
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 93, 201302(R) (2016)

Dirty Weyl semimetals: Stability, phase transition, and quantum criticality
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We study the stability of three-dimensional incompressible Weyl semimetals in the presence of random
quenched charge impurities. Combining numerical analysis and scaling theory, we show that, in the presence
of sufficiently weak randomness, (i) the Weyl semimetal remains stable, while (ii) the double-Weyl semimetal
gives rise to compressible diffusive metal where the mean density of states at zero energy is finite. At stronger
disorder, the Weyl semimetal undergoes a quantum phase transition and enter into a metallic phase. The mean
density of states at zero energy serves as the order parameter and displays single-parameter scaling across such
a disorder driven quantum phase transition. We numerically determine various exponents at the critical point,
which appear to be insensitive to the number of Weyl pairs. We also extract the extent of the quantum critical
regime in disordered Weyl semimetals and the phase diagram of dirty double-Weyl semimetals at finite energies.
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Introduction. Over the span of the past few years the horizon
of topological phases of matter has been extended beyond the
gapped states [1,2] and now includes various nodal (gapless)
systems as well [3,4]. Three-dimensional Weyl semimetals
(WSMs) are the prime example of such noninsulating systems,
which are constituted by so-called Weyl nodes that act as the
source (monopole) and sink (antimonopoles) for Berry flux in
the reciprocal space, thus always appearing in pairs [5]. As the
hallmark signature of a topologically nontrivial phase, WSM
accommodates gapless (chiral) surface states that can give
rise to peculiar electromagnetic responses, such as anomalous
Hall and chiral-magnetic effects [6]. While gapped topological
phases are expected to be robust against sufficiently weak
randomness, the stability of their gapless counterpart against
disorder demands careful investigation and constitutes the
central theme of this Rapid Communication.

Recently, we have witnessed the discovery of WSMs in a
number of noncentrosymmetric and magnetic semiconductors
[7–16]. Various other proposals for WSMs, for example,
include antiferromagnetically [17] or spin-ice [18] ordered
pyrochlore iridates, multilayer configurations of topological
and regular insulators [19,20], and magnetically doped topo-
logical insulators [21]. The monopole charge of Weyl nodes in
these systems is ±1. Nevertheless, HgCr2Se4 [22] and SrSi2
[23] are expected to host Weyl nodes with a monopole charge
±2, dubbed as the double WSM. The topological invariant and
enclosed Berry flux in double WSMs are twice that in a WSM,
and consequently the one-dimensional chiral surface states in
the former system possess a twofold degeneracy. Although
electromagnetic responses in Weyl materials are reasonably
well understood [6], the stability of incompressible topological
semimetals in the presence of quenched randomness is yet to
be explored and settled. This is the quest that has recently
culminated in a surge of analytical [24–34] and numerical
[35–44] works and we pursue it here for WSM and double
WSM, using numerical and analytical methods.

We address the stability of these two systems against
randomly quenched charge impurities by analyzing the mean
density of states (MDOS) at zero energy, where nondegenerate
valence and conduction bands touch each other. Our central
results are as follows: (i) For sufficiently weak disorder,

while WSMs remain stable, the double WSM undergoes a
BCS-like weak coupling instability toward the formation of
a compressible diffusive metal (CDM), where the MDOS
at zero energy is finite (see Fig. 1). (ii) WSMs undergo a
disorder driven quantum phase transition (QPT), beyond which
the system becomes a CDM. (iii) Across the WSM-CDM
transition, MDOS display single-parameter scaling and within
our numerical accuracy the critical exponents at such an
itinerant quantum critical point (QCP) appear to be insensitive
to the number of Weyl pairs (NW ) (see Table I).

