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Extreme optical chirality of plasmonic nanohole arrays due to chiral Fano resonance
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We study the physical origin of extreme optical chirality of subwavelength arrays of chiral holes in metal. We
reconstruct the nanoscale relief of the hole arrays by the atomic-force microscopy and post-process the data to
acquire an average unit-cell shape clear of noise and defects. For this shape, we perform the electromagnetic
finite difference time domain simulations that reproduce all important features observed by the light-transmission
experiments, including the notably strong circular dichroism and optical activity covering the whole range of
possible values. To interpret the simulation results, we develop a chiral coupled-mode model which yields
analytical expressions that fit accurately the numerical data in a broad wavelength range. Our conclusions
undoubtedly link the extreme optical chirality to the plasmon resonances of chiral holes and the associated chiral
Fano-type transmission resonance.
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I. INTRODUCTION

Chirality is a general attribute of various noncentrosym-
metric materials and, importantly, most of biological objects
and substances. However, it typically gives rise to rather weak
optical effects, detection of which requires large amounts of
transparent materials and precise techniques. Vast application
prospects spanning from light circular polarizing [1] to chem-
ical chirality sensing [2] and biosensing [3] entice intensive
search for artificial materials with higher degree of optical
chirality.

Chiral metamaterials, regular subwavelength arrays of
elements with broken mirror symmetry, are prominent for very
strong optical chirality [4]. One can divide the diverse variety
of chiral metamaterials emerged over the past decade into those
made of elements of truly chiral shapes and the planar ones,
so-called two-dimensional (2D) chiral, that lack the in-plane
mirror symmetry but are reflection symmetric with respect to
the structure plane (see, e.g., Ref. [5]). For the latter, the optical
chirality is forbidden by the symmetry restrictions which can
be lifted by dielectric substrates: a difference between the
top and bottom substrates effectively turns a 2D-chiral array
into a truly chiral one [6]. However, the optical chirality
of such planar structures remains low while a moderate
shape modification of metal elements that breaks their mirror
symmetry produces much stronger chirality enhancement [7].

Using sophisticated techniques, metamaterials consisting of
various submicron size chiral elements have been fabricated.
Multilayer arrays of coupled split ring resonators have shown a
chiral response at the wavelengths of a few microns [8], while
twisted stacks of nanorod arrays provided it in the red and near-
infrared ranges [9]. For the visible, nanosize dielectric helices
decorated with silver nanoparticles [10], arrays of metallic
helices [11], and starfish-shaped metal elements [7] exhibited
a notably strong chirality with the optical activity (OA) and
circular dichroism (CD) of a few tens of degrees.
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In this context, subwavelength arrays of light-transmitting
chiral holes in metal are quite remarkable: their OA and CD can
eventually reach extreme (maximum and minimum possible)
values [12,13]. The arrays exhibit sophisticated spectra of
OA an CD in the visible, which curiously transform as the
metal thickness or the hole shape are varied. Complex links
between the spectra of OA and CD have been established using
the generalized Kramers-Kronig relations [13]. However, the
origin of peculiar spectral dependencies is yet unexplained.
The aim of this paper is to reveal the physical mechanism
responsible for the extreme chirality of the hole arrays, which
is of the key importance for the design of further ultrachiral
metamaterials and optimizing their performance.

Optical properties of metal nanostructures are strongly
determined by their plasmon resonances and are very sensitive
to the structure shape [14,15] and its small perturbations
[16,17]. Therefore, in our electromagnetic simulations we had
to rely on the precise shape of chiral holes reconstructed by
the atomic-force microscopy (AFM). The shape complexity
and, especially, the high aspect ratio of the holes required
us to develop a specific AFM technique as discussed in
Sec. II. For the resolved shapes, the finite difference time
domain (FDTD) simulations yielded results described in
Sec. III, which reproduce nicely the main features observed
by experiments. For a qualitative explanation, the general
principles of symmetry and reciprocity are considered in
Sec. IV A. A quantitative interpretation is given in terms
of the chiral coupled-mode (CM) model which we describe
in Sec. IV B with more details provided in the Appendixes.
Our conclusions on the origin of extreme optical chirality of
nanohole arrays are given in Sec. V.

II. RECONSTRUCTION OF CHIRAL HOLE SHAPE

For metal objects of simple geometry, three-dimensional
(3D) models suitable for the full-scale electromagnetic simula-
tions can be combined from basic 3D shapes with appropriately
rounded edges. Using also tabulated experimental values of
the metal permittivity can provide a reasonable agreement of
simulations and experiment (see, e.g., the recent Ref. [18]).
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FIG. 1. SEM image of the chiral hole array milled in a 270-
nm-thick freely suspended silver foil that exhibited extreme optical
chirality [12] and an AFM image of a fragment of its analog made on
a glass substrate (shown as a color map inset).

In this work, however, we are interested in fine polarization
features of light transmitted by the arrays of chiral holes which
have a rather complex and not initially fully known shape.
The reported arrays [12] were milled in freely suspended
silver films by a focused ion beam (FIB) controlled by digital
templates. The latter determined the hole shape as a 4-start
screw thread circular hole, but it was clear that the hole final
shape was different from the template due to the inevitable ion
beam defocusing and partial diversion (see also Fig. 1).

