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Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness
of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive
ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge
states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We
examine the instabilities of the flat-band edge states of dxy-wave superconductors by performing a mean-field
analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which
correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language.
We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary
s-wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet
pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the
edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur
even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments
on cuprate high-temperature superconductors.
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Introduction. The discovery of topological insulators [1,2]
has led to the insight that nontrivial band topologies can give
rise to exotic surface states [1–3]. Particularly interesting are
topological flat-band surface states, since their large density
of states enhances correlation effects [4–15]. Surface states
with a (nearly) flat dispersion can occur both in topological
semimetals [15–17] and in nodal topological superconductors
(SCs) [18–21]. However, only in the latter systems is the
flatness of the surface states protected by symmetry [21–
23]. That is, time-reversal symmetry (TRS), particle-hole
symmetry (PHS), and translation symmetry ensure that the
surface states are pinned at zero energy, resulting in a band of
neutral Majorana fermions.

These Majorana bands exist in one- or two-dimensional
regions of the surface Brillouin zone, which are bounded by the
projections of the superconducting nodes. Hence, the number
of zero-energy surface states grows linearly or quadratically
with the length of the system, leading to a diverging density of
states at zero energy and an extensive ground-state degeneracy.
Since this is in violation with the third law of thermodynamics,
even arbitrarily weak interactions cause a singular perturbation
of the Majorana flat bands, giving rise to novel symmetry-
broken states at the surface [8–15,24]. Due to the flat-band
character and the low dimensionality of the boundary, these
symmetry-broken states are subject to strong fluctuations.
Therefore, it is necessary to use methods beyond mean-field
(MF) theory [25] in order to analyze the surface instabilities.

In this Rapid Communication, we employ a mean-field
analysis together with continuous-time quantum Monte Carlo
(QMC) simulations [26–28] to examine the interaction effects
on the Majorana flat-band edge states of dxy-wave super-
conductors. These edge states are experimentally realized in
cuprate high-temperature superconductors [29,30] and have
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been observed in tunnel junction experiments on normal-metal
YBa2Cu3O7−x junctions. At intermediate temperatures, these
measurements show a sharp zero-bias peak [31–37] that arises
due to the diverging density of states of the edge states. Upon
further cooling, the observed zero-bias peak splits into two
[38,39], which is interpreted as a sign of spontaneous TRS
breaking [40]. This was examined by several MF studies [4–9],
which found that for attractive interactions the order parameter
develops imaginary s-wave components near the boundary,
while for repulsive interactions edge ferromagnetism (FM) is
induced.

The purpose of this Rapid Communication is to go beyond
these previous MF calculations and to conduct a systematic
examination of all possible instabilities of the flat-band edge
states using (i) a mean-field analysis in the Majorana basis
of the edge states and (ii) continuous-time QMC simulations
which take into account fluctuation effects. Interestingly, we
find that for repulsive interactions, the FM instability is
coherently mixed with a spin-triplet pairing instability. For
attractive interactions, on the other hand, the s-wave pairing
instability is combined with current order and similarly the
charge-density-wave (CDW) instability, whose wave vector Q

corresponds to nesting between the flat bands, is mixed with
finite-momentum singlet pairing. We show that for attractive
interactions and at half filling, long-range order is established
at the edge at T = 0. Our findings are relevant for experiments
on cuprate high-temperature superconductors and we provide
experimental setups to test these unique signatures of Majorana
flat bands.

Model. We start from a phenomenological description of a
single-band dxy-wave SC given in terms of the Bogoliubov–de
Gennes Hamiltonian H0 = ∑

k �
†
kH (k)�k, with the Nambu

spinor �k = (ck↑,c
†
−k↓)T and

H (k) =
(

εk �k
�∗

k −ε−k

)
. (1)
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Here, c
†
kσ denotes the electron creation operator with spin σ

and momentum k = (k‖ = kx,k⊥ = ky)T, anticipating a later
introduced ribbon geometry with open boundary conditions in
the y direction. The normal part of the Hamiltonian describes
a two-dimensional square lattice with nearest-neighbor hop-
ping t and chemical potential μ, hence εk = −2t (cos k‖ +
cos k⊥) − μ. The SC order parameter �k = �dxy

