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0-π quantum transition in a carbon nanotube Josephson junction:
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In a π -Josephson junction, the supercurrent’s sign is reversed due to the dephasing of superconducting
pairs upon their traversal of the nonsuperconducting part. 0-π quantum transitions are extremely sensitive to
electronic and magnetic correlations, providing powerful exploration tools of competing orders. In a quantum
dot connected to superconducting reservoirs, the transition is governed by gate voltage. As shown recently, it can
also be controlled by the superconducting phase in the case of strong competition between the superconducting
proximity effect and Kondo correlations. We investigated here the current-phase relation in a clean carbon
nanotube quantum dot, close to orbital degeneracy, in a regime of strong competition between local electronic
correlations and superconducting proximity effect. We show that the nature of the transition depends crucially
on the occupation and the width of the orbital levels, which determine their respective contribution to transport.
When the transport of Cooper pairs takes place through only one of these levels, we find that the phase diagram
of the phase-dependent 0-π transition is a universal characteristic of a discontinuous level-crossing quantum
transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current
exhibits a continuous 0-π transition, independent of the superconducting phase, revealing a different physical
mechanism of the transition.
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I. INTRODUCTION

Understanding and controlling the superconducting prox-
imity effect in various systems, from ferromagnetic metals to
topological insulators, is a subject of great interest. Indeed,
Josephson junctions—referring to any nonsuperconducting
material sandwiched between two superconductors—have
become the main ingredient of superconducting circuits and
quantum electronics. The simplest Josephson junction (JJ), an
insulator between two superconductors, is passed through by
a nondissipative current I = IC sin(ϕ), IC being the critical
current and ϕ the phase difference of the superconducting
order parameters. When a normal metal is inserted between the
superconductors, the transmission of Cooper pairs takes place
through Andreev bound states (ABSs), which are confined in
the normal region at an energy below the gap [1]. Due to the
boundary conditions, the energy of these bound states depends
on ϕ, leading to a phase dependence of the supercurrent:
the current-phase relation (CPR). Since the supercurrent is
strongly affected by the physics of the normal part, the CPR
is a powerful probe of the interactions and correlations in
the system. In this work, we investigate quantum dot (QD)
Josephson junctions, where Coulomb interactions cause the
CPR to be highly dependent on the dot’s occupancy and on the
number of energy levels involved in the transport.

In a single-level QD-JJ, the physics is governed by four
characteristic energies: the coupling � = �L + �R (�L and
�R are the coupling respectively to the left and right reservoirs,
�L/�R is the asymmetry), the charging energy U , the level
energy in the dot ε, and the superconducting gap of the
contacts �. We focus in this article on the intermediate regime
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� ≈ U ≈ �, where the Coulomb blockade is strong enough to
impose a well-defined occupancy and the coupling sufficient
to observe a supercurrent [2]. The transfer of Cooper pairs
then involves cotunneling processes, strongly dependent on
the dot’s occupancy. When this occupancy is even, one has
a 0 junction whose amplitude follows the transmission of
the dot. However, for an odd occupancy, the first nonzero
contribution to the supercurrent involves forth-order processes,
which imply reversing the spin ordering of the Cooper pair.
The sign of the supercurrent is reversed and its amplitude
strongly reduced; this is called a π junction. Experimentally,
the supercurrent can be precisely changed by tuning the parity
of the dot with a gate voltage [3–5].

In addition, an oddly occupied dot gives rise to the Kondo
effect. The interaction of the local magnetic moment with
delocalized conduction electrons through spin-flip processes
leads, in the normal state, to the formation of a strongly
correlated state. This Kondo singlet state is characterized
by the screening of the dot’s magnetic moment and by a
resonance in the density of states at the Fermi energy for
temperatures below the Kondo temperature TK [6–8]. In the
superconducting state, when kBTK < �, the Kondo screening
is destroyed by superconducting correlations and does not
affect the π junction. However, for kBTK � �, the unpaired
electron’s spin is involved in a Kondo singlet that opens
a well-transmitted channel in the system and facilitates the
transfer of Cooper pairs. Therefore, the 0 junction is recovered
and the supercurrent is enhanced due to the cooperation
between superconductivity and the Kondo effect [5,9–11].
Since the Kondo temperature depends on U , �, and ε [12], the
junction can be tuned from 0 to π by varying these parameters
for a fixed parity and value of � [13]. Measuring the CPR of
the single-level QD Josephson junction directly gives insights
into the magnetic state of the system: a doublet if one measures
a π junction, a singlet state (purely BCS or Kondo) otherwise.
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Here we are particularly interested in the specific regime of the
0-π transition, where the system undergoes a level-crossing
quantum transition. The fundamental state of the system, 0
or π , depends on the superconducting phase ϕ, meaning that
the magnetic state of the system (singlet or doublet) can be
controlled by this parameter [14–22].

In a multilevel quantum dot, this simple picture is not valid
anymore, as predicted theoretically [23–27]. The measurement
of the current-phase relation is no longer a good indicator of
the effective magnetic moment of the dot. Indeed, as soon as
several energy levels participate to the transport, the available
cotunelling processes are different and the properties of the
wave functions become determinant, making 0 and π junction
possible both for even and odd occupations. This multilevel
effects on the supercurrent in a quantum-dot-based Josephson
junction have been experimentally observed by van Dam et al.
[3] with an InAs nanowire in which, unlike in carbon nanotube,
the exact electronic configuration is not known.

The aim of this article is to investigate the CPR in a clean
carbon nanotube (CNT) QD, where the orbital levels are nearly
degenerated. Whereas a number of specific effects of this
orbital degeneracy have been pointed out in the normal state
[28], their signature on the Josephson effect in CNT has not
been explored yet.