At present, AFM is the most advanced approach for precise
reconstruction of surface reliefs with a nanometer resolution.
By default, the technique is best suited for reconstructing the
reliefs with low height-to-width ratio, when a most common
vertical AFM probe can subsequently scan over the lateral
dimensions with the probe tip always kept at a close distance
to the surface. In our case, the chiral holes have the inner
diameter below 200 nm (according to the SEM data) and are
milled in silver films of the thickness of 270 nm and more.
The common AFM probes with large apex angles are not
suitable here as they produce blind areas over considerable
parts of the holes. Therefore, for reconstructing the hole array
shape, ordinary silicon AFM probes were customized by FIB
sharpening which yielded the probes of a few microns height,
with an apex angle about 10◦ and a tip curvature radius of
10 nm. Such tip parameters were sufficient for reconstructing
the fine elements of the chiral hole shape.

The arrays studied in Ref. [12] were milled in freely
suspended silver foils which are not mechanically stable
for AFM measurements. Therefore, we have performed the
measurements on similar hole arrays milled in silver films on
glass substrates using the same FIB digital templates.

The acquired raw AFM data (see the inset in Fig. 1 for an
example) can be slightly misoriented and include systematic

FIG. 2. A unit cell of the chiral hole array as resolved by AFM
(a) and its final 3D model (b) created from the processed AFM data
(the inset).

errors due to the finite tip size as well as a noticeable random
noise arising from the structure roughness and defects [see also
Fig. 2(a)]. In order to resolve the average structure unit cell,
we developed a numeric routine that minimizes the systematic
and stochastic errors keeping intact the distinctive periodic
features.

First, to compensate for the finite AFM tip curvature radius
(which makes the holes narrower and more shallow), the
effective tip radius of 10 nm was subtracted from the AFM
data along the direction normal to the metal surface. Notably,
this primary post-processing adjusted the hole size and depth
to the values much closer to those seen in the scanning electron
microscopy (SEM) images.

Next, to reduce the effects of the random noise and defects,
a two-step averaging over the unit cells of the structure was
performed: on the first step, an average hole shape with equal
contribution of all the structure units was computed; on the
second step, higher outliers with respect to this average were
neglected.

To ensure the precise fourfold symmetry, the unit cell was
averaged with its images rotated by 90◦, 180◦, and 270◦.
Finally, the spatial periodicity inherent to the hole array
was to be ensured. As we did not account for it so far,
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deviations from the exact periodicity were used as an estimate
of the overall shape reconstruction error and we found that
it did not to exceed a few nanometers. To provide the exact
periodicity, the mismatch of the metal relief at the opposite
unit-cell boundaries was compensated by a slight deformation
of the adjacent metal surface. The resulting 3D model of the
chiral hole is strictly periodic, fourfold symmetric, and much
smoother than its representative analog taken directly from the
AFM data [compare Figs. 2(a) and 2(b)].

III. SIMULATIONS

Precise full-scale numerics of the optics of plasmonic
nanostructures remains challenging even with the use of
high-performance workstations. In particular, FDTD tech-
nique requires extremely fine space partitioning with the grid
step about a nanometer and less to achieve a reasonable
convergence [19].

Simulations of the light transmission through chiral hole
arrays were performed on a workstation equipped with a pair
of 10-core Intel Xeon CPUs and an Nvidia Tesla K40 GPGPU
using commercial SPEAG SEMCAD X FDTD solver accel-
erated by Acceleware CUDA library. The latter significantly
reduced the running time which allowed us to use a single
workstation instead of a computing cluster. A reasonable
balance between the simulation time and convergence was
achieved with the 1-nm FDTD mesh step.

In our modeling, the metal was characterized by a ho-
mogeneous, isotropic, and local permittivity. Note that these
three assumptions can be fairly approximate in the optics
of nanoscale silver structures and even under them there
remains a freedom of choosing appropriate values of the
silver permittivity which are different for monocrystalline and
polycrystalline samples, depend on the temperature [20] and
the surface quality [21]. However, our main interest here is the
origin of extremely chiral light transmission, and we chose for
simplicity the silver permittivity within the three-pole generic

dispersive model [22]:

ε̃(ω) = ε∞ + i
σ

ε0ω
+

3∑
p=1

Ap

Bpω2 − iCpω + Dp

, (1)

with the values of ε∞, σ , Ap, Bp, Cp, and Dp adjusted to fit
the experimental reference data [23].

A comparison of the transmission characteristics observed
in Ref. [12] for a 270-nm-thick array with those obtained
numerically is presented in Fig. 3. As shown in Figs. 3(a)
and 3(b), the calculated spectrum of transmission of linearly
polarized light reproduces the main features seen in the
experiments: there is a pronounced transmission band at larger
wavelengths and a peculiar weaker maximum close to the
short-wavelength border of the visible range. In-between, the
simulated transmittance falls below the 1% level similarly to
the experimental one, although the latter stays higher, most
probably, due to a light leakage through defects.

