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Classification of topological phases in periodically driven interacting systems
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We consider topological phases in periodically driven (Floquet) systems exhibiting many-body localization,
protected by a symmetry G. We argue for a general correspondence between such phases and topological phases of
undriven systems protected by symmetry Z � G where the additional Z accounts for the discrete time-translation
symmetry. Thus, for example, the bosonic phases in d spatial dimensions without intrinsic topological order
[symmetry-protected topological (SPT) phases] are classified by the cohomology group Hd+1[Z � G,U(1)]. For
unitary symmetries, we interpret the additional resulting Floquet phases in terms of the lower-dimensional SPT
phases that are pumped to the boundary during one time step. These results also imply the existence of novel
symmetry-enriched topological (SET) orders protected solely by the periodicity of the drive.
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Introduction. There are now many known examples of
phases of matter which are distinguished not by the symmetries
they break spontaneously but through more subtle “topolog-
ical” orders [1]. Most such phases are not robust to thermal
excitations and therefore were thought to exist only at zero
temperature [2,3]. However, recently it has been appreciated
that, in the presence of strong disorder, it is possible for highly
excited eigenstates of a many-body system to be many-body
localized (MBL) [4–13]. Such MBL states are not thermal
and indeed more closely resemble gapped ground states; for
example, they obey an area law for the entanglement entropy.
This means that they can exhibit topological phases previously
thought to be restricted to zero temperature [14–18].

The lifting of the restriction to ground states also allows
us to consider more general “Floquet” systems [19–28] in
which the Hamiltonian H (t) is allowed to vary in time but
with periodicity T . The “eigenstates” of such a system are
the eigenstates of the Floquet operator U = U (T ) which
describes the unitary evolution of the system over one time
period. Such eigenstates can also be MBL in the presence
of strong disorder [29–34] and hence can exhibit topological
phases. However, the classification of topological phases in
such “Floquet-MBL” systems is in general richer than in the
stationary case.

Recently, progress has begun to be made in understanding
the classification of topological phases in Floquet-MBL
systems with interactions [35,36]. In particular, Ref. [36]
classified phases with a symmetry G and no intrinsic
topological order (i.e., symmetry-protected topological (SPT)
phases [37–55]) in (1+1) dimensions [(1+1)D]. The purpose
of this Rapid Communication is to reexpress the classification
of Ref. [36] in a concise way, which we feel clarifies
the issues involved and streamlines the derivation. We then
consider natural extensions, building up to a (conjectured) gen-
eral correspondence between topological phases in Floquet-
MBL systems with symmetry group G and topological
phases in stationary systems with symmetry group Z � G,
where the extra Z accounts for the discrete time-translation
symmetry.

Assumptions. We will assume that the Floquet operator U

can be expressed as a time evolution of a local time-dependent

Hamiltonian H (t) with H (t + T ) = H (t). Thus,

U = T exp

(
−i

∫ T

0
H (t)dt

)
, T = time ordering, (1)

where we assume that the Hamiltonian H (t) is invariant under
a representation V (g) of a symmetry group G, where G

can contain antiunitary elements corresponding to a time-
reversal symmetry. For antiunitary g ∈ G, what we mean by
the Hamiltonian being invariant is that V (g)H (t)V (g)−1 =
H (T − t). This ensures that, in general,

V (g)UV (g)−1 = Uα(g), (2)

where α(g) = −1 if g is antiunitary and +1 otherwise.
The SPT classification. The classification of Ref. [36]

can be reexpressed in the following way. We define an
enlarged symmetry group G̃ to be the full symmetry group of
the system, including the discrete time-translation symmetry
inherent in the Floquet setup. Thus, if all of the symmetries
of G are unitary, we have G̃ = G × Z. More generally, for
antiunitary elements g ∈ G, we have gTg−1 = T−1, where T
is the generator of time translations. Thus, in general G̃ is a
semidirect product G̃ = Z � G. Then in the bosonic case, the
classification of Ref. [36] can be reformulated as follows (see
the Supplemental Material for a proof [56]):

Result 1. The symmetry-protected topological phases in a
periodically driven (1+1) bosonic system exhibiting MBL are
classified by the second cohomology group H 2[G̃,U(1)].

[Here, and later, we will take it to be implicit that
U(1) is to be interpreted as a nontrivial G̃-module with
antiunitary elements of G̃ acting as inversion as in the original
classification of SPT phases with antiunitary symmetries, e.g.,
see Ref. [46]).