Our results show that distinct behaviors emerge depending
on the number of levels involved in transport. This number
is determined by the occupancy and the relative widths of
the nearly degenerated orbital levels. In our sample, for most
filling factors, the system is well understood in a single-level
description. In this regime, for odd electronic occupation and
intermediate transmission of the contacts, we have experi-
mentally proven the phase-controlled 0-π transition [22] and
compared it with quantum Monte Carlo calculations. We show
in this article that this first-order quantum transition happens
for a characteristic superconducting phase that has a universal
behavior. On the other hand, in some odd diamonds with nearly
degenerated orbital levels, we qualitatively confirm theoretical
predictions about the gate dependence of the supercurrent in
the two-level regime and its high sensitivity to the precise
configuration of the two orbital states involved in transport.
In addition, the phase dependence of the supercurrent shows
a continuous 0-π transition with a complete cancellation of
the amplitude of the Josephson current, in contrast with the
first-order single-level 0-π transition.

II. EXPERIMENTAL SETUP AND CHARACTERIZATION
IN THE NORMAL STATE

A. Experimental setup: A carbon nanotube inserted
in a superconducting quantum interference device

The sample is made of a CNT quantum dot contacted with
superconducting leads, such that it can be passed through by
a supercurrent [29]. Compared to semiconducting nanowires
or two-dimensional electron gases, clean carbon nanotubes
benefit of well transmitted superconducting contacts and a
(quasi) orbital degeneracy. They thus realize model systems
for the investigation of two-level physics in QDs.

This CNT-based QD is embedded in an asymmetric mod-
ified superconducting quantum interference device (SQUID)
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FIG. 1. (a) Scanning electron microscopy image of the measured
asymmetric SQUID, containing two reference JJs in parallel with
a CNT-based Josephson junction (see text and [31]). To phase bias
the CNT junction, a magnetic flux � is applied with a magnetic field
perpendicular to the SQUID. (b) Schematics of the layers constituting
the tunnel junctions and the contacts of the CNT. The first layer of
sample S-Al is made of Pd(7 nm)/Al(70). The first one of S-NbAl is
made of Pd(7 nm)/Nb(20 nm)/Al(40 nm).

(Fig. 1). In one branch of the SQUID is the QD JJ (here
the CNT). The other branch contains a reference JJ with
a large critical current compared to the one of the QD JJ,
making it possible to determine the CPR of interest [30,31].
The switching current Is of the SQUID is measured as a
function of the magnetic flux through the SQUID, which is
proportional to the phase ϕ across the QD JJ. Its CPR is then
obtained by extracting the modulation of Is around its mean
value 〈Is〉, called δIs . Our device possesses a second reference
JJ and a third connection as described in Ref. [22,31]. This
makes it possible to independently characterize each junction
at room temperature and to measure both the CPR of the CNT
and its differential conductance in the superconducting state
(Appendix C).

The CNTs are grown by chemical vapor deposition on an
oxidized doped silicon wafer [32]. The contacts of the nan-
otube are separated by a distance L = 400 nm and are made
of aluminum-based multilayers. Two samples are presented
in this article: The first one, called S-Al, is contacted with
a Pd(7 nm)/Al(70 nm) bilayer, whose superconducting gap
is �PdAl = 65 ± 5 μeV. This value is considerably reduced
compared to pure aluminum �Al ≈ 200 μeV due to the
palladium layer, which provides good contacts on the CNT. For
the second sample, called S-NbAl, we added a niobium layer
between palladium and aluminum in order to increase the gap
to �PdNbAl = 170 ± 5 μeV: Pd(7 nm)/Nb(20 nm)/Al(40 nm)
(see Fig. 1). The two Josephson junctions in the other branch of
the SQUID are made by oxidation of the first aluminum layer
followed by angle deposition of a second Al layer (120 nm).

The sample is then cooled down in a dilution refrigerator
of base temperature 50 mK and measured through low-pass
filtered lines. The phase difference across the CNT junction ϕ

is controlled applying a magnetic field B perpendicularly to
the sample. ϕ is then proportional to B with ϕ = 2πBS/�0,
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FIG. 2. (Color plot) Differential conductance dI/dVsd as a function of bias voltage Vsd and gate voltage Vg for samples S-Al and S-NbAl
in the normal state, applying B = 0.13 T for S-Al (diamond A) and B = 1 T for S-NbAl (diamonds B to L). In white is written the number of
electrons in the last occupied shell. (Middle-row graphs) Horizontal cuts showing dI/dVsd at zero bias versus gate voltage Vg in the normal
state. (Bottom graphs) Supercurrent δIs(Vg) for a superconducting phase difference of ϕ = π/2. Orange circles indicate Kondo-induced 0
junction for odd occupancies. Purple squares show π junctions with a single-level behavior. The green arrows indicate two-level 0-π junctions.
The consequences of two-level physics are more spectacular for F and J than for H, where δE is larger than in F and J (see Table I).

�0 = h/2e being the superconducting flux quantum and
S ≈ 40 μm2 the loop area.

B. Characterization in the normal state

A CNT QD can sustain different regimes, depending on
the values of the coupling � and the charging energy U : As
� increases compared to U , the transport regime goes from
pure Coulomb blockade to the Kondo effect and finally to
the Fabry-Pérot regime [33]. To characterize the system, we
measured the differential conductance dI/dVsd as a function
of the bias voltage (Vsd ) and the gate voltage (Vg) in the normal
state. This is done using a lock-in-amplifier technique (with
a modulation of 20 μV) and applying a magnetic field large
enough to destroy the superconductivity in the contacts. For
S-Al, contacted with Pd/Al, a magnetic field B = 0.13 T is
enough while, for S-NbAl, we needed to apply B = 1 T due
to the niobium layer, whose critical field is higher.

