
√

2
− 1

2
√

2

(

Nc − N imp

c

)
, γ̄s = 0. (F12)

e. Current-current correlator in the mobile impurity model

Given the expression (F5) for the projection of the operator
Oj , we have

C
(2)
JJ (�,t) ∼ H (x,t) = 〈O†(x,t)O(0,0)〉

∼ 〈
B(x,t)e

i

2
√

2
�∗

c (x,t)
B†(0,0)e− i

2
√

2
�∗

c (0,0)〉
. (F13)

This is readily calculated using the unitary transformation (77).
In the new basis, the correlator factorizes

H (x,t) ∼ 〈
e

i

2
√

2
(
Nc−N

imp
c )�◦

c (x,t)

× e
− i

2
√

2
(
Nc−N

imp
c )�◦

c (0,0)〉〈B̃(x,t)B̃†(0,0)〉

∼ 1(
x2 − v2

c t
2
)η ∫ �

−�

dp

2π
e−ipxe−iε(p)t , (F14)
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FIG. 17. Contribution to onset of σ
(2)
1 (ω) from particle-hole

excitation in Eq. (F16) for U = 10 and n = 5/6.

where in this case ε(p) is given by εc(π + p) and

η = 1

2Kc

(
3

2
+ N

imp
c

2

)2

. (F15)

Fourier transforming and using (19), we arrive at

σ
(2)
1 (ω)

∣∣∣
ph

∼ 1

ω

∫ �

−�

dp G̃c
η,η(ω − ε(p),p), (F16)

where G̃c
η,η(ω,p) is given by (104). The behavior of (F16)

is shown in Fig. 17. We see that the contribution vanishes
smoothly at the threshold and increases slowly above it.

2. Threshold of the two-hole continuum in σ
(2)
1 (ω)

Last but not least we wish to consider the threshold of the
contribution of the two-hole continuum to σ

(2)
1 (ω). This occurs

at a higher energy than the threshold of the particle-hole and
particle-particle continua, but unlike the latter two persists as
we approach half-filling. The threshold is parametrized by

Ehh
thres(q) = −2εc

(
k(q)

2

)
− 2μ, (F17)

where k(q) is again fixed by (F1). The threshold corresponds
to having two high-energy hole excitations with momentum

q/2 each. As we are now dealing with two impurities with
equal momenta, the appropriate mobile impurity model is of
the form (61), but we now have to retain impurity-impurity
interactions:

Himp =
∫

dx

[
B†(x)(ε − iu∂x − 1

2m
∂2
x )B(x)

+V B†(x)∂xB
†(x) B(x)∂xB(x)

]
. (F18)

a. Projection of the operator O j

Next, we require the projection of the operator Oj onto the
mobile impurity model. This proceeds as before, cf. Eqs. (F2)
and (F3), but now we take

Rc(x) ∼ rc(x) + B†(x)e−iqx/2. (F19)

Substituting this into the expression (F3) for O(x), we find

O(x) ∼ ei(2kF −π−q)xB†(x)∂xB
†(x)e

i

2
√

2
�∗

c (x) + · · · , (F20)

where we have retained only the most relevant term in the
sector with two impurities.

b. Finite-size corrections to excitation energies
in the mobile impurity model

The interactions between the mobile impurities and the
Luttinger liquid degrees of freedom can again be removed
by the unitary transformation (77). In the transformed basis,
finite-size corrections to the excitation energies in the LL part
of the theory can then be calculated as before, and lead to the
result (82).

The zero mode eigenvalues for the “minimal” excitation
[cf. Eq. (83)] associated with O(x) as defined in Eq. (F20) are

q(0)
c = −π

√
2, q̄(0)

c = π
√

2, q(0)
s = 0, q̄(0)

s = 0. (F21)

c. Finite-size corrections to excitation energies
from the Bethe ansatz

The two-hole excitation has been constructed in Sec. III C 3,
and the threshold of interest here occurs when, in the
thermodynamic limit, the two holes have equal momentum.
The finite-size corrections to the excitation energy can be
calculated following Ref. [25], details are given in Appendix D.
The final result in zero magnetic field is

E = eGSL − εc(kh1 ) − εc(kh2 ) − δkh1

L
ε′
c(kh1 ) − δkh2

L
ε′
c(kh2 ) − π

6L
(vc + vs)

+ 2πvc

L

[(

Nc − N

imp
c

)2
8Kc

+ 2Kc

(
Dc − Dimp

c + Ds − D
imp
s

2

)2
]

+ 2πvs

L

[
1

2

(

Ns − N imp

s − 
Nc − N
imp
c

2

)2

+
(
Ds − D

imp
s

)2
2

]
. (F22)

Here, the ground-state energy per site eGS and dressed energy εc(k) are given in Eqs. (35) and (36) respectively, while the
velocities vs,c and the Luttinger parameter Kc are calculated in Appendix A. The thermodynamic values khi of the impurity
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rapidities and the finite-size corrections δkhi are determined by (D6) and (D7). Finally, we have