We express conventionally the main characteristics of the
optical chirality, CD and OA, by the the left circular polar-
ized (LCP) and right circular polarized (RCP) transmission
amplitudes tL and tR as

CD = |tR|2 − |tL|2
|tR|2 + |tL|2 , (2)

OA = 1
2 (arg tL − arg tR). (3)

Note that the sign of the latter is defined as in the
transmission experiment setup [12], where positive OA
corresponded to the clockwise polarization rotation as seen
against the transmitted-light propagation direction. The nu-
merically obtained spectra of OA and CD shown in Fig. 3(d)
clearly exhibit the same features as the experimental ones
reported in Ref. [12] and shown in Fig. 3(c): CD has a
pronounced single peak which is accompanied by an antireso-
nance of OA at the same wavelength. Note that in both cases,
OA covers all its possible values in the adjacent wavelength
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FIG. 3. Comparison of the optical properties of an array of chiral holes reported in Ref. [12] with those obtained by FDTD simulations:
experimental (a) and numerical (b) transmittances of linearly polarized light; optical chirality parameters observed (c) and obtained
numerically (d).
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range. The calculated maximum CD values are lower than
in the experiment. The nonzero long-wavelength tail of the
experimental CD indicates, however, the presence of certain
birefringence and linear dichroism due to the fabrication
imperfections, which explains the quantitative differences.

The calculated positions of the sharp spectral features of
the observables are systematically blue-shifted with respect
to the experiment. Thus, the experimental transmission band
starts above the wavelength of 500 nm, while the numerical
transmittance goes up above 450 nm. Similarly, the numerical
short-wavelength transmission peak as well as the peak of
CD and antiresonance of OA are equally blue-shifted by
approximately 50 nm compared to the experiment. This
mismatch can be partially attributed to a slight difference
between the 375-nm period of the freely suspended arrays used
in the optical experiment and the 360-nm period of the array on
glass substrate used for the AFM shape reconstruction. On the
other hand, one might attempt also to decrease the mismatch
by adjusting the silver permittivity dispersion.

We have performed the simulations for the plane waves
incident on the both sides of the structure (milled and flat). The
corresponding spectra of light absorption are very different as
shown in Fig. 4. In the first case [Fig. 4(a)], the absorption
has a well-defined resonance near the wavelength of 480 nm
with a chiral split, i.e., a difference for LCP and RCP incident
light. Also, there is a nonchiral resonance near the 415-nm
wavelength. The flat side incidence absorption [Fig. 4(b)] has
one chiral resonance at the same wavelength of 480 nm, and
a weaker one near the 373-nm wavelength which possesses
also a tiny chiral split. Notice the absence of the nonchiral
resonance at the 415-nm wavelength here.
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FIG. 4. Absorption spectra of LCP and RCP light incident from
the milled (a) and flat (b) sides of the chiral hole array. Solid lines
represent the results of numeric FDTD simulations while the dashed
lines are their analytical fits by a pair of Lorentz poles as described
by Eq. (18).

FIG. 5. Spatial structure of plasmon resonances at the wave-
lengths of 373 nm (a), (b) and 480 nm (c), (d) excited by LCP (a), (c)
and RCP (b), (d) waves incident from the flat side of the hole array.
The root mean square of the absolute surface values of electric field
in metal normalized by the incident wave amplitude is shown.

Clearly, the peculiar spectral behavior of the absorption
is determined by the resonances of the metal hole arrays,
i.e., their plasmon resonances. The modeling revealed the
general feature of the resonances: their positions and widths
are independent of the handedness of the incident circularly
polarized light. The latter affects only the height of the
absorption peaks, i.e., the strength of the resonance excitation.

It can be seen in Fig. 5 that the spatial structure of the
plasmon resonances possess certain distinct features. For
the 373-nm resonance, there is a strong field localization at
the narrow hole entrance, while for the one at the 480-nm
wavelength, the field is spread over the metal hollows inside
the hole. For both resonances, the field enhancement by a
factor of up to 6 takes place.

The calculated spectra of the LCP and RCP transmission
characteristics are shown in Fig. 6. We have found that in
spite of the substantial difference of the absorption spectra for
the different sides of incidence, the transmission amplitudes
are the same within one percent accuracy. As their precise
equality follows from the Lorentz lemma (see more details
below in Sec. IV A and Appendix A), this is a good measure
of the overall numeric error, which we thus estimate to be less
than one percent.

Since CD and OA do not depend on the side of incidence,
we focus in the following on the case of flat side of incidence,
when the absorption has two well-defined Lorentzian peaks.
The LCP and RCP transmittances shown in Fig. 6(a) exhibit
a weak chiral splitting being not substantially different
otherwise. Their peaks are slightly red-shifted with respect
to the absorption peaks, which is characteristic for Fano-type
transmission resonances. At the same time, the LCP and
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FIG. 6. Transmission characteristics for the LCP and RCP
incident waves: (a) the LCP and RCP transmittances; (b), (c) the
transmission phases for the LCP and RCP waves, respectively. The
results of the full-scale FDTD simulations are shown by the solid lines
while the dashed lines correspond to the analytical fit in accordance
with the CM model (19).