The resulting stability diagrams of both samples are rep-
resented on Fig. 2. Sample S-Al exhibits Coulomb diamonds.
For the diamond shown (diamond A), there is a maximum
of conductance at zero bias, indicating a Kondo effect with
a regular temperature dependence of the resonance (see
Appendix A). Two satellite peaks at finite Vsd indicate inelastic
cotunneling.

In sample S-NbAl, Coulomb diamonds are present on a
large range of gate voltage (diamonds B to L and more, not
shown) with a fourfold degeneracy. These features are typical
of a clean CNT, where each energy level is nearly orbitally
degenerated, in addition to the spin degeneracy. This enables
the determination of the electronic occupation of the highest

occupied shells: N = 0, 1, 2, or 3 electrons (white numbers
on Fig. 2). The presence of cotunneling peaks at finite energy
indicates that the orbital degeneracy is lifted, due to spin-orbit
interactions, boundary conditions, or defects in the nanotube
[34–36]. The relevant energies of the system can be determined
from this stability diagram (Fig. 3 and Appendix A): �E the
spacing between two successive energy levels in the CNT, U

the charging energy, and δE < �E,U the lift of degeneracy

Vsd

Vg
0 U+ E

U

0 e- 1 2 3 0 

(U+ E) U

E E

E

2 E 2 E

2 E'
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FIG. 3. Typical stability diagram expected in a clean CNT, of
charging energy U , where the energy levels are separated by �E and
the orbital degeneracy is lifted by δE. The occupancy is indicated
on the top of each Coulomb diamond. We call α the proportionality
factor between the energy level ε and the applied gate voltage Vg .
The spacing between the inelastic cotunneling peaks in the double
occupancy (N = 2) is called 2δE′. δE′ �= δE because of exchange
interactions [37]. (Inset) Corresponding electronic configuration for
N = 1.
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TABLE I. Quantum dot’s parameters for different gate voltage regions: the charging energy U , the
coupling �, the level spacing �E, the lift of orbital degeneracy δE, the Kondo temperature calculated
with formula (A1) (at ε = 0) TK , and the superconducting gap �. The values with a * are known only
with a 20% uncertainty, while the other values are given within a 10% uncertainty.

A B C D E F G H I J K L

Occupancy (N=) 1 1 1 3 1 3 1 3 1 3 1 3

U (meV) 1.6 2.8 2.3 2.3 3.9 3.9 3.4 3.4 3.2 3.2 2.3 2.3

Γ (meV) 0.25 0.43 0.5 0.5* 0.35* 0.4* 0.44 0.45* 0.55*

ΔE (meV) 1 5 4 4 5 4 3.5

δE (meV) 0.3 0.8 0.5 0.2 0.4 0.4 0.7 0.7 0.3 0.3 0.25 0.25

TK (meV) 0.036 0.06 0.13 0.13* 0.01* 0.03* 0.048 0.05* 0.15*

Δ (meV) 0.064 (Pd/Al) 0.17 (Pd/Nb/Al)

[37,38]. In most oddly occupied diamonds of S-NbAl, the
conductance is nonzero at zero bias, suggesting the presence
of the Kondo effect (diamonds B–D and I–L). The expected
Kondo resonance is not as clear as in diamond A because of
the 1-T magnetic field needed to destroy the superconductivity
in the Pd/Nb/Al contacts, which affects the Kondo effect (see
Appendix A). The determination of TK or � is thus more tricky;
their evaluation is explained in Appendix A. The values of the
dot’s parameters are given in Table I, for all the oddly occupied
diamonds investigated.

For S-NbAl, �E is typically equal to 4–5 meV, a value
reasonably consistent with the expression �E ≈ hvF

2L
, with

vF ≈ 8×105 m/s the Fermi velocity [39] for a metallic
nanotube and L = 400 nm. The value of δE varies between
0.2 and 0.8 meV, which is small compared to U and of the
order of �, suggesting that two-level physics is relevant [3].
Note that, for the range of gate voltage presented, there is
no signature of any SU(4) Kondo effect, which would be
characterized by a strong Kondo effect spreading over N = 1,
N = 2, and N = 3 diamonds and a conductance that can reach
4e2/h [33]. To observe this kind of exotic Kondo effect, the
Kondo temperature should be very large compared to the lift of
degeneracy δE [40]. In Appendix D, we present measurements
in a range of gate voltage where this condition is fulfilled.

III. SUPERCONDUCTING STATE: GATE-CONTROLLED
0 OR π JUNCTION AND TWO-LEVEL PHYSICS

By switching off the magnetic field, we measure the CPR
of the QD JJ in the superconducting state. For this, the
SQUID is biased with a linearly increasing current, with a rate
dI/dt = 37 μA/s. The switching current is directly obtained
from the time at which the SQUID switches to a dissipative
state. This process is reproduced and averaged around 1000
times, the whole procedure being repeated at different values
of magnetic field below a few gauss. This experiment probes
the switching current of the SQUID, which is always smaller
than the critical current Ic. To obtain its modulation δIs versus

the magnetic field, the constant contribution of the reference
junctions is subtracted. As demonstrated in Ref. [31], δIs(B)
is proportional to the CPR of the CNT junction, with a
proportionality factor lower than 1. One should note that this
detection scheme, in particular near the 0-π transition, is very
sensitive to the electromagnetic environment, which therefore
needs to be optimized (see Appendix B).

We first focus on the measurement of the supercurrent at
a fixed phase ϕ = π/2, represented as a function of the gate
voltage on Fig. 2 (black curves). This quantity is proportional
to the critical current of the junction in the case of sinusoidal
CPRs (which represent most of the CPRs at finite temperature),
with an additional information on the sign.

