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A charge current driven through a two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling
generates a spatially homogeneous spin polarization perpendicular to the applied electric field. This phenomenon
is the Aronov–Lyanda-Geller–Edelstein (ALGE) effect. For selected model systems, we consider the ALGE
effect within the semiclassical Boltzmann transport theory. Its energy dependence is investigated, in particular
the regime below the Dirac point of the 2DEG. In addition to an isotropic 2DEG, we analyze systems with
anisotropic Fermi contours. We predict that the current-induced spin polarization vanishes if the Fermi contour
passes through a Lifshitz transition. Further, we corroborate that topological insulators (TI) provide a very
efficient charge-to-spin conversion.
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I. INTRODUCTION

One promising effect providing charge-to-spin conversion
in nonmagnetic materials is the Aronov–Lyanda-Geller–
Edelstein (ALGE) effect, considered first in 1989 by Aronov
and Lyanda-Geller [1] as well as Edelstein [2]. Often, it is
called the Edelstein effect or inverse spin-galvanic effect [3].
In systems with broken inversion symmetry, such as surfaces or
interfaces, spin-orbit coupling (SOC) lifts the spin degeneracy
[4–6]. An in-plane electric current penetrating the system gives
rise to a homogeneous in-plane spin polarization perpendicular
to the applied electric field. Thus, a nonzero spin polarization
is generated in nonmagnetic systems purely electrically.

Because of these promising properties, the ALGE effect
has been the subject of numerous theoretical considerations
[1–3,7–10]. Experimental evidence for the ALGE effect and
its inverse has been given by several experimental methods
[11–17].

In this paper we consider the ALGE effect in Rashba
systems [4–6] within a two-dimensional free-electron model
using the semiclassical Boltzmann transport theory [18]. This
approach has been used for the description of the ALGE
effect in systems with Rashba, Dresselhaus, and Luttinger
SOC in a number of previous works [3,19–22]. However,
the isotropic two-dimensional electron gas (2DEG) model
addressed in Refs. [1–3,3,7–10,19–22] provides merely a
rough approximation to real systems with reduced symmetry,
such as (110) surfaces (C2v symmetry) or (111) surfaces
with a strong in-plane potential gradient (C3v symmetry).
In addition to the usually considered isotropic 2DEG, we
discuss the ALGE effect in anisotropic systems with C2v

and C3v symmetry within the entire energy range. Thus, this
work is an extension of the intensely studied ALGE effect
in isotropic Rashba systems since it addresses also systems
with reduced symmetry. With respect to practical applications
our purpose is to maximize the charge-to-spin conversion
efficiency. Therefore, we investigate in which direction an
external electric field should be applied in systems with
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C2v symmetry to gain a large ALGE effect. This theoretical
consideration is useful for experiments on the ALGE effect.
Ast et al. [23] and Premper et al. [24] showed that an
enormous Rashba splitting occurs in ordered surface alloys
due to an additional in-plane potential gradient, which should
be accompanied by a sizable ALGE effect. However, in
those systems the in-plane symmetry is broken. We study the
influence of this symmetry breaking on the ALGE effect.

Furthermore, the ALGE effect in the surface states of
topological insulators (TIs) is examined because TIs are
a promising material class for an effective charge-to-spin
conversion [25]. We consider the surface states of TIs within
a model similar to the Rashba Hamiltonian. Since a Rashba
2DEG and the surface states of TIs differ qualitatively, we
discuss similarities and differences in the result for the current-
induced spin density. We discuss also the ALGE effect for TIs
with C3v symmetry (e.g., Bi2Se3 and Bi2Te3) [26].

This paper is organized as follows. In Sec. II A a general
model for the consideration of the ALGE effect in isotropic
Rashba systems is introduced. Subsequently, this model is
extended to systems with reduced symmetry (Sec. II B).
In Sec. II C the ALGE effect in topological insulators is
considered. The theoretical results are applied to selected real
systems.

II. MODEL AND RESULTS

A. Isotropic systems

A two-dimensional free electron gas within the xy plane
with Rashba spin-orbit coupling [5] is described by the
Hamiltonian

Ĥ = �
2�k2

2m
+ αR(�ez × �k) · �σ , (1)

where �k = (kx,ky) is the in-plane momentum, m is the effective
electron mass, �ez is the unit vector perpendicular to the 2DEG,
and �σ is the Pauli spin vector. The Rashba parameter αR is a
measure of the strength of the SOC. The energy eigenvalues
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FIG. 1. Energy spectrum of a 2DEG with Rashba SOC (solid
lines) for one direction in �k space. Blue and red represent the +
and − branches in Eq. (2), respectively. For comparison, the free-
electron parabola without SOC is shown (dashed line). The arrows
indicate the spin expectation values with respect to a quantization
axis perpendicular to �k.

of the Hamiltonian (1) are

E±(�k) = �
2k2

2m
± αRk , (2)

where k = |�k|. Due to the SOC, the energy parabola of free
electrons is split into two parabolas which are shifted byEmin =
−α2

Rm/2�
2, k0 = ±αRm/�

2, as shown in Fig. 1. The spin
degeneracy is lifted except for the Dirac point (k = 0,E = 0).