Model. A paradigmatic two-band toy model,

HW =
∑

k

�
†
k[N1(k)σ1 + N2(k)σ2 + N3(k)σ3]�k, (1)

can describe different members of the Weyl family, where
σ are standard Pauli matrices. Fermionic annihilation oper-
ators cs,k with spin projections s =↑ , ↓ and wave vector
k constitute the two-component spinor ��

k = (c↑,k,c↓,k). A
WSM is found upon choosing Nj (k) = t sin(kja) for j = 1,2,
N3(k) = N1

3 (k) + N2
3 (k), where 2N1

3 (k) = t cos(k3a) and a

is the lattice spacing. In this model, the number of Weyl
pairs (NW ) can be tuned efficiently by the Wilson mass
N2

3 (k) = t ′[b − cos(k1a) − cos(k2a)]. A double WSM can
be constructed by taking N1(k) = t1[sin(k1a) − sin(k2a)],
N2(k) = t1 cos(k1a) cos(k2a), and N2

3 (k) = t ′[2 − sin(kxa) −

(a) (b)

FIG. 1. MDOS in (a) WSM (NW = 1) and (b) double WSM.
WSM remains stable up to Wc = 3.3 ± 0.1, beyond which the mean
DOS at ε = 0, �(0) is finite, and the system becomes a CDM. The
double WSM visibly turns into a CDM for weak enough disorder,
W � 1.0.
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(a) (b)

FIG. 2. Finite energy phase diagram of a dirty (a) WSM (NW = 1)
and (b) double WSM, for L = 220.

sin(kya)], while keeping N1
3 (k) unaltered. We implement

these tight-binding models on a cubic lattice with a periodic
boundary in each direction [45].

Disorder. The quintessential properties of dirty Weyl
systems can be established from their effective low energy
theory in the close vicinity of the Weyl points. The low energy
Hamiltonians for WSM and double WSM are

H1 = �†
τ [−iv(σ1∂1 + σ2∂2 + τσ3∂3) + V (r)]�τ , (2)

H2 = �†
τ

[
σ1

∂2
2 − ∂2

1

2m
− σ2

2∂1∂2

2m
− ivτσ3∂z + V (r)

]
�τ ,

(3)

respectively, where v ∼ ta, m−1 ∼ t1a
2, τ = ± represent left

and right chiral sectors, respectively, and we set t = t ′ = t1 =
1 = a. The effect of random impurities is captured by V (r),
distributed uniformly and independently within [−W

2 ,W
2 ],

and the MDOS is numerically evaluated using the kernel
polynomial method [36,45,46].

To gain insights into the role of disorder in these systems,
we can perform disorder averaging, assuming a Gaussian
white noise distribution with zero mean, i.e., 〈〈V (r)V (r′)〉〉 =
�δ3(r − r′), and arrive at the replicated Euclidean action

S̄n =
∫

d3xdt
(
�†

a[∂t + H̃n]�a

)
(x,t)

−�

2

∫
d3xdtdt ′

(
�†

a�a

)
(x,t)

(
�

†
b�b

)
(x,t ′), (4)

where a,b are replica indices and H̃n corresponds to the
Hamiltonian from Eqs. (2) and (3) in the clean limit. The
scale invariance of physical observables (v and m) dictates
the following space-time (imaginary) scaling ansatz: (x,y) →
el/n(x,y), z → elz, and t → elt , accompanied by the rescaling
of fermionic field � → e−( 1

n
+ 1

2 )l�, where l ∼ log L
a

is the
scaling parameter. The scaling dimension of disorder coupling
is [�] = 1 − 2

n
. Hence, sufficiently weak disorder is an

irrelevant (since [�] = −1) and a marginally relevant (since
[�] = 0) perturbation in WSM and double WSM, respectively
[45]. Therefore, WSM (double WSM) is expected to be stable
(unstable) in the presence of sufficiently weak randomness.

Notice that [�] ≡ 2z − d [45], where d is dimensionality
of the system and z is the dynamic critical exponent, together
governing the scaling of mean DOS �(ε) ∼ |ε|d/z−1. There-
fore, with z = 1 and 3

2 , �(ε) ∼ |ε|2 and |ε|, respectively, for
WSM and double WSM, in agreement with our numerical
findings (see Fig. 1).