RCP transmission phase spectra are qualitatively different [see
Figs. 6(b) and 6(c)].

The total light energy conservation is ensured by the
difference in reflection spectra for the different sides of
incidence. Our general observation is the absence of chiral
split of the reflectance, whichever side of incidence is
considered. As discussed in Sec. IV A, the absence of chiral
effects in reflection is a general attribute of structures with
rotational symmetry and follows directly from the symmetry
and reciprocity arguments.

IV. THEORY

A. Symmetry and reciprocity implications

The general features of light transmission and reflection by
the fourfold rotationally symmetric arrays of chiral holes can
be explained from the fundamental principles of symmetry and
reciprocity. This can be conveniently done by considering the
S-matrix formulation of the transmission-reflection problem.
For clarity, one can start with the S-matrix problem in the basis

of linear polarizations. Then, for the incident and reflected
transversal waves propagating along the z axis, the S-matrix
problem reads as⎛

⎜⎜⎝
bx

b′
x

by

b′
y

⎞
⎟⎟⎠ =

⎛
⎜⎝

S11 S12 S13 S14

S12 S22 S23 S24

S13 S23 S33 S34

S14 S24 S34 S44

⎞
⎟⎠

⎛
⎜⎜⎝

ax

a′
x

ay

a′
y

⎞
⎟⎟⎠, (4)

where ai and a′
i are the components of the amplitudes of light

waves incident on different sides of the structure, and bi and
b′

i are those of the waves outgoing from different sides. Note
that the S matrix is symmetric as required by the Lorentz
reciprocity lemma.

If the light is incident normally on the planar array with a
fourfold rotational symmetry, the S matrix in Eq. (4) must be
invariant under ±π/2 rotations about the z axis. This implies
equalities S33 = S11, S44 = S22, S34 = S12, S23 = −S14, S13 =
−S13 = 0, and S24 = −S24 = 0, which reduce the S matrix to
the form

Ŝ
(xy) =

⎛
⎜⎝

S11 S12 0 S14

S12 S22 −S14 0
0 −S14 S11 S12

S14 0 S12 S22

⎞
⎟⎠. (5)

For the chiral arrays, it is convenient to use the basis of
waves of circular polarizations of definite handedness, i.e.,
with the electric field rotating clockwise or anticlockwise when
seen against the z-axis direction. The corresponding complex
unit vectors are

e± = 1√
2

(ex ∓ iey). (6)

In this basis, the “+” waves are RCP when they propagate
along the z axis and LCP when they propagate against it. For
the “−” waves, the opposite is true.

The S matrix in this basis can be obtained as Ŝ = T̂cŜ(xy)T̂+
c ,

where

T̂c = 1√
2

⎛
⎜⎝

1 0 −i 0
0 1 0 −i

1 0 i 0
0 1 0 i

⎞
⎟⎠, (7)

and then

Ŝ =

⎛
⎜⎝

S11 S12 + iS14 0 0
S12 − iS14 S22 0 0

0 0 S11 S12 − iS14

0 0 S12 + iS14 S22

⎞
⎟⎠.

(8)

The physical meaning of the elements of this matrix can be
easily identified by writing the corresponding analog of Eq. (4)
in the basis (6):⎛

⎜⎝
b+
b′

+
b−
b′

−

⎞
⎟⎠ =

⎛
⎜⎝

r tL 0 0
tR r ′ 0 0
0 0 r tR
0 0 tL r ′

⎞
⎟⎠

⎛
⎜⎝

a+
a′

+
a−
a′

−

⎞
⎟⎠, (9)

where the transmission amplitudes of the left and right
circularly polarized light, tL and tR , together with the reflection
amplitudes from different sides of the structure, r and r ′, have
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FIG. 7. Sketch of one of the enclosed transmission-reflection
problems for an array of the fourfold rotational symmetry.

been introduced, and the symmetry of the matrix (8) has been
taken into account.

The block-diagonal form of the S matrix in Eq. (9) implies
the independence of the two enclosed transmission-reflection
problems relating the waves with the same handedness: the
incident a+ and a′

+ with the outgoing b+ and b′
+; and the

incident a− and a′
− with the outgoing b− and b′

−. The first
problem is illustrated in Fig. 7, which shows also why the
same handedness (the same direction of field rotation) is
assigned to the counterpropagating beams with the opposite
circular polarizations. Note that the S matrix in Eq. (9) is not
simply symmetric but also requires a simultaneous “+” ↔
“−” (or, equivalently, L ↔ R) interchange, which reflects the
peculiarities of the Lorenz reciprocity lemma application to
circularly polarized waves (see Appendix A).

The S-matrix equation (9) alone puts substantial restrictions
on the properties of chiral structures of the fourfold rotational
symmetry: (i) the transmission amplitudes of the waves of
the opposite handedness incident on different sides (i.e., of
the same circular polarization) are equal; (ii) the reflection
amplitudes are independent of the wave handedness, i.e., the
reflections are achiral.