sin k‖ sin k⊥
contains only spin-singlet pairing of amplitude �dxy

.
To discuss the topology of this two-dimensional (2D)

nodal system, we interpret H (k‖,k⊥) as a set of fully gapped
chains Hk‖(k⊥), indexed by k‖. Each subsystem falls into
class BDI and its topology is classified by a winding number
[19,41–43]. The subsystem exhibits a nontrivial bulk topology
if 2|t | > |μk‖ | and �k‖ �= 0 and hosts protected zero-energy

edge states (created by γ
†
k‖) once open boundary conditions

for the perpendicular direction k⊥ are imposed. Here, we
use the shorthand notations μk‖ = μ + 2t cos(k‖) and �k‖ =
�dxy

sin(k‖). The interested reader may find a more detailed
discussion of the topology and the protected edge states in
Sec. I of Ref. [44].

To study the correlation effects among Majorana states, we
include a Hubbard interaction along the top edge (i⊥,0 = 1) by
refining the Hamiltonian to H = H0 + Hint with

Hint = −2U

3L

∑
q‖

S−q‖Sq‖ = 2U

3L

∑
q‖

S(�)
−q‖S

(�)
q‖ (2)

in terms of the physical spin operator Sq = ∑
k‖ c

†
k‖

σ
2 ck‖+q or

a pseudospin operator S(�)
q = ∑

k‖ �
†
k‖

τ
2 �k‖+q . Unless stated

otherwise, we use (t,μ,�dxy
,L⊥) = (1.0,0.0,1.0,102).

Mean-field considerations. Let us examine some MF
decouplings before presenting the numerical simulations. We
restrict our discussion to the interacting edge sites and drop

the index i⊥ = i⊥,0 for readability. All derivations assume half
filling μ = 0.

Repulsive interaction. In the presence of repulsive interac-
tions one expects FM instabilities, hence we approximate Hint

by a MF decoupling mS0. Projecting on the Majorana states
generates the mass term

1

2

π∑
k‖=0

�
†
k‖mk‖τ�k‖ + · · · , (3)

with �
†
k‖ = (γ †

k‖, − i sk‖ γ−k‖), sk‖ = sgn(t�k‖), and mk‖ =
φ2

k‖(i⊥,0) m. The (· · · ) represent edge-bulk and bulk-bulk
contributions. This reproduces the edge splitting terms known
from Ref. [9]. Due to the SU (2)-spin symmetry of the
Hamiltonian, the orientation m remains arbitrary. A nonzero
value |m| breaks time-reversal and spin-rotation symmetry.

To make the connection with the QMC simulations, we
express Eq. (3) in terms of fermionic correlations along the
edge (see Table I, derived in Sec. II of Ref. [44]). Due to
the chiral structure of the edge states, a nonzero mass |m|
corresponds to a coherent superposition of FM and spin-triplet
SC, where the in-plane (out-of-plane) components are parallel
(antiparallel) aligned. In this analysis, we decomposed the
k‖ dependence of φ4

k‖ in harmonics. Accordingly, there will
be further contributions on next-nearest neighbor and higher-
order bonds, oscillating between normal and SC operators.

Attractive interactions. As indicated by Eq. (2), the trans-
formation ck → �k renders U > 0 repulsive in terms of S(�)

q .
Hence, we expect pseudomagnetic instabilities. First focusing
on homogeneous instabilities (Q = 0), we find that S(�)

0
projected on the Majorana states is vanishing except for the y

component. Therefore, only a condensation of S
y,(�)
0 gaps the

edge spectrum. Including inhomogeneous order (i.e., Q �= 0)

TABLE I. Summary of all possible MF channels at half filling. The top table lists possible vacuum expectation values, their associated
masses for the edge states, and the characterizing fermionic correlations. We use �

†
k‖ = (γ †

k‖ , − i sk‖ γ−k‖ ) and �̃
†
k‖ = (γ †

k‖ , − i sk‖ γ
†
k‖−π ). The

(· · · ) indicate additional operators on higher-order bonds.