Recall that the bosonic topological phases in a stationary
system are classified by H 2[G,U(1)]; to obtain the classifi-
cation in a driven system one simply replaces G by G̃. In
retrospect, this result should be quite natural. Indeed, the clas-
sification of stationary SPT phases in (1+1)D [38,39,42,43],
although sometimes expressed in terms of Hamiltonians, is
really at its core a classification of short-range entangled
states (states which are equivalent to a product state by a local
unitary) invariant under some local (anti)unitary representation
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of a symmetry group (see the Appendix for more details). The
gapped ground states of a Hamiltonian are examples of such
states but so are MBL eigenstates of a Floquet operator. (We
could even consider eigenstates of the Floquet operator which
are not MBL but are separated from all other eigenstates by a
quasienergy gap.) Thus, the standard classification of (1+1)D
SPT phases can be applied to any such states. However, there is
one difference in the Floquet case: As well as the representation
of the symmetry G, a Floquet eigenstate is, by definition, also
invariant (up to a phase factor) under the Floquet operator U ,
which is a local unitary since it is the time evolution of a local
Hamiltonian. Therefore, we should really include U in the
symmetry group to obtain the full classification. [Equation (2)
ensures that we then have a representation of the enlarged
symmetry group G̃ = Z � G.]

It is true that, when classifying SPT phases, one normally
assumes that the action of the symmetry is “on site,” that is, that
each symmetry operator V (g) is a tensor product of its action
on each site of the lattice V (g) = [v(g)]⊗N , which would not
be true of the Floquet unitary U . However, all we actually
need is that all the symmetry operators (including the Floquet
unitary U ) can be restricted to a region A with boundary while
still remaining a representation of G̃ where by restriction of a
local unitary U we mean [52] a unitary UA acting only on the
region A which acts the same as U in the interior of A, well
away from the boundary. See the Appendix for the derivation
of the classification, given such an assumption.

To see that such a restriction is possible, consider for sim-
plicity the case of unitary symmetries. Then if the Hamiltonian
H (t) can be written as a sum H (t) = ∑

X hX(t) of terms
supported on local regions X [each of which commutes with
the symmetry V (g)], then we can define the restriction of the
Floquet operator by simply retaining only the terms which act
within A, or in other words,

UA = T exp

(
−i

∫ T

0
dt

∑
X⊆A

hX(t)

)
. (3)

Meanwhile, we define the restriction of VA(g) in the obvious
way by only acting with the on-site action on sites contained
within A. It is easily seen that VA(g) is still a representation
of G and UA commutes with VA(g), so together they form a
representation of G̃ = Z × G. Similar arguments can be made
for antiunitary symmetries.

We emphasize that our derivation of Result 1 is actually
more general than that of Ref. [36]. First, in Ref. [36] the
result for non-Abelian G was only stated as a conjecture. Our
derivation clearly applies to such a G as well. Second, we did
not need to assume as did Ref. [36] that all the eigenstates of
the Floquet operator are MBL; our classification result applies
to any of the eigenstates that happen to be MBL or separated
from the rest of the quasienergy spectrum by a gap. Finally,
since our derivation was based on individual eigenstates, it
allows for the possibility of different SPT phases coexisting
as eigenstates of a single Floquet operator, separated by an
eigenstate transition [14,16].

Higher-dimensional results. When stated in the form given
here, the classification result of Ref. [36] has obvious gener-
alizations to higher dimensions. In particular, in Ref. [52] we
derived the classification of (2+1)-dimensional [(2+1)D] SPT

phases in ground states by considering how the symmetry acts
on the boundary. In Ref. [52], we did use the Hamiltonian to
argue that the symmetry action on the boundary is well defined;
however, the Appendix shows how to formulate this concept
for a single short-range entangled state without reference to
a Hamiltonian (and without assuming that the symmetry in
the bulk is on site). Therefore, we can repeat the analysis of
Ref. [52] (but taking care to include the Floquet unitary U in
the symmetry group), and one finds that:

Result 2. The symmetry-protected topological phases in a
periodically driven (2+1)D bosonic system exhibiting MBL
are classified by the third cohomology group H 3[G̃,U(1)].

Again, we simply replace G → G̃ compared to the usual
stationary case. The antiunitary case was not explicitly treated
in Ref. [52], but it is a straightforward generalization [57]. One
can also prove a similar result for fermionic systems.

General correspondence between stationary and Floquet-
MBL topological phases. The above results relied on the
method of Ref. [52], which did not consider (at least,
not in full generality) SPT phases in higher dimensions or
topological phases beyond SPT. Nevertheless, they motivate
us to formulate the following conjecture.

