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Superlubricity in quasicrystalline twisted bilayer graphene
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The unique atomic positions in quasicrystals lead to peculiar self-similarity and fractal-like structural
morphology. Accordingly, many of the material properties are supposed to manifest exceptional characteristics.
In this Rapid Communication, we explain through numerical simulations the fundamental and peculiar aspects
of quasicrystals wearless friction manifested in a 30° twisted bilayer graphene system. In particular, the sliding
force exhibits a fractal structure with distinct area correlations due to the natural mixture between both periodic
and aperiodic lateral modulations. In addition, zero power scaling of the sliding force with respect to the contact
area is demonstrated for a geometric sequence of dodecagonal elements.
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The discovery of quasicrystals [1,2] (QCs) has dramatically
redefined the basic definition of crystals in the crystallography
community. A QC is a crystalline structure that breaks the
periodicity of a normal crystal for an ordered, yet aperiodic, ar-
rangement, lacking any translational symmetry. Consequently,
the diffraction pattern of QCs is characterized by sharp and
discrete peaks which follow rotational symmetries forbidden
to ordinary crystals.

Closely related interfaces exhibiting quasicrystal symmetry
have attracted much attention as a class of interesting tribologi-
cal materials manifesting anomalously low friction coefficients
[3–5]. However, up to now, the physical origin of the low
friction properties is considered to be an open question. In
particular, it is not clear to what extent the peculiar aperiodic
structure influences the sliding force and energy dissipation of
such interfaces [5–7].

In general, the low friction phenomenon in incommensu-
rate sliding surface contacts, termed structural superlubricity
[8–10], is explained by a virtually zero energy barrier due
the lack of crystal symmetry. Similarly, it can be interpreted
in terms of an efficient cancellation of the sliding forces
experienced by different parts of the moving contact [11–13].
It is a long-standing question in tribology whether true
superlubricity, characterized by zero power scaling of the
sliding force F with respect to the contact area A, i.e.,
F ∝ Aγ , where γ = 0, really exists. The latter is suggested by
theory for the case of infinitely large incommensurate contacts
[11,12] and is yet to be experimentally demonstrated [13–16].
It is commonly accepted that for the two-dimensional (2D)
case nonzero power scaling is inevitable due to symmetry
breaking effects at the contact edges [17], whereas in the one-
dimensional (1D) case, e.g., in double wall carbon nanotube
structures, a constant sliding force independent of the tube
length has been predicted [18].

In this Rapid Communication, we study a bilayer graphene
interface with a rotational misfit of 30° which forms a
dodecagonal QC interface structure [19]. We reveal through
numerical simulations the fundamental and peculiar aspects
of QC wearless friction. We demonstrate that the sliding force
exhibits a fractal structure with distinct area correlations. In
addition, zero scaling of the sliding force is demonstrated
for a geometric sequence of dodecagonal elements, intricately
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connected to the fine and perfect force cancellation emerging
from the quasiperiodic symmetry of the interface.

The atomic positions of a 30° twisted bilayer graphene
interface follow a perfect quasiperiodic dodecagonal pattern
(Fig. 1). A dodecagonal lattice holds 12-fold rotational symme-
try due to a distinct distance that characterizes the system in all
12 directions. The structure is obtained by covering the area
with triangles and squares as structural elements [Fig. 1(b)]
[20]. Since squares and triangles enclose angles of 90° and
60°, respectively, their combination leads to a distribution of
edges along 12 directions with 30° intervals. The adjacent
dodecagons consist of six triangles in the center which are
surrounded by an alternating arrangement of six squares and
triangles. The corresponding quasiperiodic lattice follows a
strict rule that leads to a distinct self-similarity. The center
of each dodecagon represents the corner of a similar larger
dodecagonal structure with a radius scaled by an irrational
factor of 2 + √

3 [Figs. 1(b) and 1(c)]. The elementary scale
unit is a = L cos(15◦), where L denotes the moiré superlattice
unit cell L = a†/

√
2 − 2 cos(θ ) corresponding to a twist

angle θ = 30◦, where a† = 2.46 Å denotes the graphene lattice
constant. In this Rapid Communication, a corresponds to the
radius of the smallest dodecagonal structure (and not to the
dodecagonal face as in other papers). The area in between
adjacent dodecagons is also filled by squares (fourfold sym-
metry) and triangles (threefold symmetry) that are randomly
pointing along one of the 12 quasiperiodic directions.

The 2D energy map for the same system is presented in
Fig. 2(a). The energy map reflects the atomic interactions
between the top and bottom layers. Simulations are based
on the force field analytical model developed by Kolmogorov
and Crespi [21]. The system is assumed to be fully rigid,
which is a reasonable approximation considering the large
in-plane stiffness of graphene and the rapidly varying in-plane
potential modulations due to the short moiré superlattice
period. The energy map holds exactly the same dodecagonal
QC symmetry and the pseudodiffraction pattern calculated
from the energy map [Fig. 2(b)] displays the hallmark 12-fold
rotational symmetry. For comparison, both the energy map and
pseudodiffraction pattern for Bernal stacked bilayer graphene
showing sixfold rotational symmetry are presented in Figs. 2(c)
and 2(d), respectively.