Nonzero Mass term Fermionic correlation along
vacuum expectation values interacting edge

〈Sx,y

0 〉 1
2

∑π

k‖=0 �
†
k‖m

x,y

k‖ τ x,y�k‖
∑

j [a0S
x,y

j + b1(�b;x,y

j + �
b;x,y

j

†
)] + · · ·

〈Sz

0〉 1
2

∑π

k‖=0 �
†
k‖m

z
k‖τ

z�k‖
∑

j [a0S
z
j − b1(�b,z

j + �
b,z
j

†
)] + · · ·

〈Sx(�)
π 〉 1

2

∑π

k‖=0 �̃
†
k‖g

x
k‖τ

x�̃k‖
∑

j (−1)j [a0(�s
j + �s

j
†) + b1n

b
j ] + · · ·

〈Sy(�)
0 〉 1

2

∑π

k‖=0 �̃
†
k‖ (−g

y

k‖ )τ z�̃k‖
∑

j [−ia0(�s
j − �s

j
†) + b1Jj ] + · · ·

〈Sz(�)
π 〉 1

2

∑π

k‖=0 �̃
†
k‖g

z
k‖τ

y�̃k‖
∑

j (−1)j [a0nj − b1(�b,s
j + �

b,s
j

†
)] + · · ·

Operator Definitions
nj c

†
j σ

0cj

Sj c
†
j

σ
2 cj

�s
j −cj ;↑cj ;↓

nb
j c

†
j

σ 0

2 cj+1 + H.c.

Jj c
†
j

iσ 0

2 cj+1 + H.c.

�
b,s
j cT

j iτy
τ0

2 cj+1

�b
j cT

j iτy
τ
2 cj+1
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opens additional channels. It is natural to study those wave
vectors Q that maximize the nesting between edge states with
opposite chiral eigenvalue. At half filling, this fixes Q = π .
Projecting S(�)

π on the Majorana states generates nontrivial
operators for the x and z but a vanishing y component,
complementary to Q = 0.

The MF decoupling g(Sx,(�)
π ,S

y,(�)
0 ,Sz,(�)

π )
T

generates the
Majorana masses

1

2

π∑
k‖=0

�̃
†
k‖

(
gx

k‖τ
x + g̃k‖τ

)
�̃k‖ + · · · , (4)

with �̃
†
k‖ = (γ †

k‖, − i sk‖ γ
†
k‖−π ), gx

k‖ = φ2
k‖(i⊥,0)gx , and g̃ =

φ2
k‖(i⊥,0)g × ex. At half filling, we make use of a sublattice

symmetry USL = ∑
k‖,i⊥ (−1)i⊥�

†
k‖,i⊥

τ x

2 �k‖+π,i⊥ . This symme-
try generates rotations in the (y,z) plane that change the
orientation of g̃, but leave |g̃| and gx invariant. Hence, there
is a competition between these two channels. Interestingly,
the sublattice symmetry combines a time-reversal and a
translation-symmetry-breaking sector in g̃.

As before, we rewrite Eq. (4) in terms of fermionic opera-
tors, the result of which is shown in Table I. We obtain linear
superpositions of normal and SC operators. Sx,(ψ)

π combines
finite-momentum s-wave pairing with a bond-density-wave
instability, S

y,(ψ)
0 contains complex s-wave SC and edge

current operators, and Sz,(ψ)
π includes a CDW instability and

finite-momentum singlet SC on nearest-neighbor bonds.
Doping the system breaks the symmetry USL. As a result,

the constraint on Sy,(ψ) and Sz,(ψ) is lifted, which allows for a
competition between both channels. As the bulk nodes move
away from 0 or π , the nesting wave vector Q decreases and we
expect instabilities in the Sx,(ψ) and Sz,(ψ) channel at Q < π .

Method. We use a continuous-time QMC method in
the interaction expansion [26,27]. To incorporate d-wave
SC, we formulate the simulation in the Nambu basis.
We perform the calculations using an effectively one-
dimensional Green’s function, which contains the degrees
of freedom of the two-dimensional bulk states [45–47]. For

more details on the QMC method, we refer the reader to
Sec. III of Ref. [44]. The single particle spectra Atot(ω,k) =
−(2π )−1 ∑

σ Im Gσ (ω,k) are extracted from the time-ordered
Green’s function 〈c†k,σ (τ )ck,σ (0)〉 using the stochastic maxi-
mum entropy method [48,49]. To identify the mentioned Ma-
jorana masses, we determine equal-time correlation functions

CA,B(q) = 1

L

L∑
n,n′

eiq(n−n′)(〈A†
nBn′ 〉 − 〈A†

n〉〈Bn′ 〉). (5)

Results. The QMC simulation is sign-problem free for
attractive interactions (U = −2) at half filling such that
we can perform a scaling analysis and extrapolate to the
thermodynamic limit. Doping and/or repulsive interaction
introduce a sign problem. Hence, we only extract leading
instabilities for L = 32 and U = ±1.