Corresponding to the ± sign of the k linear term in Eq. (2),
two energy branches, + and −, are defined. The + branch
exists only for E > 0. We distinguish two energy regions:
region I reaches from the band edge to the Dirac point; region
II is above the Dirac point, as shown in Fig. 1. The lines of
constant energy consist of two concentric circles in �k space.

The eigenfunctions of the Hamiltonian (1) are spinors,

|�k,±〉 =
(

�±
↑ (�k)

�±
↓ (�k)

)
,

which are normalized and obey

�±
↓ (�k) = ±ieiϕ�k�±

↑ (�k), (3)

where ϕ�k is the azimuth of �k, cos ϕ�k = kx/x. The spin
expectation value 〈�σ 〉±�k of |�k,±〉 is given by

〈�σ 〉±�k = 〈�k, ± |�̂σ |�k,±〉 = ± 1

k± (�ez × �k±). (4)

Due to the inversion asymmetry, spin and orbital momentum
are coupled. The �k-dependent spin expectation values at the
Fermi energy are shown in Fig. 2(a). They are within the
plane of the 2DEG, perpendicular to �k. The spin textures of
the branches are clockwise (− branch) and anticlockwise (+
branch).

For the consideration of the ALGE effect the expectation
value of the total spin 〈�σ 〉 is calculated by summation of the
spin expectation values of all occupied states. For reasons of
time-inversion symmetry, the total spin polarization vanishes
in equilibrium.
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E+
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E

FIG. 2. Fermi lines (EF > 0) with corresponding spin expectation
values (arrows). Blue and red indicate the branch of the energy
dispersion, + or −. (a) In equilibrium, the total spin polarization
vanishes. (b) If an external electric field �E ‖ �ex is applied, the Fermi
lines are shifted opposite to the field direction, and a nonvanishing
spin polarization perpendicular to �E results.

Using the semiclassical Boltzmann transport theory [18],
the influence of an external electric field �E can be interpreted
as a shift of the Fermi lines in �k space by δ�kν = −|e|τ ν �E/�.
Here, ν indicates the + or − branch, e is the elementary charge,
and τ ν is the transport lifetime. The shift of the Fermi lines is
shown in Fig. 2(b).

Considering zero absolute temperature, the expectation
value of the total spin is obtained as

〈�σ 〉 = −
∑
�k,ν

|e|( �	ν
�k · �E)

δ[Eν(�k) − EF] 〈�σ 〉ν�k . (5)

Here, �	ν
�k is the mean free path, and EF is the Fermi energy.

Only states at the Fermi level contribute. The mean free path
is approximated in the relaxation-time approximation, �	ν

�k =
τ ν

�k �vν
�k , with the transport lifetime τ ν

�k and the group velocity

�vν
�k = 1

�
∇�kEν(�k).

For the calculation of the transport lifetime we consider
scattering processes at δ-shaped scattering potentials placed
at positions �Rj . The perturbation potential is 
V (�r) =∑

j Uδ(�r − �Rj ), as proposed by Edelstein [2]. The impurity
concentration is assumed to be small (dilute limit), so that the
scattering potentials do not overlap. Considering a scattering
event from an initial state |�k,ν〉 to a final state |�k′,ν ′〉,
the corresponding transition matrix T ν ′←ν

�k′←�k is obtained in

Born approximation, T ν ′←ν
�k′←�k = 〈�k′,ν ′|
V |�k,ν〉, where |�k,ν〉

are the unperturbed wave functions. The microscopic transition
probability is given by Fermi’s golden rule,

P ν ′←ν
�k′←�k = 2π

�
ciN

∣∣T ν ′←ν
�k′←�k

∣∣2
δ[Eν(�k) − Eν ′

(�k′)]. (6)

It is proportional to the impurity concentration ci and the total
number of atoms N . The transport lifetime τ ν

�k is obtained by
the solution of the linearized Boltzmann equation [18]

�vν
�k =

∑
�k′,ν ′

(
P ν ′←ν

�k′←�k τ ν
�k �vν

�k − P ν←ν ′
�k←�k′ τ

ν ′
�k′ �vν ′

�k′
)
. (7)

With this theoretical background the spin density generated
by the electric field �E can be calculated. Usually, region II of
Fermi energies above the Dirac point, EF > 0, is discussed
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FIG. 3. Expectation value of the total spin 〈σ 〉total (gray) versus
Fermi energy EF. The contributions of the + and − branches are
shown in blue and red, respectively. Above the Dirac point (region
II), the expectation value of the total spin is constant with respect
to EF, 〈σ 〉0 = |e|αRN

πci|U |2 | �E|. For Fermi energies between the band edge
and the Dirac point, Emin < EF < 0 (region I), the total spin increases
linearly.