It can be also readily shown that the transmission chirality
strongly depends on the dissipative losses in the structure.
Indeed, in the absence of losses, the system is reversible and
its S matrix is unitary, Ŝ+Ŝ = 1. This requires |tR|2 = |tL|2 =
1 − |r|2 = 1 − |r ′|2, which means, in particular, the absence of
CD. OA, however, can still be present due to possibly different
phases of tR and tL.

B. Chiral coupled-mode model

To clarify the physics responsible for the rather peculiar
spectral behavior of optical observables, we develop an
analytical model that accounts for the plasmon resonances and
their contribution to the chiral light transmission: a chiral CM
model. Having much in common with simpler CM models
that have been used to understand the light transmission
through arrays of nonchiral holes and slits in dielectric and
metal films [24–26], such a model here should take into

account the structure chirality as well as the presence of
two plasmon resonances at different wavelengths. Typically,
a good quantitative agreement can be achieved by using a
simple CM model only in a narrow frequency range close to
a single resonance. Here, we have to cover a broader range
that includes both resonances of the array. As shown below,
this allows reproducing the main observable features although
the accuracy is somewhat lower than of the CM modeling of
plasmonic systems in a much narrower wavelength range [26].

In a CM model, without going into microscopic details, one
can describe the dynamics of plasmon resonances by their slow
varying amplitudes. The above numerics has revealed that the
hole arrays support plasmon resonances at two well-separated
resonant wavelengths. At each wavelength, a plasmon of
certain handedness can be excited by the electromagnetic
waves of the same handedness. While the positions and widths
of the resonances are independent of the handedness, the
strength of the plasmon excitation moderately depends on it.

Accordingly, we introduce the plasmon amplitudes

pν =
(

pν+
pν−

)
, (10)

where the index ν = 1,2 enumerates the plasmons with differ-
ent resonant wavelengths. For each wavelength, a conjugate
pair of plasmons with the amplitudes pν− and pν+ can be
excited. The ± signs denote the plasmon handedness that
coincides with that of the circular polarization eigenvectors (6).

Then, the plasmon excitation by the incoming plane waves
can be described by the equation

dpν

dt
=

∑
ν ′=1,2

Q̂νν ′pν ′ + M̂νa, (11)

while the irradiation of the outgoing waves is governed by the
relation

b =
∑
ν=1,2

N̂νpν + Ĉa. (12)

Here, as in Eq. (9), the incoming and outgoing wave amplitudes
are given by the vectors a and b, respectively.

The matrix Q̂νν ′ determines the spectrum of plasmon
resonances and an internal energy exchange between them.
The matrix of the direct transmission reflection is supposed to
have a simple nonchiral form

Ĉ =

⎛
⎜⎝

ρ τ 0 0
τ ρ ′ 0 0
0 0 ρ τ

0 0 τ ρ ′

⎞
⎟⎠. (13)

The matrix of coupling constants between the ν-th plasmon
and the incoming waves is taken as

M̂ν =
(

mν+ m′
ν+ 0 0

0 0 mν− m′
ν−

)
, (14)

and the matrix of coupling constants between the outgoing
waves and the ν-th plasmon reads as

N̂ν =

⎛
⎜⎝

nν+ 0
n′

ν+ 0
0 nν−
0 n′

ν−

⎞
⎟⎠. (15)
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To ensure the Lorentz reciprocity (see Appendix A), the
coupling matrices N̂ν are to be equal to M̂ν transposed and
subjected to the “+” ↔ “−” interchange, i.e., nν± = mν∓ and
n′

ν± = m′
ν∓.

Since in our case the plasmons with different ν are well
separated, we can neglect their internal interaction. The energy
exchange between the plasmons pν− and pν+ of different
handedness is forbidden by the symmetry. Therefore, we write

Q̂νν ′ = δνν ′

(
q(ν) 0
0 q(ν)

)
(16)

with q(ν) = i(ω − ω(ν)) − γ (ν), where ω(ν) and γ (ν) are the
plasmon resonant frequencies and damping constants, respec-
tively.

For a steady state with dpν/dt = 0, one immediately
obtains from Eqs. (11) and (12) the particular form of Eq. (9)
with

Ŝ = Ĉ −
∑
ν=1,2

1

q(ν)
N̂νM̂ν . (17)

If one assumes that the energy dissipation and the related
nonreversibility of the system are determined solely by
the nonradiant plasmon damping, the direct transmission-
reflection matrix Ĉ and the coupling matrices N̂ν and M̂ν

are the same as in a similar lossless system with zero light
absorption. As shown in Appendix B, this puts remarkable
general restrictions on them.

Introducing the plasmon-driven light energy dissipation
in metal, one can derive physically transparent relations for
the light absorption rates and transmission amplitudes (see
Appendix C). In particular, the frequency dependencies of
the absorption rates of the LCP and RCP light have a simple
analytical form

A = A1γ
(1)2

(ω(1) − ω)2 + γ (1)2 + A2γ
(2)2

(ω(2) − ω)2 + γ (2)2 . (18)

The corresponding transmission amplitudes depend on the
frequency as

tR,L = τ + γ (1)t1R,L

i(ω(1) − ω) + γ (1)
+ γ (2)t2R,L

i(ω(2) − ω) + γ (2)
, (19)

i.e., exhibit a frequency dispersion characteristic for Fano-type
transmission resonances similarly to the simpler cases studied,
e.g., in Refs. [25,26].