Conjecture 1. The topological phases in a (bosonic/
fermionic) periodically driven MBL system in d spatial
dimensions with on-site symmetry group G are in one-
to-one correspondence with the topological phases in a
(bosonic/fermionic) stationary MBL system in d spatial
dimensions with symmetry group G̃ = Z � G (as defined
above).

Here by topological phases, we mean both SPT phases and
symmetry-enriched topological (SET) phases [58–64]. The
rationale for this conjecture is as follows. The classification of
gapped ground states is known to depend only on the ground
states themselves, not on their parent Hamiltonians [43].
Furthermore, since eigenstates in an MBL system look,
roughly speaking, like gapped ground states, one expects to
obtain the same classification for such eigenstates. However,
in a periodically driven system there is an extra local unitary,
beyond the symmetries in group G, under which these
eigenstates are invariant (up to a phase factor)—namely, the
Floquet unitary U . Thus, one should treat U as a symmetry
for the purpose of obtaining the classification.

The only way we could envision this conjecture failing
would be if the non-on-site nature of the Floquet unitary U

turned out to be important in a way that it was not in the case
of (1+1)D and (2+1)D SPTs. This seems to us unlikely. In
fact, we expect that any derivation of the classification of
SPT/SET phases—or at least, any derivation which can be
formulated in terms of short-range entangled states without
reference to Hamiltonians—could probably be applied just as
well in the Floquet context, which would prove the conjecture.

We note, however, that probably not all topological phases
which can exist at zero temperature can be stabilized in MBL
excited states [17]; for this reason, we have been careful to
formulate Conjecture 1 in terms of a correspondence with
stationary MBL systems, not with zero-temperature states.

Interpretation of the classification in terms of pumping.
Results 1 and 2, and Conjecture 1 in higher dimensions imply
that the classification of SPT phases in bosonic Floquet-MBL
systems in d spatial dimensions is Hd+1[G̃,U(1)]. In the case
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of a unitary symmetry such that G̃ is just a direct product
Z × G, we can give a simple physical interpretation of this
result. From the Künneth formula for group cohomology [64],
one finds that

Hd+1[Z × G,U(1)] = Hd+1[G,U(1)] × Hd [G,U(1)]. (4)

Thus, the classification is just the usual classification for
ground states, plus an extra piece of data given by an
element of Hd [G,U(1)]. We expect that this extra piece of
data can be interpreted as characterizing the fact that each
application of the Floquet unitary U “pumps” an additional
(d − 1)-dimensional SPT phase onto the boundary. This is a
generalization of the observation in Ref. [36] that in (1+1)D
the extra data is the charge pumped onto each component of
the boundary by the Floquet unitary.

A rough physical justification for this interpretation in
(2+1)D (which readily generalizes also to higher dimensions)
is as follows. For simplicity we assume that G is Abelian. One
can then show that the H 2[G,U(1)] piece of Eq. (4) can be
extracted from a 3-cocycle ω(̃g1,̃g2 ,̃g3) of the full symmetry
group G̃ by calculating a 2-cocycle of G according to

ω(g1,g2) = ω(T,g1,g2)ω(g1,g2,T)

ω(g1,T,g2)
(5)

(where T is the generator of discrete time translations). The
object Eq. (5) has a familiar interpretation [65]. Indeed,
suppose we gauge the full symmetry group G̃ = Z × G. Then
the point excitations in the resulting twisted (2+1)D gauge
theory can be classified by the flux g̃ ∈ G̃ they carry. In general,
a particle carrying nontrivial flux also carries a projective rep-
resentation of the gauge group. In particular, Eq. (5) describes
the projective representation of subgroup G on a particle
carrying flux T. Now, in the original ungauged SPT phase,
the analog of a flux is a “symmetry twist defect” [63,66–68]
which (since fluxes are confined) must occur at the end point
of a symmetry twist line. The fact that the end points of
such symmetry twist lines carry projective representations
of G (which can also be derived directly using the theory
of twist defects developed in Ref. [63]) shows that the lines
themselves must be in a (1+1)D SPT phase with respect to G.
On the other hand, a closed symmetry twist line (with no end
points) on the boundary ∂A of a region A can be interpreted
as the result of applying to the original MBL eigenstate the
Floquet unitary U , restricted to region A. The fact that such a
state carries a (1+1)D SPT on the boundary ∂A indeed shows
that the effect of U is to pump a (1+1)D SPT to the boundary.

On the other hand, we do not expect there to be any similarly
simple physical picture in the antiunitary case; in Ref. [36]
it was found that the extra data for (1+1)D systems is a
somewhat strange “twisted” representation of the symmetry
with no obvious physical interpretation.

