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The exchange-correlation potential experienced by an electron in the free space adjacent to a solid surface
or to a low-dimensional system defines the fundamental image states and is generally important in surface and
nanoscience. Here we determine the potential near the two- and one-dimensional electron gases (EG), doing this
analytically at the level of the exact exchange of the density-functional theory (DFT). We find that, at r⊥ � k−1

F ,
where r⊥ is the distance from the EG and kF is the Fermi radius, the potential obeys the already known asymptotic
−e2/r⊥, while at r⊥ � k−1

F , but still in vacuum, qualitative and quantitative deviations of the exchange potential
from the asymptotic law occur. The playground of the excitations to the low-lying image states falls into the latter
regime, causing significant departure from the Rydberg series. In general, our analytical exchange potentials
establish benchmarks for numerical approaches in the low-dimensional science, where DFT is by far the most
common tool.

DOI: 10.1103/PhysRevB.93.195432

I. INTRODUCTION

The image potential (IP)—a potential experienced by a
test charge outside a semi-infinite medium, a slab, or a
system of a lower dimensionality—is a fundamental concept
of classical electrostatics [1]. It is widely believed, although
never proven [2–4], that the exchange-correlation (xc) part of
the Kohn-Sham (KS) potential of the density-functional theory
(DFT) [5] must asymptotically reproduce the classical IP at
large distances from an extended system. Much effort has been
exerted over years to describe IP quantum mechanically, both
in order to account for the experimentally important image
states at solid surfaces and at quasi-low-dimensional systems,
and to gain better understanding of the nontrivial interrelations
between DFT and classical physics [4,6–13].

Regardless of the ultimate answer to the question of whether
or not the xc potential (which is not a physical quantity)
is equal in vacuum to the IP for a test charge (which is a
physical quantity) [14], the determination of the former is
fundamentally important in quantum physics. Indeed, it defines
the KS band structure of the system of interest, which step,
followed by a calculation of the system’s response within
the time-dependent DFT [15–18], will produce excitations to
image states (which are quite physical properties). While for
semi-infinite media the problem still remains highly controver-
sial [3,4], for slabs it has been firmly established [9,12] that, on
the level of the optimized effective potential–exact exchange
(OEP-EXX) [19–21], the KS potential has the asymptotic
−e2/r⊥, valid at large distances r⊥ from the slab. However,
apart from the thickness a, EG in the shape of a slab (quasi-2D
EG) or a cylinder (quasi-1D EG), when considered quantum
mechanically, has a fundamental intrinsic parameter kF —the
Fermi radius—and, therefore, even at a = 0, two different
regimes, at r⊥ � k−1

F and r⊥ � k−1
F , can be anticipated.

At variance with a vast literature on the asymptotic behavior
of the xc potential, in this paper we are concerned with the
potential in the whole space outside a 2(1)DEG. We solve this
problem exactly and analytically at the EXX level of DFT
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and find that, at r⊥ � k−1
F , but still in vacuum, the potential is

qualitatively and quantitatively different from its asymptotic
form −e2/r⊥. However, at larger distances r⊥ � k−1

F , our
potentials obey the correct asymptotic, which is known to
be mandatory for slabs in general [13]. The nonasymptotic
shape of the potential in the r⊥ � k−1

F region strongly affects
experimentally important low-lying image states, causing
significant deviations from the Rydberg series.

This paper is organized as follows. In Sec. II we derive
a closed-form EXX potentials for quasi-2(1)DEG with one
filled subband. In Sec. III we take the full confinement limit,
obtaining analytical EXX potentials for 2D and 1D electron
gases. In Sec. IV we visualize and discuss the results. In
Sec. V we derive further insights from addressing the problem
of quasi-2(1)DEG within the localized Hartree-Fock method.
Section VI contains conclusions. In Appendix A we discuss
the classical image potential in two and one dimensions.
In Appendix B, finer details of the derivation of the main
results are given. Atomic units (e2 = � = me = 1) are used
throughout.

