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Role of nonlocality and Landau damping in the dynamics of a quantum
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A. Vagov,1,* I. A. Larkin,2,3 M. D. Croitoru,4,5 and V. M. Axt1
1Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany

2Department of Physics, Minho University, 4710-057, Braga, Portugal
3Institute of Microelectronics Technology Russian Academy of Sciences, 142432 Chernogolovka, Russia

4Departement Fysica, Universiteit Antwerpen, B-2020 Antwerpen, Belgium
5Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil

(Received 25 January 2016; revised manuscript received 11 April 2016; published 10 May 2016)

We investigate the dynamics of a quantum emitter (quantum dot) placed in the vicinity of a flat metal surface. The
dynamics is induced by the coupling between the emitter and surface plasmon-polaritons. The plasmon-polariton
modes are described within a continuous media model with a nonlocal Lindhard-type dielectric response of the
metal. The analytic solution of the dynamical equations is obtained in the rotating wave approximation. The
results demonstrate a considerable influence of the nonlocality of the electromagnetic response and the Landau
damping in the metal. In particular, the relaxation dynamics is characterized by two distinct times that may differ
by large amounts as a consequence of the nonlocality of the response. It is also shown that one of the contributions
to the relaxation can have a power-law long-time asymptote, leading to notable changes in the dynamical pattern.
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I. INTRODUCTION

Unique properties of surface plasmon-polariton (SPP) ex-
citations [1–3] can be used in many applications, in particular
to design sources of nonclassical light [4] and single photons
[5–8], nanophotonic lasers [9–13], nonconventional optical
metamaterials [14], nanoantennas [15,16] and efficient light
sensors [17], transistors [18–20], and quantum information
devices [21–23]. Many of those applications utilize the
possibility of a precise manipulation of the electromagnetic
fields associated with SPP modes. Unlike conventional light
waves, SPPs resolve scales below the diffraction limit [24]
which can be used to achieve a considerable enhancement of
the field intensity and a better control of its spatial distribution
[25]. The Achilles heel in some of the applications is the
weak coupling between SPPs and external light. This can be
remedied by introducing mediating scatterers (or emitters),
such as, for example, J-aggregates [26,27], dye molecules
[28], or strongly confined quantum dots [29], that are strongly
coupled to both incoming light waves and surface plasmons.
As a bonus, the strong coupling can be used to achieve coherent
manipulation of the emitter quantum states.

Although SPP excitations involve a macroscopically large
number of fermion carriers, they can to a good approximation
behave as a quantum bosonic field [30–33] whose dynamics
is induced by discrete creation and absorption of excitation
quanta. The quantum nature of plasmons becomes important
when the SPP-emitter interaction is strong and significant
hybridization of SPP and emitter states takes place [34,35].
Achieving this regime of strong coupling is facilitated by the
localization of SPP modes beyond the diffraction limit [24] as
well as by a large local density of SPP states (DOS) via the
Purcell effect [36]. The coupling strength and, respectively, the
dynamics of the system can thus be controlled by geometrical
parameters of the system [37]. Evidences of the strong
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coupling regime have been recently observed by demonstrating
anticrossings of spectral lines [38], as well as by revealing a
boost in emission rates [39–41] and the vacuum Rabi splitting
[42]. The recent observation of peculiar dynamical features in
the ultrafast time scale is believed to be another evidence of
the strong coupling [43].

The theoretical analysis of the dynamics of a quantum
emitter coupled with SPPs can be split into two parts: (1)
the description of SPPs and their coupling with the emitter
and (2) the calculation of the coupled dynamics. It should
be noted that such systems belong to a general class of
quantum dissipative systems [44,45], where SPP modes act as
a continuum of reservoir states. The dynamics of those systems
strongly depends on properties of the continuum and is thus
sensitive to the details of the model and to the approximations
used in the analysis.