FIG. 3. MDOS at zero energy �(0) in double WSM as a function
of 1/W . Inset: Scaling of �(0) with W .

Stability. WSM evidently remains stable for weak disorder
(W � 3.3) and MDOS at zero energy �(0) = 0, in agreement
with our scaling theory [see Fig. 1(a)]. However, for strong
disorder, WSM appears to undergo a QPT and enters into
the CDM phase, where �(0) becomes finite. A finite energy
phase diagram of a dirty WSM is shown in Fig. 2(a). This
observation is in qualitative agreement with various field the-
oretic [24–29] and numerical analyses for three-dimensional
Dirac [35,36,38,40] and Weyl [39,41,42] semimetals. We will
discuss the nature of such a QPT in a moment.

The scaling analysis suggests a BCS-like instability of
double WSM toward the formation of CDM for infinitesimal
randomness, and a phase diagram of this system is shown
in Fig. 2(b). By contrast, available data of �(0) for double
WSM in a finite system suggest a putative threshold value of
disorder (Wth ≈ 1), only beyond which �(0) is visibly finite
[Fig. 1(b)]. To examine whether the observed finite �(0) is
a consequence of a W = 0+ instability, we compare �(0)
vs 1/W (see Fig. 3). It is evident that larger systems are
required to pin the exponential onset of �(0) for sufficiently
weak W , as Wth ∼ 1/ log(L). Still, �(0) depicts an overall
good agreement with an exponential decrease with 1/W . In
addition, �(0) fits very well with the celebrated BCS scaling
form �(0) ∼ exp(−λ/W ), with the nonuniversal parameter
λ = 7.2 ± 0.8 (see the inset of Fig. 3). Instability of double
WSM against weak enough disorder is, however, insensitive
to the nature of the disorder, and a similar outcome holds
for magnetic disorders [45]. But �(0) starts to deviate from
BCS scaling for W > 5.0 and falls below the exponential line.
Such behavior can be attributed to the well-known Anderson
transition of a three-dimensional metal, across which MDOS
does not display critical behavior, but decreases monotonically
[38]. We anticipate that for W > 5.0 the double WSM falls
within the basin of attraction of the metal-Anderson insulator
critical point. However, due to a logarithmic onset of a metallic
phase in dirty double WSM, for sufficiently weak disorder
and/or small system size, quasiparticle excitations can retain
their ballistic nature over a large energy scale [see Fig. 2(b)].

Criticality. Now we investigate the scaling of MDOS across
a disorder driven QPT in WSM. The total number of states
N (ε,L) below the energy ε in a system of linear size L

is proportional to Ld , and in general is a function of two
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TABLE I. Comparison of critical disorder for WSM-CDM QPT
(Wc), dynamic critical exponent (z), and correlation length exponent
(ν) extracted from the scaling of MDOS (see text) for WSM with
NW = 1,2,4 [45]. Quantities in parentheses denote the fitting error.
Near the WSM-CDM QPT at strong disorder all nodes get coupled,
and with increasing backscattering channels or NW , Wc gradually
decreases.

NW Wc z νM νW νL

1 3.3 (0.1) 1.42 (0.05) 0.97 (0.1) 0.72 (0.2) 0.95 (0.1)
2 2.5 (0.1) 1.38 (0.05) 1.1 (0.15) 0.72 (0.2) 1.1 (0.15)
4 2.2 (0.1) 1.49 (0.05) 0.86 (0.06) 0.8 (0.15) 0.9 (0.1)

dimensionless variables L/ξ and ε/ε0. While the correlation
length diverges as ξ ∼ δ−ν , the corresponding energy scale
vanishes according to ε0 ∼ δνz, as one approaches the QCP
(δ → 0), where δ = (W − Wc)/Wc measures the deviation
from the QCP (Wc) and ν is the correlation length exponent
[47,48]. Consequently,