Nc = 0, 
Ns = −1, Dc = 1

2
, Ds = 0,

N imp
c = 2

(
N imp

s + 1
) =

∫ Q

−Q

dk ρc,1(k), Dimp
s = 0, (F23)

2Dimp
c =

∫ π

Q

dk[ρc,1(−k) − ρc,1(k)] −
∑
j=1,2

i

π

{
ln

[
�
(

1
2 − i sin k

hj

4u

)
�
(
1 + i sin k

hj

4u

)
�
(

1
2 + i sin k

hj

4u

)
�
(
1 − i sin k

hj

4u

)
]}

+ i

π

∫ Q

−Q

dk ρc,1(k)

{
ln

[
�
(

1
2 − i sin k

4u

)
�
(
1 + i sin k

4u

)
�
(

1
2 + i sin k

4u

)
�
(
1 − i sin k

4u

)]}, (F24)

where ρc,1(k) is the solution of the integral equation

ρc,1(k) = − cos k [R(sin k − sin kh1 ) + R(sin k − sin kh2 )] + cos k

∫ Q

−Q

dk′ ρc,1(k′)R(sin k − sin k′). (F25)

d. Fixing the parameters γα , γ̄α

By comparing the finite-size spectra calculated from the Bethe ansatz (F22) with those obtained from the mobile impurity
model (82), we are again able to determine the parameters γα , γ̄α . In the case at hand, we obtain

γc + γ̄c = −
√

2Dimp
c , γc − γ̄c = − 1√

2
N imp

c , γs = γ̄s = 0.

(F26)
e. Current-current correlator in the mobile impurity model

Given the expression (F20) for the projection of the operator Oj , we have

C
(2)
JJ (�,t) ∼ 〈O†(x,t)O(0,0)〉 ∼ 〈∂xB(x,t)B(x,t)e−i�∗

c (x,t)/2
√

2B†(0,0)∂xB
†(0,0)ei�∗

c (0,0)/2
√

2〉 ≡ L(x,t). (F27)

This is readily calculated using the unitary transformation (77). In the new basis, the correlator factorizes

L(x,t) = 〈∂xB̃(x,t)B̃(x,t)B̃†(0,0)∂xB̃
†(0,0)〉〈e−i

1
2 −2D

imp
c√

2
�◦

c (x,t)+i
N

imp
c√

2
�◦

c (x,t)
e
i

1
2 −2D

imp
c√

2
�◦

c (0,0)−i
N

imp
c√

2
�◦

c (0,0)〉
. (F28)

The Luttinger liquid part of the correlator is readily calculated

L(x,t) = 〈∂xB̃(x,t)B̃(x,t)B̃†(0,0)∂xB̃
†(0,0)〉(x − vct)

−ν+(x + vct)
−ν− , (F29)

where

ν± = 2

[√
Kc

(
1

2
− 2Dimp

c

)
∓ N

imp
c

2
√

Kc

]2

,

ν = ν+ + ν− = 4Kc

(
1

2
− 2Dimp

c

)2

+
(
N

imp
c

)2
Kc

. (F30)

In the absence of interactions between our two high-energy impurities (V = 0), the impurity part of the correlator is readily
calculated as

〈∂xB̃(x,t)B̃(x,t)B̃†(0,0)∂xB̃
†(0,0)〉 ∼ 1

t3/2
δ(x − ut). (F31)

In order to gain some insight in the importance of interactions, they can be taken into account in a random phase approximation
in the impurity-impurity interaction. Summing up the RPA bubble diagrams does not change the behavior sufficiently close to
the threshold. Putting everything together we find

L(x,t) ∼ 1

(x − vct)ν+

1

(x + vct)ν−

δ(x − ut)

t3/2
+ · · · (F32)

The resulting contribution to σ
(2)
1 (ω) for frequencies close to ω0 = −2μ − 2εc( k(q))

2 ) is thus

σ
(2)
1 (ω)|two−hole ∼ 1

ω
(ω − ω0)ν+ 1

2 �(ω − ω0). (F33)

As we have pointed out before, the excitation with two high-energy holes persists at half-filling. Importantly, this contribution
is no longer suppressed at half-filling, and in fact gives rise to the square root increase above the absolute threshold in the optical
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conductivity in this limit [28,40,41]. Our result (F33) is reconciled with this behavior by noting that the frequency range ω − ω0

over which (F33) holds is related to the cutoff �c of the charge sector of the Luttinger liquid degrees of freedom. As we approach
half-filling, this cutoff tends to zero, i.e., the frequency window in which (F33) applies vanishes. At sufficiently high frequencies,
ω > ω0 + �c, we expect on general grounds to recover the square root behavior observed at half-filling.
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