II. EXX POTENTIAL OF QUASI-2(1)D ELECTRON GAS
WITH ONE SUBBAND FILLED

We start by considering a quasi-d-dimensional (d = 2,1),
generally speaking, spin-polarized EG. The positively charged
background with the d-dimensional density n is strictly
confined to the xy plane and to the z axis, for d = 2 and d = 1,
respectively. We are concerned with the KS problem [5] for
spin orbitals ψσ

i (r) and eigenenergies εσ
i , with the potential

vσ
s (r) = vext(r) + vH (r) + vσ

xc(r), (1)

generally speaking, different for different spin orientations σ ,
where vext(r), vH (r) = ∫

n(r′)/|r − r′|dr′, and

vσ
xc(r) = δExc

δnσ (r)
(2)

are the external, Hartree, and xc potentials, respectively, nσ (r)
are spin densities, n(r) = n↑(r) + n↓(r) is the particle density,
and Exc is the xc energy. For the latter we use the EXX part,
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FIG. 1. Schematics of quasi-2D (left) and quasi-1D (right) elec-
tron gases and the notations adopted.

which can be written as [22]

Ex = −1

2

∫ |ρ(r,r′)|2
|r − r′| dr dr′, (3)

where

ρ(r,r′) =
∑
i∈occ

φi(r)φ∗
i (r′) (4)

is the density matrix, the summation in Eq. (4) running over
the occupied states only.

Let r‖ and r⊥ be the coordinate vectors parallel and
perpendicular, respectively, to the extent of the EG. In other
words, for d = 2, r‖ is the radius vector in the xy plane and
r⊥ is a vector in the z direction, while for d = 1 this is vice
versa, as schematized in Fig. 1. Keeping in mind the subsequent
zero-thickness limit, we assume one, at most, subband with the
wave function μσ

0 (r⊥) to be occupied for each spin direction.
Therefore, all spin orbitals with the same spin orientation have
the same r⊥ dependence

φσ
k‖(r) = eik‖·r‖

�1/2
μσ

0 (r⊥), (5)

where � is the normalization area or length, in the 2D and 1D
cases, respectively. Then, by Eq. (4), for the density matrix we
can write

ρ(r,r′) =
∑

σ

μσ
0 (r⊥)μσ

0
∗(r′

⊥)ρσ (r‖ − r′
‖), (6)

where

ρσ (r‖) = 1

�

∑
|k‖|�kσ

F

eik‖·r‖ , (7)

kσ
F being the Fermi radii for the corresponding spin orienta-

tions. As will be seen below, the factorization (6) is the key
property of 2(1)DEG with only one subband occupation, which
makes possible the explicit solution to the EXX problem for
these systems. Then, the exchange energy of Eq. (3) can be
written as

Ex = −1

2

∑
σ

∫ ∣∣μσ
0 (r⊥)

∣∣2∣∣μσ
0 (r′

⊥)
∣∣2|ρσ (r‖ − r′

‖)|2
|r − r′| dr dr′

= −1

2

∑
σ

∫
nσ (r)nσ (r′)|ρσ (r‖ − r′

‖)|2
(nσ )2|r − r′| dr dr′, (8)

where the spin density is

nσ (r) = ρσ (r,r) = ∣∣μσ
0 (r⊥)

∣∣2
nσ , (9)

and nσ = ∫
nσ (r)dr⊥ is the d-dimensional uniform spin

density. By virtue of Eqs. (2), (8), and (9), the exchange
potential evaluates explicitly to [23]

vσ
x (r) = δEx

δnσ (r)
= − 1

(nσ )2

∫
nσ (r′)|ρσ (r‖ − r′

‖)|2
|r − r′| dr′

= − 1

nσ

∫ ∣∣μσ
0 (r′

⊥)
∣∣2|ρσ (r‖ − r′

‖)|2
|r − r′| dr′. (10)

In Eq. (10) we easily recognize Slater’s exchange poten-
tial [22]. This leads us to the important conclusion that,
for Q2(1)EG with only one subband filled for each spin
component, EXX and the Slater’s potentials coincide exactly
and, consequently, in this case, the EXX potential can be
expressed in terms of the occupied states only. The latter
becomes wrong when more subbands are filled [24].

Evaluation of Eq. (7) is straightforward, giving

ρσ (r‖) = 1

2πr‖

{
kσ
F J1

(
kσ
F r‖

)
, d = 2,

2 sin
(
kσ
F r‖

)
, d = 1,

(11)

where J1(x) is the Bessel function of the first order. With the
use of Eq. (11), the integral over r′

‖ in Eq. (10) can be taken in
special functions, resulting in

vσ
x (r⊥) = −

∫
Fd

(
kσ
F |r⊥ − r′

⊥|)∣∣μσ
0 (r′

⊥)
∣∣2

|r⊥ − r′
⊥| dr′

⊥, (12)

where

F2(x) = 1 + L1(2x) − I1(2x)

x
, (13)

F1(x) = 1

2π
G

2,2
2,4

⎡
⎣x2

∣∣∣∣∣∣
1
2 ,1
1
2 , 1

2 , − 1
2 ,0

⎤
⎦, (14)

L1(x) and I1(x) are the first-order modified Struve and Bessel
functions, respectively, and Gm,n

p,q [x| a1, . . . , ap

b1, . . . , bq
] is the
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FIG. 2. Functions F2(x) and F1(x) of Eqs. (13) and (14), which
determine the 2D and 1D exchange potential, respectively.
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Meijer G function [25,26]. Functions Fd (x) are plotted in
Fig. 2.