[2,3]. For those energies, both branches are occupied, and the
spin expectation value per area A of the whole system is

〈�σ 〉
A

= |e|
4π�

(τ−
F k−

F − τ+
F k+

F )[�ez × �E]

= |e|αR

πci|U |2A0
[�ez × �E]. (8)

Here, the index F indicates that the corresponding quantity is
at the Fermi level. A0 is the area of the unit cell.

The spin expectation values resulting from the two circles
of the Fermi line point in opposite directions; thus, their
contributions compensate partially. Due to the larger radius
of the outer circle (−) a nonvanishing in-plane spin density
remains which is perpendicular to the applied electric field,
proportional to αR and | �E|, and does not depend on the Fermi
energy.

In addition to this usually considered energy range (region
II) we also address region I below the Dirac point [21,22,27],
Emin < EF < 0. Here, only the − branch of the energy spectrum
is occupied. The Fermi line consists of two concentric circles
(denoted a and b); the occupied states are in between. As a
result, the expectation value of the total spin density reads

〈�σ 〉
A

= |e|
4�π

(τ−
a k−

F,a − τ−
b k−

F,b)

= |e|
πci|U |2A0

(
αR + 2�

2

αRm
EF

)
[�ez × �E]. (9)

The spin density increases linearly with the Fermi energy

from 〈�σ 〉 = 0 at the band edge (EF = Emin = −α2
Rm

2�2 ) to 〈�σ 〉 =
|e|αRNat

πc|U |2 [�ez × �E] at the Dirac point (EF = 0). Although both
Fermi circles have identical spin textures, their contributions to
the total spin compensate partially because the group velocity
has opposite signs on the two circles, and therefore, the
two Fermi circles are shifted in opposite directions. With
decreasing Fermi energy the difference of the radii of the
two circles gets smaller, which explains the linear energy
dependence (Fig. 3).

In the calculation of the current-induced spin density from
Eqs. (8) and (9) the impurity concentration ci and the scattering
potential U appear as parameters. If those quantities are not
known, the spin density can be calculated depending on
the two-dimensional charge current density �jc. Within the
Boltzmann transport theory, �jc is given by

�jc = |e|2
A

∑
�k,ν

( �	ν
�k · �E)

δ[Eν(�k) − EF]�vν
�k , (10)

which leads to the relation

〈�σ 〉
A

= αRm�

|e|(α2
Rm + �2EF

) [�ez × �jc] (11)

for isotropic systems.
In this model, the 2DEG is confined to a plane with zero

width (xy plane); hence, the scattering centers are located
within that plane. At surfaces, the 2DEG’s wave functions
decay exponentially toward the bulk. Therefore, the overlap
of these wave functions and the impurities depends on the
position of the impurities, more precisely, on the distance
from the surface. The less overlap there is, the smaller the
scattering is, and the larger the transport lifetimes are [28,29].
This would enhance the ALGE effect. Put differently, our
model simulates the maximum overlap of wave functions and
scattering potentials. As assumed by Edelstein [2] and in this
work, the impurity potentials are δ shaped. In real samples,
however, the perturbation potentials are extended, or long
range [30]. We note in passing that for extended potentials with
a Gaussian shape (not reported here) the transition matrices
(i.e., the overlap integral of initial and final wave functions
with the perturbation potential) are reduced in comparison to
δ-shaped impurities. As a consequence, the transport lifetime
and the ALGE effect are increased. We recall that we take
the dilute limit in which scattering potentials do not overlap.
The semiclassical Boltzmann approach used here has the
advantage that it provides a clear and comprehensive under-
standing of the physics of the ALGE effect. The number of
parameters in the model is small due to the approximations
made. For example, long-range potentials would introduce
additional parameters, thereby increasing the computational
effort but reducing the transparency. In this paper, we restrict
ourselves to δ-shaped potentials; a treatment of realistic
perturbation potentials is left to first-principles calculations
[31,32].