N (ε,L) = (L/ξ )dG
(
εδ−νz,L1/νδ

)
, (5)

where G is an unknown scaling function. From the definition
of MDOS, �(ε,L) = L−ddN (ε,L)/dε, we then arrive at the
following scaling ansatz,

�(ε,L) = δν(d−z)F
(|ε|δ−νz,L1/νδ

)
, (6)

after accounting the particle-hole symmetry, �(ε,L) =
�(−ε,L), where F is also an unknown, but a universal scaling
function. Below we demonstrate the scaling analysis of MDOS
in WSM with NW = 1 and the results for NW = 1, 2, and 4
are summarized in Table I [45].

First, we consider a sufficiently large system (L = 220), so
that the finite size effects are negligible and L dependence in
Eq. (6) can be ignored. From the scaling of MDOS at zero
energy �(0) with disorder we estimate critical disorder for
the WSM-CDM QPT Wc = 3.3 ± 0.1 [Fig. 4(a)]. At the QCP
(δ = 0), the δ dependence of �(ε) must cancel out, demanding
F (x) ∼ x

d
z
−1, and therefore �(ε) ∼ |ε| d

z
−1. From Fig. 4(b) we

obtain z = 1.42 ± 0.05.
In the metallic phase, the MDOS at zero energy �(0) is finite

and serves as the order parameter. In this regime �(0) ∼ δ(d−z)ν

and one can identify (d − z)ν as the order parameter exponent
(β). However, such a power law dependence of �(0) is valid
when ξ � L. Therefore, we fit �(0) as δ(d−z)ν for δ � 0.06,
and obtain νM = 0.97 ± 0.1, where νM is the correlation length
exponent extracted from the metallic phase [see Fig. 4(c)].

In WSM, the mean DOS scales as �(ε) ∼ c(δ)−1|ε|d−1, so
that we recover �(ε) ∼ |ε|2 for d = 3, where c(δ) ∼ δ(z−1)dνW

and νW is the correlation length exponent extracted from the
WSM phase. However, it should be noted that for W < Wc,
the mean DOS displays a smooth crossover from |ε|2 (for
small ε) to |ε| (for large ε) dependence. Therefore, estimation
of νW depends crucially on the range over which we attempt
to fit �(ε) ∼ |ε|2, and the accuracy of νW can be questioned.
Nevertheless, by fitting the coefficient of |ε|2 with c(δ)−1, we
obtain νW = 0.72 ± 0.2 [see Fig. 4(d)].

Data collapse. We now demonstrate that �(ε) displays a
single-parameter scaling across the WSM-CDM QPT. First,

(a) (b)

(c) (b)

FIG. 4. (a) MDOS at zero energy �(0) vs disorder; (b) MDOS �(ε)
vs ε for W = 3.2, 3.3, 3.4; (c) �(0) vs δ, where δ = (W − Wc)/Wc;
(d) c(δ)−1 vs δ, with c(δ) = δ(z−1)dν , for WSM with NW = 1, assuming
Wc = 3.3 [45].

we compare �(ε)δ−(d−z)ν vs |ε|δ−zν for L = 220. Neglecting
the high energy part of the spectrum (|ε| > 0.5) outside the
Weyl cones and the extremely small energy (|ε| < 10−2) where
numerical accuracy is small, we find that all data from Fig. 1(a)
collapse onto two separate branches, associated with the CDM
and WSM phases [see Fig. 5(a)].

Next, we delve into the finite size data collapse for MDOS
at ε = 0 and estimate ν independently. Setting ε = 0 in Eq.
(6), we obtain �(0,L) = Lz−dF(0,δL1/ν). An excellent data
collapse is achieved by comparing �(L,0)Ld−z with δL1/ν for
several systems with 80 < L < 180, Wc = 3.3, and z = 1.42
[see Fig. 5(b)]. The correlation length exponent extracted from
the best quality data collapse is νL = 0.95 ± 0.1. Thus, �(0)
displays a single-parameter scaling and serves as an bona fide
order parameter across the WSM-CDM QPT.