III. FULL 2(1)D CONFINEMENT LIMIT

We now take the limit of the strictly d-dimensional (zero-
thickness) electron gas. Then |μσ

0 (r⊥)|2 = δ(r⊥), and Eq. (12)
reduces to

vσ
x (r⊥) = −Fd

(
kσ
F r⊥

)
r⊥

. (15)

We emphasize that Eq. (15) was obtained for the mathematical
idealization of an electron gas strictly confined to a plane (a
straight line), as a limiting case of Eq. (12) for EG of a finite
transverse extent.

The following zero-distance and asymptotic behavior can
be directly obtained from Eqs. (15) and (13) for the 2D case

vσ
x (z = 0) = −8kσ

F

3π
, (16)

vσ
x (z → ∞) → −1

z
+ 2

πkσ
F z2

+ · · · (17)

and from Eqs. (15) and (14) for the 1D case

vσ
x (ρ → 0) → kσ

F

π

[
2 log

(
kσ
F ρ

) + 2γ − 3
]
, (18)

vσ
x (ρ → ∞) → − 1

ρ
+ 1

πkσ
F ρ2

+ · · · , (19)

where γ ≈ 0.5772 is the Euler’s constant. At large distances,
at both dimensionalities, the potential respects the asymptotic
−1/r⊥.

IV. DISCUSSION

It is known that, in the general case, EXX-OEP potential
cannot be expressed in terms of the occupied states only,
but all, the occupied and empty, states are involved, and a
complicated OEP integral equation must be solved to calculate
this potential [19,20]. It, therefore, may look surprising that a
drastic simplification can be achieved in the case of 2(1)DEG
with one subband filled, leading to Eq. (10), the latter expressed
in terms of the occupied states only and not involving the
OEP equation. To clarify this point, in Appendix B we arrive
at Eq. (10) following the traditional path of working out
the EXX-OEP potential in terms of the eigenfunctions and
the eigenenergies of all the states, seeing clearly how the
simplifications arise due to the specifics of this system.

In Figs. 3 and 4, the EXX potentials of 2DEG and 1DEG,
respectively, are plotted for a number of densities as functions
of the distance from the EG. An important conclusion can
be drawn from these figures together with the long-distance
expansions (17) and (19): the more dense is the EG, the sooner
the asymptotic is approached with the increase of the distance.
The characteristic distance scale is the inverse Fermi radius
k−1
F , which separates two distinct regions, the asymptotic one

realizing at r⊥ � k−1
F . We emphasize that in both regions there

is no electron density, as is particularly clear with the strictly
2D and 1D (zero-thickness) EG.
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FIG. 3. EXX potential of the spin-unpolarized 2DEG, obtained
with Eqs. (15) and (13), versus the distance from the EG plane z, with
the density parameter rs = (πn)−1/2 changing from 10 a.u. (top) to
2 a.u. (bottom). The dotted lines show the asymptotic −1/|z|.

In Figs. 7 and 8 we present the exchange potential and the
density for the spin-neutral and fully spin-polarized electron
gas, in the 2D and 1D cases, respectively.

A natural question arises: how relevant are the solutions
obtained for strictly low-dimensional case to the realistic
quasi-low-dimensional EG? To answer this, we return to
Eq. (12) and solve the KS problem self-consistently using [27]

vext,H (r⊥)

= vext(r⊥) + vH (r⊥)

= 2π×
{∫ ∞

−∞(|z| − |z − z′|)n(z′)dz′, d = 2,∫ ∞
0 ρ ′n(ρ ′) log 2ρ2

ρ ′2+ρ2+|ρ ′2−ρ2|dρ
′, d = 1.

(20)

Results for the EXX potential presented in Figs. 5 and 6, for the
2D and 1D cases, respectively, show that the zero-thickness
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FIG. 4. EXX potential of the spin-unpolarized 1DEG, obtained
with Eqs. (15) and (14), versus the distance from the EG line ρ, with
the density parameter rs = (2n)−1 changing from 10 (top) to 1 a.u.
(bottom). The dotted line shows the asymptotic −1/ρ.
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FIG. 5. EXX potential of spin-neutral Q2D EG with one subband
filled (solid lines) compared to the analytical solution for the zero-
thickness limit (dashed lines) for two values of the density parameter
rs = 2 and 5. The dotted lines show the asymptotic −1/|z|.

limit of the EXX potential is a very good approximation to
that of the quasi-low-dimensional EG except for very short
distances from the system. At those distances, the electron
density is high (see Figs. 7 and 8), the deviation in this region
being not surprising, since the potential is not that in vacuum
any more. Results of the calculations for the spin-polarized
EG are presented in Figs. 7 and 8.