For the diamonds with an even electronic occupancy, this
supercurrent is always positive, indicating 0 junctions. In
contrast, for odd occupancies, there are two situations: for
some diamonds, A, B, E, F, G, H, I, and J (blue squares and
green arrows on Fig. 2), the supercurrent is negative around
the center of the diamond and has a reduced amplitude: This
is the signature of a π junction. However, for the other odd
diamonds [D, K, L, orange circles on Fig. 2, and diamonds
at Vg � 6.8 V (not shown)], the supercurrent does not change
sign. These odd-parity 0 junctions are attributed to the Kondo
effect that screens the magnetic moment of unpaired electrons.
This hypothesis is corroborated by the comparison of the ratio
�/TK for the different diamonds (see Table I): When TK � �,
the Kondo correlations are destroyed by the superconducting
proximity effect, and the junction turns π . However, when
TK � �, as for diamonds C, D, K, L and Vg � 6.8 V, the
supercurrent is enhanced by the cooperation of the Kondo
effect and superconductivity, leading to a 0 junction.

However, some of the odd-parity π junctions (F, H, and J,
green arrows on Fig. 2) of filling factors N = 3 reveal unusual
features. For typical single-level π junctions as the ones indi-
cated by blue squares, the supercurrent is symmetric relatively
to the center of the diamond [3,20], which corresponds to the
half-filling point in a single-level description. However, for
the diamonds indicated by green arrows, the supercurrent δIs

has a completely different behavior. All over the left side of
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the diamond (close to the N = 3 to 2 degeneracy point), the
supercurrent is positive. This 0 junction in an odd-occupied
diamond cannot be attributed to the Kondo effect, which is not
strong enough to turn the junction from π to 0, as in diamonds
D and L. Therefore, it can only be attributed to the participation
of a second energy level to the transport [26,27]. Close to the
N = 3 to 4 degeneracy point (right side of the diamond), the
junction is in a π state. The 0-π transition occurs around
the center of the N = 3 diamond and the π -0 transition
between the N = 3 and N = 4 diamonds.

The supercurrent is asymmetric with respect to the center of
the diamond. This symmetry breaking was predicted, but not
yet measured, in the particular case of two-level quantum dots
[41] and carbon nanotubes [42]. Indeed, in a two-level descrip-
tion of a quantum dot, the half-filling point is moved to the cen-
ter of the N = 2 diamond. The striking point of our experiment
is that these peculiar 0-π transitions, i.e., two-level behaviors,
are observed, for three diamonds, at N = 3 occupancies in-
stead of both N = 1 and N = 3, as predicted by Refs. [41,42].
This point is addressed in the last part of this article.

Our experiment thus demonstrates the existence of two
kinds of gate-induced 0-π transitions: Some involve only
single-level physics, whereas others have signatures of two-
level physics. In the next two parts, we detail the phase
dependence of the supercurrent in each regime.

IV. UNIVERSALITY OF THE SINGLE-LEVEL
PHASE-INDUCED 0-π TRANSITION

In this part, we discuss the phase dependence of the
supercurrent in the single-level regime. The N = 1 diamonds,
which behave as single-level systems, are analyzed and

interpreted. We show that the comparison of the various 0-π
transitions measured in this regime leads to an universal phase
diagram of the transition.

A. Detailed analysis of the single-level 0-π transition

In this section, we focus on oddly occupied diamonds in
the single-level regime that present in the superconducting
state a π junction centered in the middle of the diamonds and
0-junction on the edges: diamonds A, B, C, G, and I. This
is compatible with 0-π transitions at TK ≈ �, driven by the
interplay between the Kondo effect and the superconductivity.
Indeed, TK is symmetric with respect to the center of the
diamond, where it is minimal, and increases on the edges
(Appendix A).

The modulation of the switching current δIs versus mag-
netic field B, proportional to the CPR, is measured for various
Vg and is represented in Fig. 4 for some representative oddly
occupied ridges. Diamond A, from sample S-Al, presents a
small supercurrent (≈40 pA) and a transition from 0 to π that
extends on a very small range of Vg (smaller than 100 μV),
beyond the precision of our experiment. In contrast, in sample
S-NbAl, due to a larger superconducting gap, the π junction
supercurrent is larger (≈4 nA). Moreover, the width in gate
voltage of the transition is larger, allowing to measure the
CPR very accurately in the transition region. Noteworthy, the
region C exhibits an incomplete 0-π transition where the CPR
is not completely reversed in the center of the diamond.

In Fig. 4(b) are shown CPRs extracted from the 0-π
transition of diamond I. On the edges of the ridge, far from the
transition [Fig. 4(b)(1)], the junction behaves as a regular JJ 0
junction, with a CPR proportional to sin(ϕ). In contrast, at the
center of the diamond [Fig. 4(b)(6)], where TK is minimum,

FIG. 4. (a) Modulation of the switching current of the SQUID δIs , proportional to the CPR, as a function of the magnetic field B and the
gate voltage Vg , for diamonds A, B, C, G, and I. Vertical cuts at the 0-π transition are represented for ridge I, showing the whole transition. For
diamond G, the color plot exhibits a discontinuity, probably due to the trapping of a vortex. (b) CPR, for diamond I, near the transition (green
continuous line) versus the superconducting phase ϕ. The dashed lines are guides to the eyes and represent the contributions of the singlet (0
junction, in blue) and the doublet state (π junction, in red).
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the CPR is π shifted [δIs ∝ sin(ϕ + π )] and has a smaller
amplitude, characteristic of a π junction. In between, the
CPR is anharmonic: A distortion appears first around π and
develops as TK decreases. The CPR is composite, with a part
of type “0” around ϕ = 0 and a π junction behavior around
ϕ = π . The transition from one part to the other is achieved
by varying the superconducting phase. The rounding of this
transition by finite temperature was taken into account in QMC
calculations, giving an excellent agreement for an electronic
temperature of 150 mK [22]. These data are thus consistent
with a phase-controlled level-crossing quantum transition in
a single-level QD [22,43]. In other words, one can control
the magnetic state of the junction, doublet or singlet, with the
superconducting phase.