In Table I the current-induced spin density for the Au(111)
and Ag(111) surface states (sf) for an InGaAs/InAlAs het-
erostructure (hs) and the ordered (

√
3 × √

3)R30◦ Bi/Ag(111)
surface alloy (sfal) is presented, calculated for jc = 10 A m−1

within the isotropic model discussed above. Detailed insight
into the microscopic origin of the band splitting of surface
states is given in Ref. [33]. The Au(111) surface is often consid-
ered as a paradigm of a Rashba system [34,35]. However, it has
been found that its surface states deviate from those of an ideal
Rashba model with respect to the band structure at elevated
energies and the spin-flip response to oscillating electric fields
[36]. Since we consider energies close to the band crossing
and the linear response to a time-independent electric field,
these deviations are small, and Au(111) can safely be treated
within the isotropic Rashba model.
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TABLE I. Current-induced spin density 〈σ 〉y/A for isotropic Rashba systems; sf = surface state, hs = heterostructure, sfal = surface alloy.
Here, the two-dimensional current density is set to jc = 10 A m−1 in the x direction. The parameters m, αR, and EF are taken from the cited
references; me is the electron mass.

m αR EF 〈σ 〉y/A

System (units of me) (eV Å) (eV) (108 cm−2) Reference

Au(111) sf 0.27 0.33 0.475 10.03 [34], [37]
Ag(111) sf 0.37 0.03 0.178 3.36 [37], [38]
InGaAs/InAlAs hs 0.05 0.07 0.092 2.05 [39]
Bi/Ag(111) sfal −0.35 3.05 −0.180 94.77 [14], [23]

The strong Rashba splitting of the Au(111) surface states
leads to a sizable ALGE effect. In contrast, the current-
induced spin density of the Ag(111) surface states and the
InGaAs/InAlAs heterostructure are smaller by a factor of
1/3 and 1/5, respectively, compared with Au(111). This
is explained by the remarkably smaller Rashba splitting of
Ag(111) and InGaAs/InAlAs, which is the main reason for
the reduced ALGE effect. The Bi/Ag(111) surface alloy has
a “giant” Rashba splitting which is mainly caused by an
additional in-plane potential gradient [23]. However, the Fermi
energy of this system is outside this band with the giant spin
splitting [23]. In order to calculate the current-induced spin
density for this system, the Fermi energy was deliberately
assumed within the strongly split band here. Consequently, a
remarkably large total spin density is induced.

B. Anisotropic systems

The isotropic free-electron model is not suitable for systems
with an anisotropic energy dispersion. Using a �k · �p approach
[40], the Hamiltonian of Eq. (1) can be modified to obtain an
appropriate description of systems of reduced symmetry.

1. C2v symmetry

For systems with C2v symmetry, such as the (110) surface
of an fcc crystal, an anisotropy of the effective mass m and the
Rashba parameter αR are introduced, mx �= my and αRx �= αRy ,
where x and y correspond to the directions of the symmetry
axes. Then, the Hamiltonian (1) reads [40,41]

Ĥ = �
2k2

x

2mx

+ �
2k2

y

2my

+ αRxkxσ̂y − αRykyσ̂x . (12)

The energy eigenvalues are

E±(�k) = �
2k2

x

2mx

+ �
2k2

y

2my

±
√

α2
Rxk

2
x + α2

Ryk
2
y. (13)

Thus, the position of the band edge and the band curvature are
anisotropic, as shown in Figs. 4(a) and 4(b) for a characteristic
system (mx = 0.5my , αRx = αRy), which will be discussed
exemplary in the following. We distinguish three energy
regions. In region II, EF > 0, both the + and − branches
are occupied. At EF = ES = −1/2�

2 min(α2
Rxmx,α

2
Rymy) the

band edge is reached in one �k direction, either kx or ky . Here,
saddle points with the energy ES separate the energy regions
Ib (ES < EF < 0) and Ia (Emin < EF < ES).

In Figs. 4(c)–4(f) Fermi lines (mx = 0.5my , αRx = αRy) are
shown for selected Fermi energies EF. In energy region II they

are closed concentric curves, as shown in Fig. 4(c). Directly
below the Dirac point (Ib) the Fermi line consists of two closed
concentric curves originating from the − branch, depicted in
Fig. 4(d). For EF = ES van Hove singularities of the density of
states exist [42]. At the saddle points the Fermi lines intersect,
as shown in Fig. 4(e). In energy range Ia not all directions of the
�k space are occupied; the Fermi lines consist of two separated
closed curves which reduce to two points at the band edge,
depicted in Fig. 4(f). This change of the topology of the Fermi
lines is a Lifshitz transition [43].

Due to the asymmetry of the Rashba parameters, the
�k-dependent spin expectation values are not always perpen-
dicular to �k but rotated within the plane favoring the direction
of the symmetry axis with the smaller Rashba parameter,

〈�σ 〉±�k = ± 1

k̃± (�ez × �̃k±), (14)

where �̃k = (αRxkx,αRyky). In Figs. 4(c)–4(f) 〈�σ 〉±�k is sketched
for the energy regions discussed above.