In Table I the low-lying eigenenergies of the 2D and Q2D
EG are presented. The deviation of the EXX potential from
−1/r⊥ in the nonasymptotic region causes significant change
in the spectra of the eigenenergies compared with the Rydberg
series, − 1

2n2 and − 1

2(n− 1
2 )

2 , for 2D and 1D cases, respectively,

where n = 1,2, . . . [28].
Having found the analytical EXX potential of the strictly

2(1)DEG to be good approximations to the corresponding
quasi-low-dimensional EG with one filled subband, we need to
establish when the latter regime actually holds. This question
is answered in the diagrams of the stability of the EG with
one subband filled, presented in Fig. 9. For rs > rc

s (rc
s ≈ 1.46

and 0.72 in 2D and 1D cases, respectively) EF = k2
F /2 < �ε,
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FIG. 6. Same as Fig. 5 but for 1D case.
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FIG. 7. Left: exchange potential as a function of the distance z

from the plane of the positive background of quasi-2D (solid lines)
and 2D (dashed lines) EG, for the spin-neutral (ξ = 0) and fully
spin-polarized (ξ = 1) cases at the density parameter rs = 5. Right:
the corresponding particle densities of the Q2D EG.

where �ε is the subband gap, the state with one filled
subband is stable. Otherwise, at rs < rc

s , it is energetically
preferable to start filling the second subband. The latter
regions, corresponding to high electron densities and to which
our theory does not apply, are shaded at the diagrams.

For the sake of completeness, we write down the total
energy in the one occupied subband regime. Using the DFT
expression for energy

E =
∑
i,σ

εσ
i −

∑
σ

∫
vσ

xc(r)nσ (r)dr + Exc

− 1

2

∫
vH (r)n(r)dr + 1

2

∫
n+(r)n+(r′)

|r − r′| dr dr′, (21)

where the last term in Eq. (21) is the energy of the background
positive charge n+(r), by virtue of Eqs. (8) and (10), we have
for the energy per particle

ε = εK + εsub − 1

2n

∑
σ

∫
vσ

x (r⊥)nσ (r⊥)dr⊥

− 1

2n

∫
vext,H (r⊥)[n(r⊥) + n+(r⊥)]dr⊥, (22)
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FIG. 8. Same as Fig. 7, but for 1DEG.
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TABLE I. First six eigenenergies [absolute values (a.u.)] of the
EXX KS Hamiltonian of 2D and Q2D EG for two values of the
density parameter rs = 2 and 5, compared with the Rydberg series
1/(2n2).

Rydberg rs = 2 rs = 5

n series 2D Q2D 2D Q2D

1 0.500 0.360 0.511 0.164 0.204
2 0.125 0.161 0.196 0.092 0.103
3 0.056 0.102 0.117 0.064 0.070
4 0.031 0.066 0.073 0.045 0.048
5 0.020 0.048 0.052 0.035 0.037
6 0.014 0.036 0.038 0.027 0.028

where the kinetic and the subband energies are

εK = 1

2r2
s

{
1 + ξ 2, d = 2,

π2(1 + 3ξ 2)/48, d = 1,
(23)

εsub = 1

2
[ε↑

0 + ε
↓
0 + ξ (ε↑

0 − ε
↓
0 )], (24)

and ξ = (n↑ − n↓)/n is the spin polarization. In the zero-
thickness limit vext,H = 0, and the exchange energy per particle
becomes εx = − 23/2

3πrs
[(1 + ξ )3/2 + (1 − ξ )3/2] and εx = −∞,

for 2D and 1D cases, in accord with Refs. [29] and [30],
respectively.