B. Universal scaling of the critical phase

We present here a quantitative study of the level-crossing
quantum transition in the single-level regime. We call ϕC the
superconducting phase at which, at a fixed gate voltage, the
system undergoes the transition from 0 to π . Theoretically,
this critical phase ϕC is defined at T = 0, where the transition
is expected as a jump in the supercurrent. At finite temperature
the transition is rounded but, if T is small enough, ϕC equals the
phase at which the supercurrent is zero [17,22] [see Fig. 5(b)].
In Fig. 5(c), this quantity is represented for diamond I as a
function of the level energy ε, proportional to Vg , giving a
phase diagram of the phase-mediated transition.

Each transition is characterized by two parameters: the
value of ε, called εt , at which the junction transits from π

to 0 for ϕ = π/2, and the width δε of the transition. These
quantities are defined on Figs. 5(a) and 5(b) and given in
Table II for the concerned diamonds (B, C, G, and I). δε is
found to depend strongly on the parameters of the diamonds:
large transition widths correspond to ratios TK (ε = 0)/� close
to 1 (see left inset of Fig. 6).

To compare these eight transitions (left and right sides of
four diamonds), we plot in Fig. 6 the critical phase ϕC as a
function of (ε − εt )/δε. For diamonds B, G, and I, the scaled
data fall on the same curve, with an arccosine dependence.
This scaling can be understood within a very simple model,
in which the 0-π transition is due to a crossing of two ABSs.
We make the following assumptions: (i) these ABS have a
cosine shape and (ii) close to the transition, one ABS is shifted
compared to the other by a quantity that is an affine function
of TK/�. For diamonds B, G, and I, the transition occurs on
the edges of the diamonds, where TK (ε) can be linearized.
This gives the arccosine fit on Fig. 6, but does not work for C
(right inset of Fig. 6), where the transition takes place close

FIG. 5. Phase-dependent transition: definition of the relevant
quantities (a) TK (red line), � (red dotted line), and δIS(ϕ = π/2)
(blue line) for diamond I as a function of the energy level ε, defined as
equal to zero at the middle of the diamond and such that, in a diamond,
ε ∈ [−U/2,U/2]. One can notice that the sign of δIs changes when
TK ≈ �. εt is the value of ε for which the junction switches from π

to 0 at ϕ = π/2. (b) Definition of the critical phase ϕC such that the
CPR has 0 behavior for ϕ ∈ [0,ϕC] and π behavior for ϕ ∈ [ϕC,π ].
(c) This quantity is plotted as a function of ε for diamond I, yielding
a phase diagram of the ϕ-controlled transition. We call δε the width
of the transition.

to ε = 0. Then, to the lowest order in ε, TK (ε) ∝ ε2, yielding
ϕC ∝ arccos(cste + ε2) (inset of Fig. 6 right).

We thus show that for all the diamonds exhibiting a
complete 0-π transition, the scaled curve ϕC = f [(ε − εt )/δε]
gives a robust characteristic of the phase-mediated 0-π
transition.

V. EFFECT OF THE TWO-LEVEL REGIME
ON THE 0-π TRANSITION

Now we focus on the two-level 0-π transitions, and
more particularly on diamond J, corresponding to a N = 3
filling factor. The modulation of Is versus the magnetic field,
proportional to the CPR, is represented on Fig. 7(a) (a) as a
function of Vg . CPRs are also shown for some particular values
of gate voltages [Fig. 7(b)].

On the right side of the diamond, close to the N = 3
to 0 degeneracy point [Fig. 7(b)(8)], the 0-π transition is
phase dependent, similarly to the single-level one. In addition,
ϕC = f [(ε − εt )/δε] collapses on the same arccosine shape as
the single-level 0-π transitions (see Fig. 6). However, on the

TABLE II. Values of U , TK , δε, and εt , given in meV for the investigated diamonds. For diamonds B, C, G, and I, there are two transitions
(0 to π and π to 0), with different parameters. In diamond J, only the right side of the diamond exhibits a phase dependence of the transition.

meV B C G I J right

U 2.8 2.3 3.5 3.2 3.2
kBTK ≈0.06 0.13 ≈0.03 0.05 0.05
2δε/U 0.23 0.43 0.87 0.96 0.06 0.06 0.15 0.2 0.2
2εt/U 0.79 0.64 0 0 0.74 0.74 0.75 0.69 0.8
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FIG. 6. Universal scaling of the phase-induced transition. Critical
phase ϕC plotted as a function of (ε − εt )/δε for diamonds B, G, I,
and J (left and right sides of the diamond) such that the various
curves collapse on an arccosine curve (black line). (Left inset) Scaling
quantity δε, normalized by U/2, as a function of the ratio TK/�.
It shows that 2δE/U varies linearly with TK/�, the quantity that
controls the 0-π transition. (Right inset) Same quantity for diamond
C, where the 0-π transition is incomplete. To obtain an arccosine
shape, one has to plot ϕC as a function of ε2 instead of ε (see text).