Relations (18) and (19) have been used subsequently
to fit the numerical data. First, fitting the absorption
spectra [see Fig. 4(b)] yielded the plasmon resonant fre-
quencies ω(1), ω(2) corresponding to the wavelengths of
373 and 480 nm. The resonance half-widths (γ (1) and
γ (2)) were found to be 21.9 and 26.5 nm on the wave-
length scale, respectively. Next, these main resonance pa-
rameters were fixed and fitting the transmittance spectra
[Fig. 6(a)] was performed in order to determine the remaining
model parameters: the background nonresonant transmis-
sion amplitude τ = 0.210, and the resonant transmission
amplitudes t1R = 0.140 exp(0.220i), t1L = 0.136 exp(0.266i),
t2R = 0.655 exp(1.93i), t2L = 0.600 exp(1.50i). Note that al-
though only the absolute values of the transmission amplitudes
were fitted, the transmission phases evaluated for the resolved
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FIG. 8. Optical activity (a) and circular dichroism (b) spectra

obtained by the FDTD simulations (solid line) and their analytical fit
using the CM model (19) (dashed line).

model parameters were also in a good quantitative agreement
with the numerical results [see Figs. 6(b) and 6(c)]. Being
not surprising in the view of the Kramers-Kronig relations
imposed on the complex transmission amplitudes, this indi-
cates the self-consistence of our approach. The corresponding
spectra of CD and OA evaluated analytically (see the dashed
lines in Fig. 8) nicely reproduced the main features of the
numerical results with a good quantitative accuracy: CD peak
and the accompanying OA discontinuity occur at practically
the same wavelength and they reach the same values.

V. DISCUSSION

Performing thorough full-scale numerical electromagnetic
simulations for the precisely reconstructed shape of chiral
metal hole arrays allowed us to reproduce the main fea-
tures of the extremely chiral light transmission reported in
Ref. [12]. On the other hand, we have seen that all the
complex spectral dependencies obtained numerically can be
adequately explained in terms of a CM model based on a
few clear assumptions and including a small number of fitting
parameters with a transparent physical meaning. The CM
analytics coincides with the first-principle numeric data in
a wide wavelength range from 370 to 600 nm, which indicates
that it is not just a convenient fitting tool but reflects the physics
underlying the extreme chirality.

According to the CM model, the substantial chirality of
the hole shape gives rise to a still rather moderate chiral split
of the plasmon properties (the strengths of the coupling of
plasmons to the incoming and outgoing plane waves). This
split does not provide a notable chirality to the optical
transmission, if it had not been for an interference of the
chiral resonant transmission channel with a weak achiral
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background transmission channel. The interference creates a
chiral Fano-type transmission resonance with a pronounced
split of the dips of the LCP and RCP transmittances. This
gives rise to a pronounced peak of CD which is accompanied
by a fast variation of OA that takes all its possible values within
the adjacent wavelength range.

This mechanism explains, in particular, why the chiral
hole arrays exhibit a stronger optical chirality compared to
arrays of various chiral metal particles extensively studied in
the recent years [7–11]. According to our conclusions, the
emergence of extreme chirality requires a weak background
transmission channel. This channel is weak indeed in arrays
of subwavelength holes in metal and is considerably higher in
arrays of metal particles on transparent substrates.

Therefore, one can expect a similarly strong optical
chirality from various holey chiral nanostructures and also,
more generally, from other types of structures with a chiral
transmission accompanied by a weak background transmission
leading to a chiral Fano-type transmission resonance. Recent
calculations of the strongly chiral light transmission and
diffraction by planar arrays of 2D-chiral holes in a metal film
placed between different dielectric substrates [27] provide an
interesting evidence of this.

Analyzing optical properties of the chiral hole arrays
allowed us to formulate also a few more general rules based
solely on the principles of symmetry and reciprocity and
applicable to a very broad range of chiral metamaterials. The
following statements are valid actually for an arbitrary chiral
rotationally symmetric metamaterial upon normal electromag-
netic wave incidence:

(i) Polarization conversion during reflection is absent and,
accordingly, the reflections are totally achiral.

(ii) The chiral selectivity of the transmission is directly
related to the chiral selectivity of the energy dissipation and
no CD is possible in lossless materials.

(iii) There are no basic restrictions imposed on OA.
Historically, theoretical analysis of such chiral metamate-

rials has been focused mainly on their transmission character-
istics (see, for example, Refs. [28,29]) and not much attention
has been paid to the simple fact (i) that concerns the reflections.
However, it follows directly from the Lorentz reciprocity (see
Sec. IV A) and being combined with the energy conservation
law leads directly to the statement (ii). The latter has been
already proven independently by analyzing the transmission
of lossless structures [28] or by considering their S-matrix
properties [12].