The expectation value of the total spin is calculated
numerically using Eq. (5) due to the anisotropy of the system.
We use an adaptive triangle method to determine the �k points of
the Fermi line and perform a numerical integration using linear
interpolation. This procedure is presented in the Appendix.

In Fig. 5 the current-induced ALGE total spin 〈σ 〉y versus
the Fermi energy is shown. The data are representative of
systems which pass through a Lifshitz transition.

In energy region II the current-induced total spin is nearly
constant but increases weakly with the Fermi energy. For ES <

EF < 0 (Ib) the total spin depends almost linearly on the Fermi
energy. Around ES strong deviations from the quasilinearity
occur; at EF = ES it is even reduced to zero. This reduction
can be understood by a closer inspection of the mean free path
on the Fermi lines, �	−

�k = �v−
�k τ−

�k . In �k space the Fermi lines
intersect at the saddle points. Here, the group velocity is zero.
The linearized Boltzmann equation (7) leads to a vanishing
transport lifetime for all �k points of the Fermi line apart from
the saddle points. Thus, the mean free path �	�k is zero for
the whole Fermi line, and the total spin vanishes. For Fermi
energies below this saddle point (region Ia) not all directions
of the �k space are occupied. Here, the total spin expectation
value depends nearly linearly on EF and is reduced to zero at
the band edge. Due to the modified shape of the Fermi lines
the slope of 〈σ 〉y is smaller than in region Ib.

An example of a Rashba system with C2v symmetry is the
surface states of Au(110), described by the parameters mx =
0.11me, my = 0.32me, αRx = 0.80 eV Å, αRy = 0.17 eV Å
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FIG. 4. (a) Energy dispersion of a Rashba system with C2v symmetry (mx = 0.5my , αRx = αRy) in two-dimensional �k space (schematic).
(b) In addition, the energy spectrum is shown for the kx and ky directions. At ES the band minimum in one direction (here, the kx direction)
is reached, and a saddle point occurs. (c)–(f) The Fermi lines for selected energies; the arrows represent the direction of the spin expectation
value 〈�σ 〉±

�k .

(Ref. [41]); x and y correspond to the crystallographic
directions [001] and [110], respectively. In Table II the current-

TABLE II. Current-induced spin density of Au(110) surface
states. The model parameters mx = 0.11me, my = 0.32me, αRx =
0.80 eV Å, αRy = 0.17 eV Å, EF = 0.370 eV are taken from Ref. [41].
The absolute value of the electric field corresponds to the field which
induces a two-dimensional charge current density of 10 A m−1 if it is
applied in the [001] direction.

Direction of �E jc(A m−1) 〈σ 〉/A (108 cm−2)

�E ‖ [001] ‖ x 10.00(jx) 8.53(〈σ 〉y/A)
�E ‖ [110] ‖ y 3.48(jy) −3.59(〈σ 〉x/A)

induced spin density of Au(110) surface states is presented.
The spin density is calculated for an electric field in the
directions of the main symmetry axes, [001] and [110]. Here,
the absolute value of �E is set constant and corresponds to a
field which produces a two-dimensional charge current density
of 10 A m−1 if it is applied in the [001] direction. Obviously,
the absolute value of the spin density strongly depends on the
direction of the electric field. If the electric field is in the [001]
direction, 〈σ 〉 is enhanced by more than 100% in comparison
to the spin density induced by an electric field in the [110]
direction.

To gain a better understanding of the influence of the
anisotropy of the effective mass and the Rashba parameter
we consider the anisotropy of both quantities separately. First,

195440-5
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FIG. 5. Total spin expectation value of a system with C2v

symmetry (mx = 0.5my , αRx = αRy). The external electric field is
applied in the x direction. The contributions of the + and − branches
are shown in blue and red, respectively. The selected energies for
which the Fermi lines are sketched in Figs. 4(c)–4(f) are marked by
arrows.

we assume αRx = αRy and mx �= my . The mass anisotropy
generates anisotropic Fermi lines. The absolute value of the
Fermi vector is largest in the direction of the larger effective
mass [for Au(110): [110] direction]. If the electric field is
applied in this direction, the Fermi lines are shifted in the
opposite field direction, which implies that, mainly, states at
the less extended side of the Fermi line contribute to the spin
density. If the electric field is applied in the direction with the
smaller effective mass [for Au(110): [001]], the Fermi lines are
shifted in such a manner that, mainly, the states at the elongated
side of the Fermi lines contribute to the spin density. Therefore,
in general a larger total spin density is expected if the electric
field is applied in the direction of the smaller effective mass.