(1) (2) (3) (4) (5)(6) (7) (8)
  
      -J

two-level 
     0-J

  Single-
    level 
     0-J

(1) (2)

(3) (4) (5)

(6)

0-0-0-

saturated 
colors

(b)

(7) (8)

Diamond J

(a)

FIG. 7. (a) Modulation of the switching current of the SQUID
versus the magnetic field, proportional to the CPR, as a function of
the gate voltage Vg , for diamond J. The supercurrent at the transition
being very low, the color scale is saturated. (b) Supercurrent versus the
superconducting phase ϕ at some particular gate voltage, indicated
by the numbers on panel (a). Note the cancellation of CPR (4) and
the fact that CPR (2), in the two-level 0 junction, has a stronger
anharmonicity than (8), on the degeneracy point. Dashed line on (2):
guide for the eye, representing a sinus, showing that the continuous
line is not perfectly harmonic.

N=1 N=3 

B

A
E

N=1
N=3 

   0
(a)

(b)

Diamond I

Diamond J

FIG. 8. (a) Critical current Ic, defined as the maximum amplitude
of the measured switching current, as a function of the energy level
ε. Ic is defined as positive for a 0 junction and negative for a π

junction. This quantity is plotted for the two diamonds I (N = 1, blue
dots) and J (N = 3, orange squares), respectively, in the single-level
and two-level regimes. The dashed lines materialize discontinuities
of Ic, specific to first-order transitions. (Inset) Focus on two 0-π
transitions, centered around εt [see Fig. 5(c) for the definition]: at
ε = −1.1 meV in diamond I and at ε = 0.1 meV in diamond J.
(b) Schematic explanation of the N = 1/3 symmetry breaking
observed in the supercurrent. The lower energy level A is better
coupled to the reservoirs than the higher one B (see text).

left side of the diamond, from the N = 3 to 2 degeneracy point
to the center of the diamond [Fig. 7(b)(1)], the CPR behaves
as a 0 junction. The supercurrent’s amplitude decreases with
Vg and evolves from 0 to π continuously. Close to the
transition [Figs. 7(b)(2)–7(b)(4)], the CPR becomes slightly
anharmonic. However, unlike in the single-level transition, no
phase-dependent 0-π transition is observed. Note as well that
the current-phase relation has a stronger anharmonicity in the
two-level 0 junction than on the charge degeneracy points,
while its amplitude is smaller [Fig. 7(b)(2), to compare with
Fig. 7(b)(1) or 7(b)(8)].

To go further, we consider now the critical current Ic.
This quantity is the maximum of the CPR and is extracted
here as the maximum amplitude of the modulation of the
switching current, positive for a 0 junction and negative for
a π junction. It is represented as a function of ε in Fig. 8(a),
for diamonds I and J, respectively, in the single- and two-level
regime. In diamond I (N = 1), the phase dependence of the
single-level transitions gives rise to discontinuities of Ic, which
characterize a first-order transition [13,44]. However, for
diamond J (N = 3), one of the 0-π transition (ε = 0.1 meV)
does not exhibit this phase-dependence, yielding a vanishing
critical current at the transition. This is not anymore a first-
order transition, contrary to the transition at the other side of
diamond J (ε = 1.2 meV).
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The two other diamonds indicated by green arrows on
Fig. 2, F and H, present the same features. This breaking
of the electron-hole symmetry is observed in the three N = 3
diamonds where the Kondo effect is not strong enough to
impose a 0 junction all over the diamond.

This kind of gate dependence of the supercurrent is
predicted in two-level quantum dots [41] and specifically in
carbon nanotubes [42], in absence of the Kondo effect. The
comparison of our data with those of Ref. [42] suggests that
in our experiment the channels associated with each orbital
are mixed during the transfer of Cooper pairs. This is also
why we do not observe two-level induced π junctions for even
occupancies of the dot.

To explain why this two-level behavior is not observed
both for N = 1 and N = 3, we propose that the two orbital
levels A and B [see Fig. 8(b)] of the CNT are slightly
differently coupled to the electrodes, as in Ref. [38]. A detailed
analysis of the gate dependence of the inelastic cotunneling
peaks in the even diamond between I and J show indeed
that �A � �B . Following Ref. [38], we roughly evaluate
�A − �B ≈ 0.07 meV.

When two quasidegenerated levels have different widths,
the supercurrent is mostly carried by the broader one. We
therefore expect a different physics for N = 1 and N = 3, as
pointed out theoretically by Droste et al. [24]. Here, the lower
level A is more coupled to the electrodes than the higher one
(B) [see Fig. 8(b)]. For N = 1, the unpaired electron occupies
level A and level B is too poorly coupled to participate to the
transfer of Cooper pairs: We are in a single-level situation;
the junction is π . For N = 3, the unpaired electron is in
the poorly coupled level B, which thus participates to the
transport: The system is in a two-level regime. According to
this interpretation, in the opposite situation of a level B better
coupled than level A, the N = 1 diamond would exhibit the
two-level physics instead of the N = 3 diamond. Interestingly,
while the only signature in the normal state of this breaking of
the electron-hole symmetry is a slight change of the position
of the cotunneling peaks, the supercurrent is strongly and
quantitatively modified.

It is worth noting that this N = 1/3 symmetry breaking in
the supercurrent can also be seen for diamonds C-D and K-L.
However, the Kondo effect there is much stronger than in E-F,
G-H, and I-J, explaining why this unusual π junction is not
observed in D and L. Therefore, at this qualitative level, we
cannot say whether they correspond to single- or two-level
regimes.

In conclusion, our data exhibit two-level physics, qualita-
tively consistent with the theoretical expectations for the gate
dependence. Since the orbital levels have different widths, this
regime is observed only when the highest occupied level is the
less coupled one. We reveal as well the phase dependence of
the supercurrent in this two-level regime. While single-level
0-π transitions are discontinuous first-order transitions, the
transition between the two-level 0 junction and the π junction
is continuous, indicating a different physical mechanism.