Our solutions, in particular, show that, while, in the general
case, EXX requires the knowledge of all, occupied and empty,
states, and solving of the optimized effective potential (OEP)
integral equation is necessary, in the case of quasi-2(1)DEG
with only one subband occupied, it is possible to avoid those
complications, still remaining within the exact theory. In this
context, we note that the localized Hartree-Fock potential
(LHF) [31], which has proven a useful concept requiring the
occupied states only and involving no OEP equation in the
general case, yields results very close (often indistinguishable)
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FIG. 9. Diagrams of the stability of Q2D (upper panel) and Q1D
(lower panel) electron gases with one subband occupied. The Fermi
energy EF = k2

F /2 and the distance �ε between two lowest subbands
are shown versus the density parameter rs . At rs < rc

s (shaded areas,
rc
s ≈ 1.46 and 0.72, in 2D and 1D cases, respectively), more than

one subbands are filled, invalidating the results of this theory. The
diagrams refer to the spin-unpolarized case.

to those of EXX and Hartree-Fock (HF) [31,32]. Conceptually,
LHF potential can be constructed independently from HF and
EXX [33], within the scheme of the optimized propagation in
time [34], and it is one of the realizations of the “direct energy”
potentials [35,36]. This is, therefore, very instructive to learn
that, for 2(1)DEG with one filled subband, LHF coincides with
both EXX and Slater’s potentials exactly up to a constant, as
we show in the next section.

Here, it is instructive to draw the analogy with a singlet
two-electron system with only one state filled, for which all
the three potentials coincide [32,33]. In the present case,
although with an infinite number of electrons, the same
property holds due to (i) the separation of the variables in
the two perpendicular directions and (ii) to the system being
uniform (the potential being flat) in the parallel direction.

V. EQUIVALENCE OF EXX AND LHF FOR QUASI-2(1)DEG
WITH ONE FILLED SUBBAND

The purpose of this section is to prove that, within the
one-filled-subband regime of 2(1)D electron gas, the localized
Hartree-Fock (LHF) method and and exact exchange (EXX)
are exactly equivalent.

We start by recalling the basic facts on the LHF poten-
tial [31] within the framework of the optimized-propagation
method (OPM) [32–34]. The LHF exchange potential ṽσ

x (r),
experienced by electrons with the spin orientation σ , is a
solution to the equation

ṽσ
x (r)nσ (r) =

∫ [
ṽσ

x (r′) − 1

|r − r′|
]
|ρσ (r,r′)|2dr′

+
∫

ρσ (r,r′)ρσ (r′,r′′)ρσ (r′′,r)

|r′ − r′′| dr′dr′′, (25)

with the spin-resolved density matrix defined as

ρσ (r,r′) =
∑

i

σ
φi(r)φ∗

i (r′), (26)

where the superscript at the sum means that only the orbitals
with the spin direction σ are included. For an integral number
of particles, Eq. (25) determines the potential up to the addition
of an arbitrary constant ṽσ

x (r) → ṽσ
x (r) + cσ [32]. A relation

∑
σ

[∫
ṽσ

x (r)nσ (r)dr + 1

2

∫ |ρσ (r,r′)|2
|r − r′| dr dr′

]

+ 1

2

∫
vH (r)n(r)dr = 0 (27)

fixes this constant uniquely in the fully spin-polarized case,
while in the presence of electrons of both spin orientations,
it makes only one of the constants independent by fixing the
quantity c↑N↑ + c↓N↓, where N↑ and N↓ are the number of
electrons with spin up and spin down, respectively. In both
cases this fixes the total energy of the system, the electronic
part of which is equal in OPM to the sum of the single-particle
eigenenergies [32].

For 2(1)DEG with only one subband filled

ρσ (r,r′) = μσ
0 (r⊥)μσ

0
∗(r′

⊥)ρσ (r‖ − r′
‖), (28)
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where ρσ (r‖) is given by Eq. (7). Substituting Eqs. (28) and (9) into Eq. (25) and canceling out |μσ (r⊥)|2 from both sides, we
can write

nσ ṽσ
x (r⊥) = −

∫ |μσ (r′
⊥)|2|ρσ (r‖ − r′

‖)|2
|r − r′| dr′ +

∫
ṽσ

x (r′
⊥)|μσ (r′

⊥)|2|ρσ (r‖ − r′
‖)|2dr′

+
∫ |μσ (r′

⊥)|2|μσ (r′′
⊥)|2ρσ (r‖ − r′

‖)ρσ (r′
‖ − r′′

‖)ρσ (r′′
‖ − r‖)

|r′ − r′′| dr′dr′′, (29)

where we have explicitly written that the potential is a function
of the perpendicular coordinate only. We notice, and this is
crucial to our derivation, that the second and the third terms
in the right-hand side of Eq. (29) are constants: the terms in
question do not depend on r⊥, and the apparent dependence on
r‖ is eliminated by the proper substitutions of the integration
variables r′

‖ and r′′
‖ . Recalling that Eq. (25) are solvable up to

arbitrary constants only, we can, therefore, write by virtue of
Eq. (29)

ṽσ
x (r⊥) = vσ

x (r⊥) + cσ , (30)

where vσ
x (r⊥) is the EXX potential of Eq. (10). Substituting

Eq. (30) into Eq. (27), we have∑
σ

cσ Nσ =−
∑

σ

[∫
vσ

x (r)nσ (r)dr

+ 1

2

∫ |ρσ (r,r′)|2
|r − r′| dr dr′

]
− 1

2

∫
vH (r)n(r)dr.