The conclusion (ii) apparently narrows the potential range
of functional properties of rotationally symmetric metama-
terials, as they can possibly operate as circular polarizers
only similarly to conventional dichroic linear polarizers, which
transmit one polarization and dissipate the other. A possibility
to overcome this can be sought in light diffracting and
scattering structures. Our general conclusions do not imply
the particular nature of energy dissipation, which can occur
due to scattering, thus preserving a part of the light energy
in the form of electromagnetic radiation. Note that Fano-type
resonances can occur in such case as well [30].

Finally, the statement (iii) ensures that it is possible
to design an almost lossless material that will rotate all
incoming linear polarizations by the same arbitrarily large

angle. Although an example of such structure operating in the
microwave range has been reported [31], fabricating a similar
material for the visible is still challenging.

VI. CONCLUSION

We have shown that the extreme optical activity and circular
dichroism of light-transmitting arrays of chiral holes in metal
originate from a chiral Fano-type transmission resonance. The
resonance occurs due to an interference of the two transmission
channels: a weak achiral background transmission and a
resonant chiral transmission determined by plasmons. The
results concretize general rules following from the reciprocity
and symmetry arguments, and clarify the directions for the
search of artificial materials with strongly chiral optical
response.

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foun-
dation (Project No. 14-12-00416). We are grateful to IC
RAS Shared Research Center (supported by the Ministry of
Education and Science of the Russian Federation, Project No.
RFMEFI62114X0005) for the equipment provided and to V.
E. Dmitrienko for valuable discussions and advices.

APPENDIX A: LORENTZ RECIPROCITY
FOR CIRCULAR POLARIZATIONS

The implications of the Lorentz lemma for circularly
polarized light follow from its main integral statement∫

dV J1 · E2 =
∫

dV J2 · E1, (A1)

where J1,2 are arbitrary current distributions that produce
the electric fields E1,2, respectively. The main point for the
circular polarizations here is that the products of vectors in
Eq. (A1) are not true scalar products which imply also a
complex conjugation. Indeed, the unit vectors of the circular
polarizations (6) form an orthonormal basis as e± · e∗

± = 1
and e± · e∗

∓ = 0. However, the opposite results occur for the
product that appears in Eq. (A1): e± · e± = 0 and e± · e∓ = 1.

Therefore, the Lorentz reciprocity principle applied to
currents and fields with circular polarizations relates those
with different handedness: J1,E1 ∝ e+ and J2,E2 ∝ e− or vice
versa. This, in particular, results in the nonsymmetric form of
the S matrices and coupling matrices in Secs. IV A and IV B.

APPENDIX B: REVERSIBILITY OF COUPLED-MODE
MODEL WITHOUT DISSIPATION

Consider a time-reversible lossless system described by the
CM Eqs. (11) and (12) when the light absorption in metal is
absent. Time reversibility of the direct transmission-reflection
process means that its matrix is unitary: Ĉ+ = Ĉ−1. Note
that the matrix is also symmetric, which makes its Hermitian
transpose equal to its complex conjugate: Ĉ+ = Ĉ∗.

If the amplitudes a, b, and pν satisfy the coupled-mode
equations (11) and (12), so should their time-reversed coun-
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terparts do. The latter can be expressed as

ã = T̂b∗, b̃ = T̂a∗, p̃ν = T̂pp∗
ν, (B1)

where the matrices T̂ and T̂p produce the “+” ↔ “−”
interchange:

T̂ =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, T̂p =

(
0 1
1 0

)
. (B2)

Note that T̂2
p = 1̂, T̂2 = 1̂.

Substituting the amplitudes (B1) into Eq. (12) and multi-
plying both sides by the matrix T̂ yields

a∗ =
∑

ν

T̂N̂νT̂pp∗
ν + T̂ĈT̂b∗. (B3)

For the matrix given by Eq. (13), T̂ĈT̂ = Ĉ, while for the
coupling matrices defined by Eqs. (14) and (15), T̂N̂∗T̂p =
M̂+. This allows rewriting the complex conjugate of Eq. (B3)
as

b = −
∑

ν

ĈM̂+
ν pν + Ĉa, (B4)

which upon comparison with Eq. (12) allows identifying
important conditions that relate the coupling constants with
the direct transmission-reflection matrix:

ĈM̂+
ν = −N̂ν, (B5)

which is a generalization of similar relations derived previ-
ously for an achiral system with a single resonance [25].

The amplitudes (B1) should also obey Eq. (11) with the
inversed sign of the time derivative. Multiplying it by T̂p and
taking the complex conjugate yields

−dpν

dt
= q(ν)∗pν + T̂pM̂∗

νT̂b. (B6)

Since the coupling matrices (14) and (15) obey also T̂pM̂∗
νT̂ =

N̂+
ν , substituting here b from Eq. (12) yields

dpν

dt
= −q(ν)∗pν −

∑
ν ′

N̂+
ν N̂ν ′pν ′ − N̂+

ν Ĉa. (B7)

Using the condition (B5) expressed as N̂+
ν Ĉ = −M̂ν , one

obtains that Eq. (B7) coincides with Eq. (11) provided that

N̂+
ν N̂ν ′ = −δνν ′ [q(ν) + q(ν)∗] = 2γ (ν)

r δνν ′ , (B8)

where the radiative damping constant of the ν-th plasmon γ (ν)
r

is introduced. In the absence of dissipative losses it provides
the only real contribution to q(ν) and

2γ (ν)
r = |mν+|2 + |m′

ν+|2 = |mν−|2 + |m′
ν−|2, (B9)

i.e., is naturally determined by the constants of coupling of
plasmons to plane waves.