Now, mx = my and αRx �= αRy are assumed. The anisotropy
of the Rashba parameter also affects the symmetry of the Fermi
line. In addition, the �k-dependent spin expectation values on
the Fermi lines are rotated in the direction of the smaller
Rashba parameter, as expressed by Eq. (14). For reasons of
symmetry the total spin polarization in the direction of �E is
always zero, and only a total spin perpendicular to �E remains.
This field-induced spin density is large if 〈�σ 〉±�k have large

components perpendicular to �E. This means that the total spin
density is larger if �E is applied in the direction with the larger
Rashba parameter [for Au(110) surface states: [001] direction].

These considerations explain qualitatively the orientation
dependence of the ALGE effect in Au(110) surface states,
given in Table II. In general, for systems with C2v symmetry
the ALGE effect can be enhanced by an appropriate choice of
the direction of �E.

The bulk inversion asymmetry in noncentrosymmetric
crystals (e.g., zinc blende) leads to a Dresselhaus SOC
contribution which depends on the crystal growth direction
[44]. Like the Rashba term, the Dresselhaus term in the
Hamiltonian produces spin splitting. Depending on the point-
group symmetry of the system and the ratio of Rashba and
Dresselhaus SOC, unconventional spin textures show up, for
example, in systems with a single spin component [45] or
showing a persistent spin helix [46].

Due to the symmetry breaking caused by the Dresselhaus
SOC, current-induced spin polarization is expected [20,47].
In such systems, the ALGE effect can be analyzed as in
Rashba systems. If the Hamiltonian depends only on one spin
component [45] the spin expectation values are constant on
both energy branches and do not depend on �k. As a result, an
electric field does not induce a finite spin density for symmetry
reasons. If the Rashba and the linear in-plane Dresselhaus
term are of the same strength, a persistent spin helix occurs
in real space [46]. The spin expectation values on the Fermi
lines are parallel but point in opposite directions within one
energy branch [3]. Therefore, a nonvanishing spin density is
expected whose orientation does not depend on the direction
of �E. Its absolute value reaches a maximum for �E pointing in
the direction of constant spin in real space and is minimized
when �E is oriented perpendicular.

2. C3v symmetry

For systems with C3v symmetry, such as fcc (111) surface
states and ordered (111) surface alloys, an additional in-
plane potential gradient occurs due to the in-plane structural
inversion asymmetry [23]. The corresponding Hamiltonian
contains an additional term proportional to σ̂z and third order
in k [26],

Ĥ = �
2�k2

2m
+ αR(kxσ̂y − kyσ̂x) + λ

2
(k3

+ + k3
−)σ̂z , (15)

where the parameter λ characterizes the strength of the in-plane
gradient and k± ≡ kx ± iky . Here, one mirror plane was
chosen to be in the ky direction. Ast et al. [23] and Premper
et al. [24] have shown that such an in-plane potential gradient,
e.g., in the Ag/Bi(

√
3 × √

3)R30◦ surface alloy, results in a
strongly enhanced spin splitting. Therefore, those systems
are expected to provide a large ALGE effect. The energy
eigenvalues of the Hamiltonian (15) are

E±(�k) = �
2k2

2m
±

√
α2

Rk2 + λ2k6 cos2(3ϕ�k). (16)

This energy spectrum has sixfold rotational symmetry. In the
directions of the mirror planes the band structure is unchanged
with respect to the isotropic model, whereas the influence
of the term λ2k6 cos2(3ϕ�k) is maximal in the directions
perpendicular to three mirror planes [48]. The additional
third-order Hamiltonian, Ĥ3 = λ/2(k3

+ + k3
−)σ̂z, also called

the warping term, mainly affects the states with large absolute
values of k, which lie on the − branch.

In Fig. 6 the Fermi lines of a system with C3v symmetry are
shown. The outer line (−) has a hexagonal warped shape; the
inner line (+) is nearly circular.

Due to the in-plane potential gradient the �k-dependent spin
expectation values 〈�σ 〉�k contain an out-of-plane component
which increases with λ. This component is maximal at the
regions of the Fermi lines which deviate most from the
isotropic case, as sketched in Fig. 6.

The ALGE effect is calculated as for C2v symmetry. In
Table III the current-induced spin density for the Bi/Cu(111)
and Bi/Ag(111) (

√
3 × √

3)R30◦ surface alloys is shown. To
illustrate the influence of the additional warping term of the
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FIG. 6. Fermi lines of a system with C3v symmetry and EF >

0 (m = me, αR = 1 eV Å and λ = 5.8 eV Å
3
). The inner line

corresponds to the + branch; the outer corresponds to the − branch.
The arrows illustrate the in-plane component of the spin expectation
value; the color scale indicates the out-of-plane component.

Hamiltonian (15), the spin density was calculated without (λ =
0) and with (λ �= 0) this term.