The sliding force is analyzed to study the friction charac-
teristics of such QC structures. The connection with friction
arises from the fact that energy dissipation is governed by
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FIG. 1. (a) Atomic positions for 30° twisted bilayer graphene. Red and blue points correspond to the bottom and top graphene layers,
respectively. The bilayer reveals a perfect quasiperiodic dodecagonal pattern. Black, green, and red colors represent dodecagonal structures
with radii of a, a(2 + √

3), and a(2 + √
3)2, respectively. A magnified image of the central region is shown in the inset. (b) Each dodecagon

consists of six triangles in the center which are surrounded by an alternating arrangement of six squares and triangles. The center of each
dodecagon represents the corner of a similar larger dodecagonal structure with a radius scaled by an irrational factor 2 + √

3. (c) Schematic
representation of dodecagonal structures with radii a(2 + √

3)n for n = 1,2,3,4.

spontaneous jumps from a marginally stable position to the
next stable equilibrium position whenever the stiffness of the
actuator is smaller than the negative value of the displacement
force gradient along the slide direction. Therefore, the friction
force basically scales with the magnitude of the sliding force
fluctuations. To simulate sliding, the top flake is moved by
a fixed increment of 0.01 nm along the high symmetry [1 1]
axis pointing along an armchair orientation. At each position,
a new energy map is calculated from which the force acting
on the atoms in the flake, termed the force map, is derived
by taking the numerical derivative along the slide axis. The
overall sliding force experienced by different parts of the flake
is then obtained by taking the sum over all atomic forces within
the specific part.

In a first step, we calculate the sliding force signals
of each of the 19 adjacent dodecagonal structures with a
radius of r = a(2 + √

3), depicted in Fig. 2(a) in green.
The dodecagonal structures containing 337 atoms each are
fixed to the moving frame of the top sliding graphene layer.
The sliding force signals are virtually identical in all of the

structures. The force oscillations are very small in comparison
to a Bernal stacked bilayer system of the same area and are
within the same order of magnitude of a single sliding atom,
i.e., ∼10 pN [13]. The same phenomenon is observed for all
the other dodecagonal structures with r = a(2 + √

3)n and
n = 0,2,3 depicted in Fig. 1. Therefore, the sliding force
of dodecagonal tiles of order n is perfectly correlated and
the respective sliding forces add up coherently, as shown in
Fig. 3(b).

A perfect correlation would lead to a simple scaling law
of the sliding force with respect to the contact area F ∝ A,
if the structural voids between the adjacent dodecagons are
neglected. This is rather a counterintuitive result considering
that incommensurate sliding systems are typically character-
ized by a fractional scaling F ∝ Aγ , where γ is predicted to be
within the range of 0–0.5 depending on several properties of
the contact such as geometry, crystallinity, orientation, and rim
effects [12,16,17]. Next, we compare the sliding force signals
of individual dodecagonal tiles with radii r = a(2 + √

3)n and
n = 1,2,3,4, i.e., r = 17.13, 63.93, 238.61, and 890.51 Å,
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FIG. 2. (a) Energy map for 30° twisted bilayer graphene. The local atomic interactions between the top and bottom graphene layers reveal
a perfect quasiperiodic dodecagonal pattern. Black, green, and red colors represent dodecagonal structures with radii of a, a(2 + √

3), and
a(2 + √

3)2, respectively. (b) 2D pseudodiffraction pattern computed from the energy map. The 12-fold diffraction pattern is the signature of a
QC layer with dodecagonal symmetry. For comparison, both the energy map (c) and pseudodiffraction pattern (d) for a Bernal stacked bilayer
graphene system consisting of sixfold rotational symmetry are also presented. We note that due to the lower intensity of the higher-order peaks,
only the first six reflexes are visible in (d).

201404-2



RAPID COMMUNICATIONS

SUPERLUBRICITY IN QUASICRYSTALLINE TWISTED . . . PHYSICAL REVIEW B 93, 201404(R) (2016)

-2 -1 0 1 2
-30

0

30

S
lid

in
g
 f
o
rc

e
 (

p
N

)

Sliding distance x ( )
1 10

10

100

S
T

D
 o

f 
s
lid

in
g
 f

o
rc

e
 (

p
N

)

Number of dodecagonals

-2 -1 0 1 2
-30

0

30

S
lid

in
g
 f
o
rc

e
 (

p
N

)

Sliding distance x ( )
1 10 100 1000

0.01

0.1

1

10

S
T

D
 o

f 
s
lid

in
g

 f
o

rc
e

 (
n

N
)

Dodecagonal radii ( )

n=4

n=1
n=2
n=3

(a) (b)

(c) (d)

FIG. 3. (a) Sliding force profiles for the 19 adjacent dodecagonal structures shown in Fig. 1(a) in green. The structures have the same radial
distance of r = a(2 + √