Note also that the condition (B8) imposes a relation on the
coupling constants for plasmons with ν 
= ν ′:(

m1±
m′

1±

)∗
= −m′

2±
m2±

. (B10)

This can be seen as a requirement of mutual orthogonal-
ity of the complex two-component vectors (m1±,m′

1±) and
(m2±,m′

2±). Therefore, it can be fulfilled only for not more than
two plasmon resonances when the matrix Q̂νν ′ is of diagonal
form (16). Presumably, models allowing for more than two
plasmon resonances should use nondiagonal matrices Q̂.

Altogether, the conditions (B5) and (B8) and the unitarity
of the direct transmission-reflection matrix Ĉ ensure the
reversibility of the system without dissipation losses.

APPENDIX C: DISSIPATION IN COUPLED-MODE MODEL

Consider the S matrix (17) of the system where the
plasmons experience both the dissipative and radiative damp-
ing while the other parameters remain unaffected by the
dissipation. Then, using the relations (B5) and (B8) one can
evaluate

Ŝ+Ŝ =
[

Ĉ+ −
∑

ν

M̂+
ν N̂+

ν

q(ν)∗

][
Ĉ −

∑
ν

N̂νM̂ν

q(ν)

]

= 1̂ +
∑

ν

(
1

q(ν)∗ + 1

q(ν)

)
M̂+

ν M̂ν +
∑

ν

M̂+
ν N̂+

ν N̂νM̂ν

|q(ν)|2

= 1̂−
∑

ν

2γ (ν)M̂+
ν M̂ν

(ω(ν) − ω)2 + γ (ν)2 +
∑

ν

2γ (ν)
r M̂+

ν M̂ν

(ω(ν) − ω)2 + γ (ν)2

= 1̂ −
∑

ν

2γ
(ν)
d M̂+

ν M̂ν

(ω(ν) − ω)2 + γ (ν)2 , (C1)

where the dissipative damping constants are naturally intro-
duced as the difference between the total and the radiative
damping constants: γ

(ν)
d = γ (ν) − γ (ν)

r . Therefore, the dissi-
pation destroys the unitarity of the S matrix, thus breaking
the energy conservation together with the reversibility of the
system in general.

According to the S-matrix equation (9), the main diagonal
of the difference 1̂ − Ŝ+Ŝ contains the absorption rates for
different circular polarizations and sides of incidence, which
are then expressed as

AR = 1 − |r|2 − |tR|2 =
∑

ν

2γ
(ν)
d |mν+|2

(ω(ν) − ω)2 + γ (ν)2 , (C2)

AL = 1 − |r|2 − |tL|2 =
∑

ν

2γ
(ν)
d |mν−|2

(ω(ν) − ω)2 + γ (ν)2 , (C3)

A′
R = 1 − |r ′|2 − |tR|2 =

∑
ν

2γ
(ν)
d |m′

ν−|2
(ω(ν) − ω)2 + γ (ν)2 , (C4)

A′
L = 1 − |r ′|2 − |tL|2 =

∑
ν

2γ
(ν)
d |m′

ν+|2
(ω(ν) − ω)2 + γ (ν)2 . (C5)

Being different in magnitude, they exhibit the same Lorentzian
frequency dispersion (18) used for the fitting of the numeric
data in Sec. III.
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The difference of the transmittances of circularly polarized
light can be found by taking the difference of Eqs. (C3) and
(C2):

|tR|2 − |tL|2 =
∑

ν

2γ
(ν)
d

|mν−|2 − |mν+|2
(ω(ν) − ω)2 + γ (ν)2 , (C6)

which determines CD in Eq. (2). Thus, in terms of the CM
model, CD is indeed a direct consequence of the dissipative
damping as has been generally shown in Sec. IV A. Note also
that the right-hand side in Eq. (C6) tends to zero when one
neglects the direct transmission channel by setting τ = 0 and
accounts for the relation (B5) for the coupling parameters.
This demonstrates explicitly that the Fano-type combination
of resonant and background transmissions is critical for the
appearance of CD.

Finally, the transmission and reflection amplitudes can be
expressed from (17) as

tR = τ +
∑

ν

mν+m′
ν−

i(ω(ν) − ω) + γ (ν)
, (C7)

tL = τ +
∑

ν

m′
ν+mν−

i(ω(ν) − ω) + γ (ν)
, (C8)

r = ρ +
∑

ν

mν+mν−
i(ω(ν) − ω) + γ (ν)

, (C9)

r ′ = ρ ′ +
∑

ν

m′
ν+m′

ν−
i(ω(ν) − ω) + γ (ν)

, (C10)

and exhibit the frequency dependence (19) typical for the Fano-
type transmission resonances.
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