(31)

As already mentioned above, within the framework of
OPM, the electronic energy of a many-body system is a sum
of the eigenvalues of its single-particle LHF Hamiltonian (i.e.,
it is a direct energy potential [35,36]). Therefore, we can
write

E =
∑

σ

∑
i

σ
ε̃i + 1

2

∫
n+(r)n+(r′)

|r − r′| dr dr′, (32)

where the electrostatic energy of the positive background was
added, as in the main text. Since, due to Eq. (30), the LHF
Hamiltonian differs from the EXX one by the constants cσ

only, we can write from Eq. (32)

E =
∑

σ

∑
i

σ
εi +

∑
σ

cσ Nσ + 1

2

∫
n+(r)n+(r′)

|r − r′| dr dr′,

(33)
where εi are the EXX eigenenergies. Finally, substituting
Eq. (31) into Eq. (33) and comparing with Eq. (21), we
conclude that the LHF and EXX total energies exactly
coincide.

VI. CONCLUSIONS

We have obtained explicit solutions to the problem of the
exact exchange—optimized effective potential of quasi-two-
and one-dimensional electron gases with one subband filled in
terms of the density. It has been proven that the EXX potential,
the localized Hartree-Fock potential, and the Slater’s potential
all coincide with each other exactly (up to an arbitrary constant)
for these systems.

By taking the limit of the zero thickness [full 2(1)D
confinement] of the respective electron gases, we have found
exact analytical solutions to the static EXX problem for
2(1)DEG. We have identified a nonasymptotic regime, which
realizes in the free space at distances less or comparable to the
inverse Fermi radius of the electron gas. While our solutions
reproduce the before known asymptotic of the exchange
potential at large distances, at shorter distances the variance of
the exchange potential from its asymptotic strongly affects the
low-lying excited states, causing departure from the Rydberg
series.

Within a wide range of the densities of the electron
gases, our analytical potentials accurately approximate those
of realistic quasi-2(1)D systems, as demonstrated by the
comparison to the results of the self-consistent calculations
beyond the zero-thickness limit. They, consequently, are
expected to serve as efficient means to handle the general
problem of the exchange potential and image states in the
low-dimensional physics.

As a by-product, our solutions extend a short list of
analytical results known in the many-body physics.
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APPENDIX A: CLASSICAL IMAGE POTENTIAL
OF 2(1)D CONDUCTOR

Let 2(1)D conductor occupy a plane (line) r⊥ = 0 and let a
test charge Q be positioned at r⊥ = R⊥ and r‖ = 0. The field
of the test charge will cause a change in the electron-density
distribution, which we denote n1(r⊥). The latter is determined
by the constancy of the potential at the plane (line) of the
conductor

Q√
R2

⊥ + r2
‖

−
∫

n1(r′
‖)

|r′
‖ − r‖|dr′

‖ = 0, (A1)

by which we also fix the potential origin. Taking Fourier
transform with respect to r‖ we have

n1(q‖) = Q
vq‖(R⊥)

vq‖(0)
, (A2)

where

vq‖(r⊥) =
∫

e−iq‖·r‖√
r2
‖ + r2

⊥
dr‖. (A3)
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In real space Eq. (A2) yields for the density

n1(r‖) = Q

(2π )d

∫
vq‖(R⊥)

vq‖(0)
eiq‖·r‖dq‖ (A4)

and for its induced potential

φind(r‖,r⊥) = − Q

(2π )d

∫
vq‖(R⊥)vq‖(r⊥)

vq‖(0)
eiq‖·r‖dq‖. (A5)

The total energy of the system, which, being the work required
to move the test charge from R⊥ to infinity and, therefore, is
the image potential, is

E = Qφind(r‖ = 0,R⊥) + 1

2

∫
n1(r‖)n1(r′

‖)

|r‖ − r′
‖|

dr‖dr′
‖, (A6)

which, by Eqs. (A4) and (A5), can be rewritten as

E = − Q2

(2π )d

∫
v2

q‖(R⊥)

vq‖ (0)
dq‖ + Q2

2(2π )d

×
∫

v2
q‖(R⊥)

vq‖(0)
dq‖ = − Q2

2(2π )d

∫
v2

q‖(R⊥)

vq‖(0)
dq‖. (A7)

1. 2D case

By Eq. (A3), vq‖(R⊥) = 2π
q‖

e−q‖R⊥ , and Eq. (A7) evaluates
to

E = − Q2

4R⊥
, (A8)

which coincides with the result for a semi-infinite metal.