3) and exhibit the same force profiles for sliding along the x direction. (b) The sliding force of dodecagonal tiles of
order n is perfectly correlated and the respective sliding forces add up coherently (STD denotes the standard deviation of the sliding signal).
(c) Sliding force profiles for four dodecagonal structures with radii of 17.13, 63.93, 238.61, and 890.51 Å, corresponding to r = a(2 + √

3)n

with n being an integer between 1 and 4, produce virtually identical sliding force profiles. (d) Standard deviation of the sliding force signal for
dodecagonal structures of different radii. The plot reveals three different scaling laws. For dodecagonal structures of r = a(2 + √

3)n and n

being the integer, the force scales as F ∝ A0 (red dots). For noninteger values of n, two different scaling laws appear. In particular, the force
oscillates between two power laws of F ∝ Aγ , where γ is between 0.25 and 0.5, thus forming a growing “band” of possible force intensities.
Inset: Geometrical definition of r for the dodecagonal structures.

comprising 337, 4680, 65 184, and 907 896 atoms, respectively
[Fig. 3(c)]. Interestingly, the structures experience almost iden-
tical weak force signals, similar to the smallest dodecagon. For
these fundamental tiling structures, the sliding force does not
depend on the contact area and scales as F ∝ A0 [red spots in
Fig. 3(d)].

For dodecagonal structures with a noninteger exponent in
the radial equation, the sliding force scales with the contact
area with an exponent γ > 0. Note that in this case the
average number of atoms within different tiles will be an
irrational noninteger number. Specifically, we observe large
force variations constrained by two different power laws with
γ = 0.25 and γ = 0.5 [Fig. 3(d)].

The two different observed scaling exponents can be
explained by the structural correlation behavior of the do-
decagonal QC. The larger scaling exponent of 0.5 is at-
tributed to correlated rim forces which take place when
consecutively adding new rows of atoms at the rim, e.g.,
the green dodecagonal parts which exceed beyond the
red dodecagonal structure in Fig. 1(a). The smaller scal-
ing exponent of 0.25 is likewise attributed to uncorre-
lated rim forces associated with the quasiperiodic nature of
QC. Therefore, the overall force oscillates between corre-
lated and uncorrelated rim contributions. The latter scaling

FIG. 4. Angular dependence of the force signal corresponding to
a dodecagonal structure of r = a(2 + √

3)3 (red) and for a single
carbon atom (blue). The structures are moving along a straight,
5 Å long, line in different angular directions with respect to the
high symmetry zigzag ([1 0]) orientation. In agreement with the
crystal’s lattice symmetries, the dodecagonal and the single carbon
atom are characterized by 12-fold and sixfold rotational symmetry,
respectively.
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characteristics are typical for standard incommensurate
(nonperiodic) systems [22] whereas the zero power scaling
is a special property of QCs attributed to the fractal structural
morphology.

The quasicrystal nature of the interface is also reflected in
the angular dependence of the sliding force which exhibits
12-fold rotational symmetry. An example of an azimuthal plot
for a dodecagonal structure with n = 3 is shown in Fig. 4. The
force magnitude is similar to the one produced by a single slid-
ing atom whereas the single atom force signal is showing six-
fold rotational symmetry, in agreement with graphene lattice
symmetry.

In conclusion, the quasiperiodic interlayer structure of a
30° twisted bilayer graphene system gives rise to nontrivial
correlations between the sliding force and the contact geom-
etry. We demonstrate that perfect superlubricity characterized
by a scale invariant sliding force is obtained for the geometric
sequence of fundamental dodecagonal tiling elements in the
quasicrystal structure.

We thank Michael Urbakh for stimulating discussions.
E.K. gratefully acknowledges financial support by the Swiss
National Science Foundation, Ambizione Grant No. PZ00P2
161388.

[1] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev.
Lett. 53, 1951 (1984).

[2] D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984).
[3] J. Y. Park, Science 309, 1354 (2005).
[4] J. Y. Park, D. F. Ogletree, M. Salmeron, C. J. Jenks, P. A. Thiel,

J. Brenner, and J. M. Dubois, J. Mater. Res. 23, 1488 (2008).
[5] D. A. Rabson, Prog. Surf. Sci. 87, 253 (2012).
[6] A. E. Filippov, A. Vanossi, and M. Urbakh, Phys. Rev. Lett. 104,

074302 (2010).
[7] K. McLaughlin, D. Rabson, and P. Thiel, Phys. Rev. Lett. 107,

209401 (2011).
[8] M. Hirano, K. Shinjo, R. Kaneko, and Y. Murata, Phys. Rev.

Lett. 67, 2642 (1991).
[9] M. Hirano and K. Shinjo, Wear 168, 121 (1993).

[10] M. Dienwiebel, G. S. Verhoeven, N. Pradeep, J. W. M. Frenken,
J. A. Heimberg, and H. W. Zandbergen, Phys. Rev. Lett. 92,
126101 (2004).
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