Attractive interactions. We first study the system at half
filling and β/t = 100. The single particle spectrum is shown
in Fig. 1(a). We observe that the zero-energy flat bands develop
a dispersion and gap out. Hence the interaction along the
edge dynamically generates Majorana masses. The masses
discussed above can generate this spectrum and lead to an
unique set of coherent fermionic correlations. Figures 1(b)–
1(d) suggest instabilities associated with both |gx | �= 0 (Sx(�)

π

channel) and |g̃| �= 0 (Sy(�)
0 and Sz(�)

π channel). Each nontrivial
cross correlation confirms the expected coherent superposition
of normal and SC correlations. Figure 2 visualizes the scaling
behavior of the correlation function for the CDW, representing
the g̃ channel, and for s-wave singlet SC, representing the
gx channel. The data suggest long-range order at T = 0
in the g̃ channel, whereas gx vanishes. Observe that we
employed the enhanced symmetry of the zero-energy subspace
(i.e., the chiral nature of the edge states) to derive the
fermionic correlation functions associated to each Majorana
mass. However, this symmetry does not manifest itself for
the order parameter as it would unify the three channels by
promoting the U (1) sublattice symmetry to a SU (2) symmetry.
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FIG. 1. We present the single particle spectrum Atot(ω,k) and equal-time correlation functions for attractive interactions with L = 32 and
(U,μ,β/t) = (−2,0,100) in the top [(a)–(d)] and (U,μ,β/t) = (−1, − 0.586,50) in the bottom [(e)–(h)]. The edge states have been gapped
out and instabilities can be identified in all three S(�) channels as defined in Table I.
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FIG. 2. Finite size scaling of |g̃|2 (red) and |gx |2 (green) with
fixed β = 50

8 L in red and green. The extrapolation forA = n suggests
long-range order (|g̃| �= 0) at T = 0.

Doping the system removes the sublattice symmetry and
allows a competition between the S

y(�)
0 and S

z(�)
Q channels.

Figure 1(e) shows the single particle spectrum and we again
observe a splitting of the flat band. Once more the correlation
function in Figs. 1(f)–1(h) show instabilities in all channels,
which are best seen in the cross correlations between normal
and SC contributions. The doping of μ = −0.586 induces
Q = ± 3

4π , which explains the instabilities in the Sx(�) and
Sz(�) channels.

Repulsive interactions. The results for L = 32 and β = 100
are shown in Fig. 3. Again, the Majorana states are gapped
out. We can confirm edge FM as the leading instability [9].
In contrast to previous studies, however, we find from the MF
analysis that the FM is coherently mixed with a (anti)parallel
polarized triplet SC. This is well confirmed by the correlation
functions depicted in Fig. 3(b).

Discussion. Previous MF studies proposed ferromagnetism
or additional is-wave pairing [4–9] along the edge as leading
instabilities. Our unbiased QMC results, together with a
refined MF analysis, show, however, that is-wave pairing
and the FM are coherently mixed with current order and
spin-triplet pairing, respectively. That is, the order parameters
are linear superpositions of both normal conducting and
superconducting operators, as shown by the nontrivial cross
correlations (e.g., between the spin polarization and triplet
pairing) in Figs. 1(b)–1(d), 1(f)–1(h), and 3(b). Indeed, the

key insight from the MF analysis is that the instabilities
correspond to Majorana mass terms, which in the fermionic
language correspond to superpositions of particle-particle
and particle-hole channels. This coherent superposition is a
direct consequence of the chiral nature of the Majorana edge
state. If there were both chiralities at one edge, the linear
combination would be lost. Hence probing the coherence
between the different fermionic order parameters provides
useful information about the character of the edge states.