For both systems the additional third-order term reduces
the expectation value of the total spin density in comparison
to the isotropic model (λ = 0).

With increasing λ the �k-dependent spin expectation values
are rotated out of the plane, as shown in Fig. 6; this reduces the
in-plane component of 〈�σ 〉�k , leading to a decreased current-
induced in-plane spin density. For symmetry reasons the total
spin is completely in plane. In addition, the deviations of the
Fermi lines from the circular shape cause a further reduction
of the spin density.

C. Topological insulators

Besides the Rashba systems, a current-induced spin po-
larization is also expected in the surface states of three-
dimensional topological insulators [25]. As in Rashba systems,
spin and momentum are coupled, and the spin texture is helical.
Whereas in Rashba systems the Fermi lines consist of two
curves whose contributions to the ALGE effect compensate
partially, the surface states of topological insulators provide
a single Fermi circle. Therefore, an enhanced ALGE effect is
expected in topological insulators.

TABLE IV. Current-induced spin density 〈σ 〉y/A for the surface
states of selected topological insulators. The two-dimensional current
density is set to �jc = 10 A m−1 �ex . Here, results for isotropic systems
and for systems with hexagonal warping are presented.

vF λ EF 〈σ 〉y/A

System (105 m s−1) (eV Å
3
) (eV) (108 cm−2) Reference

α-Sn 6.0 0 0.50 · · · 0.85 −104.01 [25]
Bi2Se3 6.2 0 −100.69 [52]
Bi2Se3, 2.9 140 0.45 −22.11 [48]

Cu doped
Bi2Te3, 3.9 250 0.28 −71.08 [26]

Sn doped

The Hamiltonian

Ĥ = �vF(kxσ̂y − kyσ̂x) (17)

yields the linear energy dispersion

E±(k) = ±�vFk , (18)

where vF is the Fermi velocity. The Dirac point is at E = 0;
the energy range above (below) the Dirac point is described
by the + (−) branch of the energy spectrum (18). The whole
energy range is not degenerate except for the Dirac point. The
spin density induced by an electric field �E reads

〈�σ 〉
A

= −|e|
4π�

τFkF[�ez × �E] = −|e|�vF

πci|U |2A0
[�ez × �E]. (19)

This result differs from the expression for the isotropic Rashba
systems with EF > 0 (8) only by the sign and a factor of �vF

instead of αR. The total spin density is constant within the
whole energy range, except for the Dirac point, at which the
model is not applicable. For states with opposite chirality
the spin density has opposite signs. Therefore, by measuring
the sign of the spin density generated by the ALGE effect the
chirality of the surface states of topological insulators can be
determined directly.

For topological insulators with C3v symmetry at the surface,
the isotropic Hamiltonian (17) is modified by an additional
third-order warping term λ/2(k3

+ + k3
−)σ̂z (Ref. [26]), as in

Eq. (15).
In Table IV the spin density in topological insulators gen-

erated by a two-dimensional charge current, jc = 10 A m−1, is
shown. The α-Sn and Bi2Se3 surface states are approximated
within the isotropic model; for the surface states of Cu-
doped Bi2Se3 and Sn-doped Bi2Te3 the warping term of the
Hamiltonian is included. In general, the absolute values of the

TABLE III. Current-induced spin density 〈σ 〉y/A for Bi/Cu(111) and Bi/Ag(111) (
√

3 × √
3)R30◦ surface alloys. The two-dimensional

current density is set constant to jc = 10 A m−1 in the x direction. The spin density 〈σ 〉y is calculated without (λ = 0) and with (λ �= 0) the
warping term. As in Table I, the Fermi energy of the Bi/Ag surface alloy was assumed within the band with strong Rashba SOC.

System m (units of me) αR (eV Å) λ (eV Å
3
) EF (eV) 〈σ 〉y/A (108 cm−2) References

0 54.78
Bi/Cu(111) −0.29 0.85 −0.215 [48–50]

12 50.30

0 93.30
Bi/Ag(111) −0.32 2.95 −0.180 [14,23,48,49,51]

18 89.22
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spin density are larger than for the isotropic Rashba systems
presented in Table I. For the topological insulators considered
here the product �vF is in the range from 1.91 to 4.08 eV Å,
which is large in comparison to the Rashba parameter αR of
the Rashba systems in Table I.

One could argue that the enhanced ALGE effect is caused
mainly by the large factor of �vF in comparison to αR since the
analytical expressions (8) and (19) are very similar. However,
the models discussed here describe qualitatively different
physical systems. For a comparison between Rashba systems
and topological insulators a more detailed consideration is
needed.