VI. CONCLUSION

In this article, we have measured the supercurrent of a
clean carbon nanotube Josephson junction as a function of

the superconducting phase. For an odd occupation of the dot,
three different situations are observed. When the strength of
the Kondo effect is large compared to the superconducting
proximity effect, both effects cooperate and lead to a Kondo-
enhanced 0 junction. When the Kondo correlations are weak,
the system can sustain two kinds of π junctions, depending on
the number of levels involved in the transport (one or two). We
show that when the unpaired electron is in the well coupled
orbital level, the single-level regime prevails, while the two-
level one occurs when the unpaired electron occupies the less
coupled orbital. In other words, the electron-hole symmetry
can be broken if the orbital levels are nearly degenerated and
differently coupled to the electrodes. Note that the Josephson
effect is far more sensitive to this symmetry breaking than the
normal state conductance.

The measurement of the current-phase relation in the
single-level regime enables a detailed study of the level-
crossing quantum transition driven by the superconducting
phase difference. In particular, the critical phase, at which the
transition happens, is shown to exhibit a universal behavior,
independent of the values of the parameters of the quantum dot.
In the two-level regime, this measurement shows a continuous
0-π transition with a complete cancellation of the amplitude
of the Josephson current, in contrast with the first-order
single-level 0-π transition. We thus put forward the different
nature of this two-level 0-π transition.

This work paves the way toward a more systematic study of
the Josephson current in multilevel QD systems, for example,
double quantum dots or cleaner carbon nanotubes, in the
presence of Kondo effect [SU(2) or SU(4)]. These systems
are predicted to show a very rich phase diagram [25,26],
constituting potential new tools for superconducting circuits.

To go further, it would be very interesting to measure
the current-phase relation of a CNT with a magnetic field.
This would enable the study of very promising situations:
0-π transition with a Zeeman field [45], supercurrent at the
singlet-triplet transition [24] or Josephson junction with an
arbitrary phase shift, called ϕ0 junctions provided that the CNT
has spin-orbit interactions and is in a multilevel regime [46,47].

ACKNOWLEDGMENTS

The authors acknowledge S. Guéron, J. Basset, P. Simon,
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APPENDIX A: BIAS AND TEMPERATURE DEPENDENCE
OF THE CONDUCTANCE IN THE NORMAL

STATE—DETERMINATION OF THE QUANTUM
DOT’S PARAMETERS

We give here more details about the normal state character-
ization of the carbon nanotube samples.

For sample S-Al (diamond A, Fig. 9), the Kondo resonance
has a regular temperature dependence. In contrast, for S-NbAl
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FIG. 9. (a) Differential conductance dI/dVsd in the normal state
as a function of Vsd at half filling of six different diamonds: A (S-Al)
and C, E, I, J, and K (S-NbAl). (b) Temperature dependence of
the same quantity for ridges A (S-Al) and C (S-NbAl). To destroy
the superconductivity in the contacts, a magnetic field is applied
perpendicular to the sample: B = 0.13 T for diamond A and B = 1 T
for diamonds C, E, I, J, and K.

(diamonds C, E, I, J, and K), the curves are more difficult to
interpret for the following reasons.

(i) A magnetic field of 1 T is applied to destroy the
superconductivity in niobium. The Kondo effect, whose TK

is generally around 1 K in CNT, is strongly affected by this
magnetic field and the resonance can be split. This would
explain the zero-bias dip seen in I, J, and K.

(ii) These zero-bias dips could also be due to some
remaining superconductivity. We did not increase the field
above 1 T in order not to affect too much the Kondo effect.

(iii) The inelastic cotunneling peaks at
Vsd ≈ ±0.3–0.5 meV, present at N = 1, 2, and 3 filling
factor, due to the two-level nature of the quantum dot, may be
superimposed with the split Kondo peaks.

We can nevertheless determine the parameters of the
quantum dot from the stability diagram. First, the conversion
factor α between Vg and the energy ε (see Fig. 3) is extracted
for each shell from the height and width of the big diamond.
Then, measuring the width of the other diamonds, we obtain U

and �E. The lift of the orbital degeneracy δE is determined
from the spacing between the inelastic cotunelling peaks in
each diamond (see Fig. 9(a), where some of these data are
shown).

For S-Al and diamonds B and C of S-NbAl, the Kondo
temperature is evaluated from the temperature dependence
of the Kondo resonance [Fig. 9(b)]. For the other oddly
occupied diamonds of sample S-NbAl, the Kondo resonances
are not clear enough to extract TK directly. It can nevertheless
be determined, as in our previous work [22], where the
conductance at zero bias of diamond I has been studied in detail
and compared to quantum Monte Carlo calculations taking into
account the magnetic field, leading to � = 0.44 meV. For the
other diamonds, following Ref. [37], we roughly estimate the

FIG. 10. Modulation of the switching current at the 0-π transition
in diamond C with optimization of the environment (in black dots)
and without (in red lines). The amplitudes of the optimized curves
have been readjusted in order to compare the shapes of the curves.

coupling � from the width in Vsd of the inelastic cotunneling
peaks at N = 2, and assumed that � does not vary within the
same shell. We estimate that these approximations are correct
within an uncertainty of 20%.