2. 1D case

By Eq. (A3), vq‖(R⊥) = 2K0(q‖R⊥), where Kn(x) is the
modified Bessel function of the second kind. Since K0(0) =
∞, Eq. (A7) evaluates to

E = 0, (A9)

in accordance that the notion of the strictly 1D electron gas is
inherently inconsistent and a finite width must be introduced
for meaningful results [30]. These complications are not,
however, relevant to the purposes of the present work.

APPENDIX B: FURTHER PARTICULARS OF THE
DERIVATION OF EQ. (10)

The derivation of Eq. (10) has been assuming that the
system remains that with one subband filled [and, therefore,
Eq. (8) holding] throughout the variational process. Here we
show that this, indeed, is the case. Let us write the variation of
the exchange energy

δEx =
∫

vx(r⊥)δn(r)dr, (B1)

where, due to the symmetry of the problem, we have used the
fact that vx is a function of the perpendicular coordinate only.
Therefore, the variations of the density which average out to
zero in the parallel to the EG direction (which is necessary for
the conservation of the number of particles) do not affect the
first order variation of Ex , the latter taken at the ground state of
the density. Therefore, with respect to finding the ground-state

exchange potential for our systems, we need to consider the
variations of the density which depend on r⊥ only.

By the chain rule, this leads to the variation of the
KS potential vs as a function of r⊥ only, too. Since the
variables r⊥ and r‖ separate in KS equations and since the
ground-state occupied spin orbitals (5) factorize with the same
perpendicular part for all of them, it is obvious, that, upon a
variation of vσ

s (r), the changed orbitals remain of the same
form (5) with one and the same, changed, perpendicular part.
In other words, through the variational procedure, the system
remains that with only one subband filled.

Proof of Eq. (10) in terms of the orbital wave functions
and eigenenergies

Here we give an alternative proof of Eq. (10) which shows
how the general EXX formalism leads to the Slater potential
in the case of quasi-2(1)DEG with only one subband filled.
We can write

δEx

δvσ
s (r)

=
∫

δn(r′)
δvσ

s (r)

δEx

δnσ (r′)
dr′ =

∫
χσ

s (r,r′)vσ
x (r′)dr′,

(B2)
where we have used the chain rule, the definitions of vσ

x (r)
and of the KS spin-density-response function χσ

s (r,r′), and
the symmetry of the latter in its two coordinate variables.
The explicit expression of χσ

s (r,r′) in terms of the KS wave
functions and eigenenergies is

χσ
s (r,r′) =

∑
i ∈ occ
j ∈ occ

ψσ∗
i (r)ψσ

j (r)ψσ∗
j (r′)ψσ

i (r′)

εi − εj

+ c.c.

(B3)
In the case of 2(1)D EG with the flat in-plane potential,
the variables r‖ and r⊥ separate in the KS equations, i (j )
becomes a composite index i = (k‖i ,ni), where k‖ is the
parallel momentum, n indexes the transverse bands, and

εσ
i = k2

‖i
2

+ λσ
ni
, (B4)

φσ
i (r) = eik‖i ·r‖

�1/2
μσ

ni
(r⊥), (B5)

where μσ
ni

(r⊥) are the wave functions of the (3 − d)-
dimensional motion in the potential vσ

s (r⊥), and λni
are the

corresponding eigenenergies. We substitute Eqs. (B3)–(B5)
into Eq. (B2) and note that, by the symmetry of the problem, the
left-hand side of Eq. (B2) depends on r⊥ only and, therefore,
we can average Eq. (B2) in r‖ over � without changing it.
Doing this and integrating over r′

‖ on the right-hand side with
account of vσ

x (r′) being a function of r′
⊥ only, we see that only

k‖j = k‖i contribute, leading to

δEx

δvσ
s (r)

= nσ

∫
χσ

s (r⊥,r′
⊥)vσ

x (r′
⊥)dr′

⊥, (B6)

where

χσ
s (r⊥,r′

⊥) =
∞∑

n=1

μσ∗
0 (r′

⊥)μσ
n (r′

⊥)μσ
0 (r⊥)μσ∗

n (r⊥)

λσ
0 − λσ

n

+ c.c.,

(B7)
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and we have taken account of the fact that only one state with the wave function μσ
0 (r⊥) is occupied in the transverse

direction.
On the other hand, we can evaluate δEx/δv

σ
s (r) directly. By Eqs. (3) and (4)