For small k the Rashba Hamiltonian (1) is approximated
in first order in k by the Hamiltonian (17), which is used for
topological insulators. Within this approximation, the Fermi
circle of a topological insulator corresponds to the inner Fermi
circle of a Rashba system. However, the current-induced spin
density in a topological insulator is not equivalent to the
contribution of the inner Fermi circle of a Rashba system
since in topological insulators only scattering events within the
single Fermi circle contribute to the transport lifetime, whereas
in Rashba systems intercircle scattering is also considered.
Therefore, the spin density in topological insulators does not
depend on the Fermi energy, while the contribution of the inner
Fermi line of Rashba systems shows an energy dependence.
Hence, the similarity of the analytic expressions (8) and (19)
is by chance rather than of physical origin.

III. CONCLUSION

We provide a complete framework for theoretical con-
sideration of the ALGE effect in common two-dimensional
systems. Using the semiclassical Boltzmann transport theory,
we present a model for the calculation of the ALGE effect
in isotropic and anisotropic Rashba systems as well as in
topological insulators. In isotropic systems the total spin
generated by an electric field is energy independent for Fermi
energies above the Dirac point but increases linearly with
the Fermi energy between the band edge and the Dirac
point. By introducing anisotropic effective masses and Rashba
parameters the isotropic Rashba model can be expanded to
anisotropic systems with C2v symmetry. When saddle points
of the dispersion occur and the Fermi contours pass through a
Lifshitz transition, the total spin of the system vanishes. The
ALGE effect can be enhanced by an appropriate choice of the
electric field direction (in the direction of smaller effective
mass and larger Rashba parameter). For systems with C3v

symmetry we include an additional in-plane potential gradient.
The consideration of this gradient reduces the calculated
spin density slightly; on the other hand, it leads to an
enormous Rashba parameter which enhances the ALGE effect.
In topological insulators a comparably large ALGE effect is
expected since here only one Fermi circle exists; thus no partial
compensation of contributions from other Fermi circles occurs.
The sign of the current-induced spin density in topological
insulators is determined by the chirality. The ALGE effect
provides an opportunity to measure the chirality directly.

Our findings call for experimental verification, especially
of the energy dependence, the reduction of the current-induced
spin density at the Lifshitz transition, and the influence of the

FIG. 7. Adaptive triangle method for the determination of the
Fermi lines. (a) The �k space is divided by a rectangular mesh (gray
dots). The mesh points are connected in such a way that triangles are
formed (blue lines). The red line is a complex Fermi line. (b) Detail of
(a). To determine the �k points on the Fermi line (red dots) an adaptive
procedure is used. Triangles A and B are not intersected by the Fermi
line; therefore, they are not considered further. The Fermi line passes
through triangles C and D; they are divided iteratively into smaller
triangles until the required precision is reached.

electric field direction. In addition, this work may motivate an
ab initio treatment of the ALGE effect.
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APPENDIX: NUMERICAL ASPECTS

If the shape of the Fermi contours deviates from a
circle or an ellipse, a parametrization for integration along
the Fermi lines is usually not possible. Therefore, we use
numerical methods for the determination of the Fermi lines, the
integration along the curves, and the solution of the linearized
Boltzmann equation (7). In the following, the basic ideas of
this numerical procedure are outlined.

First, the �k points of the Fermi lines need to be determined.
We use an adaptive triangle method [53] which is sketched
schematically in Fig. 7. The �k space is divided by a rectangular
grid. By connecting the grid points with straight lines, triangles
are generated, as shown in Fig. 7(a). Now, for each triangular
point (all points of the grid and the center of four grid
points), the energy E(�k) is calculated from Eqs. (13) and
(16), respectively. If the Fermi line passes between two
triangular points, then the function E(�k) − EF must change
sign in between those points. A triangle which is intersected
by the Fermi line is divided into four smaller triangles with the
centers of the edges as new points, as shown in Fig. 7(b). This
procedure is repeated until the desired precision is reached.
If none of the triangular edges intersects the Fermi line,
the triangle is not considered further. This adaptive method
requires only a coarse mesh in the regions without Fermi lines,
whereas the sampling of the Fermi line is more precise.

For the summation in �k space the sums of occupied states
in �k space are converted to integrations along the Fermi line as∑

�k
δ[E(�k) − EF] → A

(2π )2�

∫
�k=�kF

1

v�k
dk‖. (A1)
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Those line integrals are solved numerically according to the
trapezoidal rule,∫

�k=�kF

f (�k)dk‖ ≈
Nk∑
j=1

1

2
[f (�kj ) + f (�kj+1)]|�kj − �kj+1|, (A2)

where f (�k) is an arbitrary function and Nk is the number of �k
points which approximate the Fermi line.

The linearized Boltzmann equation (7) is transformed into
a matrix equation and solved by LU decomposition [54].
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