Critical regime. The crossover from the quadratic (at small
energy) to the linear (for higher energies) scaling of �(ε) allows
us to estimate the crossover boundary between the WSM and
critical regime at finite energy when W < Wc. For sufficiently
weak disorder, �(ε) ∼ |ε|2 over a wide range of energy. As
the randomness is gradually increased (but still W < Wc),
more and more degrees of freedom need to be integrated out
(in the spirit of the renormalization group) to wash out the
effect of disorder from the system. Consequently, the energy
window over which �(ε) ∼ |ε|2 gets reduced and the region
where �(ε) ∼ |ε| increases, with increasing disorder. With
this notion we numerically estimate the crossover boundary
between the WSM and the critical regime at finite energy
[see Fig. 2(a)]. When W = Wc, the mean DOS displays a
|ε|-linear dependence over the entire energy range (|ε| < 0.5).
For W > Wc, |ε|-linear behavior of �(ε) ceases at finite energy,
defining the boundary between the CDM and critical regime
[see Fig. 2(a)].

Conclusions. To conclude, we show that WSM is stable
against weak disorder, but undergoes a QPT and becomes
a CDM at strong disorder. Across such a QPT the MDOS
displays single-parameter scaling. The critical exponents (ν,z)
appear to be independent of the number of Weyl nodes (NW )
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(a) (b)

FIG. 5. (a) Single-parameter scaling of MDOS in WSM (NW =
1) with L = 220. The top (bottom) branch corresponds to CDM
(WSM). (b) Data collapse for �(0,L) when NW = 1. For large δ,
deviations from single-parameter scaling stem from the Anderson
transition at strong disorder.

(see Table I), since contribution from any fermionic bubble
vanishes in the vanishing replica limit [28]. The extent of the
critical regime at finite energy associated with such a QCP
[see Fig. 2(a)] can also be measured from angle-resolved
photoemission spectroscopy (ARPES) or scaling of specific
heat (Cv ∼ T d/z) in various WSMs [7–16] and topological
Dirac semimetals (two superimposed copies of WSMs), such
as Cd2As3 [49] and Na3Bi [50]. In contrast, the double
WSM becomes CDM for weak (infinitesimally small in the
thermodynamic limit) disorder. While in the metallic phase
Cv ∼ T , in WSM and double WSM specific heat scales as
Cv ∼ T 3 and T 2, respectively [45]. Therefore, as a function
of temperature, specific heat in double WSM should display a
smooth crossover from T 2 to T dependence as the temperature

is gradually decreased [see Fig. 2(b)]. Generalization of the
scaling analysis dictates that weak disorder is a relevant
perturbation in triple WSM (monopole charges ±3), since
[�] = 1 − 2

n
= 1

3 for n = 3. Therefore, among various three-
dimensional topological semimetals, only conventional WSM
is stable against weak disorder [51].

Finally, we discuss the transport phenomena in disordered
Weyl systems. In weakly disordered WSM (W < Wc), the
optical conductivity (in collisionless regime) displays a smooth
crossover from σjj (�) ∼ � to �1/z dependence as frequency
(�) is increased, closely following the phase diagram in
Fig. 2(a) for j = x,y,z [34]. In the strong disorder regime
(W > Wc), σjj (�) becomes finite as � → 0. By contrast,
in double and triple WSMs, σzz(�) ∼ �, while σxx/yy(�) ∼
�1/n at high frequency with n = 2 and 3, respectively.
However, as � → 0, σjj becomes finite in these two systems
for arbitrary strengths of disorder and for any j . Scaling of dc
conductivity (collision dominated) follows those for optical
conductivity upon taking � → T . Thus, in the future one can
probe the transport properties to establish the global phase
diagram of disordered Weyl materials at finite frequency and
temperature.
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