Ex = −1

2

∑
σ

∑
(i,σ ) ∈ occ
(j,σ ) ∈ occ

∫
φσ

i (r)φσ∗
j (r)φσ

j (r′)φσ∗
i (r′)

|r − r′| dr dr′. (B8)

Then, using the chain rule,

δEx

δvσ
s (r)

=
∑

m∈occ

∫ [
δEx

δφσ
m(r′)

δφσ
m(r′)

δvσ
s (r)

+ δEx

δφσ∗
m (r′)

δφσ∗
m (r′)

δvσ
s (r)

]
dr′. (B9)

Due to Eq. (B8)

δEx

δφσ
m(r′)

= −
∑

(i,σ )∈occ

∫
φσ

i (r′′)φσ∗
m (r′′)φσ∗

i (r′)
|r′ − r′′| dr′′, (m,σ ) ∈ occ. (B10)

By the use of the perturbation theory, we can write

δφm(r′)
δvσ

s (r)
=

∑
l =m

φσ
l (r′)φσ

m(r)φσ∗
l (r)

εσ
m − εσ

l

. (B11)

Substitution of Eqs. (B10) and (B11) into Eq. (B9) gives

δEx

δvσ
s (r)

= −
∑

(m,σ ) ∈ occ
(i,σ ) ∈ occ

∑
l =m

∫ [
φσ

i (r′′)φσ∗
m (r′′)φσ∗

i (r′)φσ
l (r′)φσ

m(r)φσ∗
l (r)

|r′ − r′′|(εσ
m − εσ

l

) + c.c.

]
dr′dr′′. (B12)

Further, substituting Eqs. (B4) and (B5) into Eq. (B12), we have

δEx

δvσ
s (r)

= − 1

�3

∑
|k‖i | � kσ

F|k‖m| � kσ
F

∑
(k‖l ,nl )=(k‖m,0)

×
∫ [

ei(k‖i−k‖m)·r′′
‖μσ

0 (r′′
⊥)μσ∗

0 (r′′
⊥)μσ∗

0 (r′
⊥)ei(k‖l−k‖i )·r′

‖μσ
nl

(r′
⊥)ei(k‖m−k‖l )·r‖μσ

0 (r⊥)μσ∗
nl

(r⊥)( k2
‖m
2 + λσ

0 − k2
‖l
2 − λσ

nl

)|r′ − r′′|
+ c.c.

]
dr′dr′′, (B13)

where, again, it has been taken into account that the occupied orbitals have only one transverse band μσ
0 (r⊥).

Similar to the above, we average Eq. (B13) over r‖ without changing it. This leads to only the terms with k‖l = k‖m remaining,
and gives

δEx

δvσ
s (r)

= − 1

�3

∑
|k‖i | � kσ

F|k‖m| � kσ
F

∞∑
n=1

∫ [∣∣μσ
0 (r′′

⊥)
∣∣2

μσ∗
0 (r′

⊥)μσ
n (r′

⊥)μσ
0 (r⊥)μσ∗

n (r⊥)ei(k‖m−k‖i )·(r′
‖−r′′

‖ )(
λσ

0 − λσ
n

)|r′ − r′′| + c.c.

]
dr′dr′′, (B14)

or, according to the definition (7),

δEx

δvσ
s (r)

= − 1

�

∞∑
n=1

∫ [∣∣μσ
0 (r′′

⊥)
∣∣2

μσ∗
0 (r′

⊥)μσ
n (r′

⊥)μσ
0 (r⊥)μσ∗

n (r⊥)|ρσ (r′
‖ − r′′

‖)|2(
λσ

0 − λσ
n

)|r′ − r′′| + c.c.

]
dr′dr′′, (B15)

or, by Eq. (B7) and integrating over r′
‖,

δEx

δvσ
s (r)

= −
∫

dr′
⊥χσ

s (r⊥,r′
⊥)

∫ ∣∣μσ
0 (r′′

⊥)
∣∣2|ρσ (r′

‖ − r′′
‖)|2

|r′ − r′′| dr′′. (B16)
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Combining Eqs. (B6) and (B16), we have∫
dr′

⊥χσ
s (r⊥,r′

⊥)

[
nσ vσ

x (r′
⊥) +

∫ ∣∣μσ
0 (r′′

⊥)
∣∣2|ρσ (r′

‖ − r′′
‖)|2

|r′ − r′′| dr′′
]

= 0. (B17)

For Eq. (B17) to hold, the expression in the square brackets must be a constant, which retrieves the exchange potential of Eq. (10)
up to an arbitrary constant.
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