Once TK or � is evaluated, the other one is obtained from
the formula [12]

TK =
√

�U/2 exp

(
−π

|4ε2 − U 2|
8�U

)
. (A1)

APPENDIX B: SENSITIVITY TO THE ENVIRONMENT

At the 0-π transition we noticed that, in some situations, we
measured surprising CPR with an incorrect symmetry. Indeed,
a CPR should respect the time-reversal symmetry that imposes
the energy to be an even function of the superconducting phase
and thus the current-phase relation to be an odd function of ϕ.
However, the CPRs represented in red in Fig. 10 are obviously
not odd functions of B, and thus ϕ, which is nonphysical.
One can notice that this kind of feature is also seen, but
not solved, in Maurand et al. [13]. We fixed the problem
optimizing the electromagnetic environment, namely fixing
the polarization of a Josephson junction nearby to maximize
its impedance. Note that the presence of the Josephson junction
was fortuitous. We obtain the CPRs represented in black dots
on Fig. 10, which have the good symmetry properties.

One should note that these distortions of the CPR happen
only in the 0-π transition region, where the ABSs are so
closed that, if the electromagnetic environment affects the
phase dynamics, phenomena such as Landau-Zener transition
could also occur.

APPENDIX C: SPECTROSCOPY OF ANDREEV
BOUND STATES

The CNT Josephson junction is embedded in a three-arm
SQUID. As detailed in a previous article [31], it allows the
measurement of the differential conductance of the CNT in the
superconducting state. This is done by applying to point B (see
Fig. 1) a voltage large enough to have a voltage-independent
contribution of the Josephson junctions to the differential
conductance.

In a system perfectly symmetrically coupled (�L = �R),
one expects to observe multiple Andreev reflections (MAR)
if the total coupling � = �L + �R is low enough, or resonant
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tunneling otherwise [48]. However, if one electrode is very
well coupled to the QD compared to the other (�L/�R � 1),
one expects the poorly coupled lead to probe the density of
states in the quantum dot and thus make the spectroscopy
of the levels, as in Refs. [49,50]. For intermediate coupling,
one observes a crossover between both [51], as, for example,
Refs. [52–55].

This measurement of dI/dV (Vsd ) in the superconducting
state (zero magnetic field) has been done for two diamonds of
S-NbAl, I and K, and represented in Fig. 11. Diamond I is a
single-level π junction, while K is a single-level 0 junction.
Due to the high magnetic field, the contact asymmetry cannot
be directly extracted. Thanks to QMC calculations, it has been
shown in Ref. [22] that the asymmetry of ridge I is equal
to �L/�R ≈ 4. We can expect a value slightly smaller for
K, but not very different because they are very close in gate
voltage. Because of this asymmetry, the system is not in a pure
MAR regime and, according to Ref. [52], this asymmetry is
large enough to interpret the conductance measurements as a
spectroscopy of ABS.

For the two diamonds, the ABSs are qualitatively different:
For the ridge I, we observe a crossing of Andreev levels,
characteristic of π junctions as explained on Fig. 1. For
diamond K, because there is no π junction, the Andreev-levels
do not cross. Even though this kind of measurement has
already been done in a similar system in Ref. [52]), where
this spectroscopy of Andreev levels had been done on the
same sample as the critical current measurement, here the
spectroscopy is done in parallel with the current-phase relation
measurement.

It should be noted that this measurement of the conductance
as a function of the bias voltage cannot give any information
about the phase-dependent 0-π transition. Indeed, as soon
as the JJ is voltage biased, the superconducting phase is not
controlled anymore and varies as dϕ/dt = 2 eV/� [56].

FIG. 11. Differential conductance as a function of the bias voltage
[dI/dV (Vsd )] in the superconducting state for two diamonds: (a) I
(π junction ) and (b) K (0 junction).

FIG. 12. Data in the normal and superconducting state for a prob-
able SU(4) Kondo effect zone. (Color plot) Differential conductance
as a function of Vsd and Vg . A magnetic field of 1 T is applied
perpendicularly to the sample to destroy the superconductivity in
the contacts. On the right are plotted vertical cuts of the color plot,
yielding dIdV (Vsd ) at the middle of N = 1, N = 2, and N = 3
diamonds. Red curve, dIdV (Vg,Vsd = 0) in the normal state; black
curve, supercurrent δIs(Vg) for a superconducting phase difference
of ϕ = π/2. On the right are plotted current-phase relations at the
center of N = 0, 1, and 3 diamonds.

APPENDIX D: SU(4) KONDO EFFECT?

We present here measurements on sample S-NbAl in a
range of gate voltage where the coupling between the carbon
nanotube to the electrodes is larger. On the stability diagram
represented on Fig. 12, we can guess diamondlike features,
showing a succession of three small diamonds, one big, and
again three small ones. However, contrary to Fig. 2, the
nonzero conductance at zero bias, i.e., the Kondo effect,
spreads all over the three small diamonds (N = 1, 2, and 3).
In addition, the zero-bias conductance in the N = 2 diamond
reaches 2.5e2/h.

These features seem to indicate the SU(4) Kondo effect,
where two independent degrees of freedom, here the spin and
the orbital pseudospin, are involved [33,57,58]. We were not
able to perform the magnetic field study of the conductance,
which would confirm the presence of this effect.

Still, we measure as well the current-phase relation in this
regime (Fig. 12). First, the junction is in a 0 state for all gate
voltages. We notice as well that the supercurrent is very high,
reaching 20 nA in the N = 2 diamond around Vg = 10.35 V.
Such an increase of the critical current compared to the Kondo
SU(2) case is expected since, in Kondo SU(4) at N = 2 filling,
two perfectly transmitted channels are open [instead of one in
Kondo SU(2)]. Unfortunately, due to this high value of the
supercurrent, in this regime our experimental setup cannot
be considered anymore as an asymmetric SQUID. The CPR
measurement is therefore not reliable, which may explain the
unusual anharmonicities observed at N = 2.
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