Floquet topological phases without symmetry. The above
considerations allow us to establish the existence of topo-
logical phases in driven MBL systems that are distinct in
the Floquet context, even in the absence of any additional
symmetry, but not in the stationary case. Indeed, imagine we
take a Floquet system in (2+1) dimensions or higher with sym-
metry group G̃ = G × Z and then gauge just symmetry G. In
general, gauging a subgroup of the full symmetry group relates

SPT phases to symmetry-enriched topological (SET) phases
protected by the remaining global symmetry [61–63]; which,
in this case, is simply the discrete time-translation symmetry.

Explicit realization. We have already argued above that
the invariants which classify Floquet-MBL topological phases
with symmetry G should be the same as in the case of
stationary topological phases with symmetry Z � G. How-
ever, one might ask whether there might be an obstruction to
realizing any of these “potential” Floquet-MBL topological
phases in an explicit model. We argue that this is not the case,
provided that the corresponding stationary topological phase
with symmetry Z � G can be realized in a stationary MBL
system with symmetry G̃n = Zn � G for some sufficiently
large n. Such a system, by definition, consists of a Hamiltonian
H which commutes with an on-site representation V (̃g) of G̃n.
(A faithful on-site representation of Z does not make sense in
a lattice system with finite-dimensional Hilbert space per site,
hence why we consider Zn instead. A system acted on by Zn

can always be thought of as being acted on byZ nonfaithfully.)
Then we claim that the Floquet system with Floquet operator
U = eiHT V (α) (where α is the generator ofZn) indeed realizes
the desired Floquet-MBL topological phase.

To see this, note that the eigenstates of H are also eigen-
states of V (α) [since H commutes with V (α) by assumption]
and therefore of U . We can analyze the SPT order of these
states by thinking of them either as eigenstates of a stationary
system with symmetry G̃ or as eigenstates of a Floquet system
with symmetry G. In fact, the analysis proceeds identically in
both cases with only one difference: In the stationary context,
the Z part of the symmetry is taken to be generated by V (α),
whereas in the Floquet context, it is generated by U . However,
we can make U = V (α) by sending T → 0 continuously.
Since the classification of topological phases is discrete, we
do not expect that this can change the diagnosed phase. This
can be checked explicitly in the (2+1)D SPT case.

Conclusion. The perspective on topological phases in
Floquet-MBL systems detailed in this Rapid Communication
opens up many intriguing questions for future study. Indeed,
every phenomenon that has been studied in the usual station-
ary case—for example, symmetry fractionalization on topo-
logical excitations in symmetry-enriched topological (SET)
phases [55,59,63]—ought to have analogs in the Floquet-MBL
case, but in many cases the possibilities will be richer due to
the extra Z symmetry. We leave further exploration of these
phases and their physical properties for future work.

Note added. Soon after we posted this work on the arXiv,
two more preprints appeared [69,70], whose results overlap
with ours.
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Appendix. Here we will briefly recap the argument for the
Hd+1[G,U(1)] classification of SPT ground states in d = 1
and d = 2 taking care to formulate it in such a way as to
make it clear that it can also be applied to give a Hd+1[Z �

G,U(1)] classification in Floquet systems. Suppose we have
some short-range entangled state |�〉 defined on a system
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without boundary such that |�〉 is invariant under the local
unitary (or antiunitary) representation V (g) of a symmetry.
Now imagine some subregion M of the whole system, and
consider the subspace PM,|�〉 of “boundary states” defined in
the Hilbert space of M which completes to |�〉, in the sense
that they are identical to |�〉 away from the boundary of M .
The restriction VM (g) of the symmetry operation V (g) to the
region M must preserve this subspace (note that this restriction
is still well defined even for antiunitary symmetries since we
can take it to act only on the Hilbert space of M). Thus, it is
well defined to talk about the action of the symmetry on the
boundary states.

Moreover, if we assume that |�〉 is short-range entangled,
this implies that there exists a local unitaryD which transforms
|�〉 into a product state |φ〉⊗N . The restriction DM must then
transform the states in PM,|�〉 into the states which look like
a product of |ψ〉’s away from the boundary. Thus, if we
started with a system in d spatial dimensions, we can identify
the boundary states with the states of a (d − 1)-dimensional
system. In the case of d = 1, the boundary is just a set of points,
and we classify the SPT order from the projective represen-
tation of the symmetry on a boundary point [38,39,42,43].
In d = 2, we can classify the SPT order by considering a
symmetry restriction procedure as described in Ref. [52].
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