The agreement of the MF considerations and the QMC
analysis is remarkable considering that the former completely
neglected all bulk state effects. We effectively projected
Hint ∼ (e† + b†)(e + b)(e† + b†)(e + b) to e†ee†e and ignored
all bulk state contributions. Here, b and e represent bulk and
edge degrees of freedom, respectively, where e has definite
chirality. In principle, higher-order contributions could allow
for chirality flipping pair-scattering terms which might also
split the edge states [50]. The dxy-wave SC is nodal and there-
fore hosts gapless excitations in its bulk. Accordingly, there is
no separation in energy which justifies these approximations.

To detect the coherence between the FM and triplet SC in the
Majorana masses, relevant for repulsive interactions (the most
likely scenario for underdoped YBCO cuprate), we propose
Josephson current measurements in SC-FM-SC junctions [51].
It would be useful to compare the currents in junctions where
the interface is aligned along the (110) direction (with edge
states) to those in junctions with an interface along the (100)
direction (no edge states). The polarization direction of the FM
can be controlled in this setup by applying an external magnetic
field. We expect that in this junction the ferromagnetic part of
the Majorana mass is aligned with the FM of the junction.
This also fixes the polarization of the triplet component to
be either parallel or antiparallel to the FM, depending on the
orientation (see Table I). This polarization direction is expected
to strongly influence the tunneling probability and therefore the
Josephson current. By varying the polarization of the FM, one
can manipulate the relative phase in the superposition between
the FM and the triplet pairing, such that we would not only
detect the presence of additional triplet pairing along the edge
but also infer information about the coherence between the
different components.

In the presence of attractive interactions, the CDW order
will be pinned by impurities or by the underlying lattice [52].
Thereby, charge modulations in STM should be observable.
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FIG. 3. We present the single particle spectrum Atot(ω,k) (a) and the correlation functions (b) for L = 32 and β/t = 100. The edge states
have been gapped out and the FM is coherently mixed with triplet SC.
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Summary. In this Rapid Communication, we have stud-
ied instabilities of chiral flat-band Majorana fermions in
topological SCs using QMC. We have confirmed the FM
instability for repulsive interactions beyond the mean-field
level. Our analysis points out that any normal conducting order
is coherently mixed with a SC counterpart due to the Majorana
nature of the edge states, for example, FM and triplet SC. This
mixing should open up possibilities to detect the instabilities
experimentally. In the case of attractive interactions, the
system exhibits long-range order at half filling and T = 0,
namely, CDW combined with finite-momentum extended

s-wave pairing and complex s-wave SC in superposition with
current order. In a doped system, these two orders compete
with each other and the numerical data suggest an instability
towards SC mixed with spontaneous edge currents.
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(London) 514, 608 (2014).

[12] H. Feldner, Z. Y. Meng, A. Honecker, D. Cabra, S. Wessel, and
F. F. Assaad, Phys. Rev. B 81, 115416 (2010).

[13] H. Feldner, Z. Y. Meng, T. C. Lang, F. F. Assaad, S. Wessel, and
A. Honecker, Phys. Rev. Lett. 106, 226401 (2011).

[14] B. Roy, F. F. Assaad, and I. F. Herbut, Phys. Rev. X 4, 021042
(2014).

[15] E. Tang and L. Fu, Nat. Phys. 10, 964 (2014).
[16] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[17] C.-K. Chiu and A. P. Schnyder, Phys. Rev. B 90, 205136

(2014).
[18] Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81,

011013 (2012).
[19] S. Matsuura, P.-Y. Chang, A. P. Schnyder, and S. Ryu, New J.

Phys. 15, 065001 (2013).
[20] A. P. Schnyder and P. M. R. Brydon, J. Phys.: Condens. Matter

27, 243201 (2015).
[21] A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504(R)

(2011).
[22] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
[23] Y. Tanaka, T. Yokoyama, A. V. Balatsky, and N. Nagaosa, Phys.

Rev. B 79, 060505(R) (2009).
[24] Y. Li, D. Wang, and C. Wu, New J. Phys. 15, 085002 (2013).
[25] V. J. Kauppila, T. Hyart, and T. T. Heikkilä, Phys. Rev. B 93,
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