An ab initio description of SPP modes requires solving
Maxwell equations coupled to the microscopic equations for
charge carriers in the media. Density functional theory has
been recently applied to describe SPPs for an arbitrary geome-
try of the interface [46–48]. However, extending this approach
to the dynamics involving the interaction with an external
emitter appears to be too complicated. Most theoretical studies
of SPP modes are done with simplifying assumptions.

A common approach is to use a continuous media model
combined with the linear response theory. It neglects changes
of the carrier states in the vicinity of the interface but simplifies
the analysis by separating the material and the Maxwell
equations. Finding electromagnetic fields in polarized media
of arbitrary shape is still not an easy task. The solution is
considerably simpler when the dielectric response is taken to
be local and spatially independent within the respective media.
This local approximation is used in most textbook analyses of
SPPs [49] and can be, in principle, extended to any interface
geometry. However, it introduces unwanted modifications
in the dynamics via an artificial singularity in the SPP
DOS. The nonlocality is important at distances comparable
with the mean-free path of the metal carriers. However, the
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electromagnetic problem without the local approximation
can be solved only for few simple geometries such as a flat
surface [50,51], a slab [52], and, with some reservations, a
sphere [53–56].

In the subsequent analysis of the dynamics, SPP modes,
which are obtained from separate calculations, are used as an
input. Many earlier works assumed that the time evolution is
well described by an exponential decay and the calculations
were restricted to obtain the decay rate [50–52,57–66]. This ap-
proximation neglects quantum coherence and non-Markovian
memory effects, but is admissible when the coupling is
weak, SPPs decay faster than the emitter states, and one is
interested in the evolution at long times. Its validity domain
can be estimated by using the Nakajima-Zwanzig expansion
[63,67] which indicates that the approach can be used at times
t � 1 ps for a typical metal. However, at shorter times quantum
coherence and memory effects cannot be neglected.

Most of the recent research of the dynamics used simplified
descriptions for SPPs such as a harmonic oscillator continuum
model [57], a model with fixed dielectric constants [58,60,64],
the hydrodynamic Ritchie model [61], the Drude model of the
dielectric response [59,62,63,65], etc. The relaxation processes
are often taken into account by introducing phenomenological
decay rates, which is equivalent to the Markov approximation.

We point to a general trend that a more accurate analysis
of the dynamics is usually complemented by a less realistic
modeling of SPPs and vice versa. In particular, the role of the
Landau damping in the time evolution is often overlooked,
although it yields the fastest relaxation rate when a quantum
emitter is close to a metallic surface [51,52]. The known
sensitivity of the dynamics of quantum dissipative systems
on the structure of the continuum implies that neglecting this
and other features of SPP modes gives rise to a qualitatively
different dynamical pattern.

In this work, we present an accurate analysis of the
dynamics of a quantum dot (QD) with few carrier states
coupled to SPPs described within the Lindhard-Mermin model
of the dielectric response [68–71]. The calculations account for
both the nonlocality and the Landau damping, which give rise
to novel dynamical features, that cannot be described by rate
models. In particular, the dynamics is characterized by two
different relaxation mechanisms and can have a power-law
long-time asymptote. The calculations are done using material
parameters of a prototype InGaAs dot embedded in a GaAs
insulator and placed in front of a half-space filled with silver. A
discussion of the validity and limitations of the used approach
is given in the Appendix.

II. THEORETICAL MODEL

We consider a QD, embedded in an insulating material
and placed at a distance a from a flat metallic surface, as
schematically illustrated in Fig. 1. The QD is assumed to be
strongly confined, so that the energy levels of its carrier states
are well separated. For simplicity, the analysis will be done for
the case of two optically active states, the ground state |G〉 and
an excited state |E〉. The QD is initially in the excited state
(for example, excited by applying an ultrashort laser pulse) and
its subsequent time evolution is induced by its coupling with
the charge carriers in the metal via the electromagnetic field.
The strongest coupling is achieved between the QD and SPP
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FIG. 1. A schematic illustration of the system: a quantum dot with
two optically active states, embedded in a material with dielectric
constant εh, is placed at the distance a from the surface of a metal
with the permittivity function εωk . Surface plasmons, excited by
electromagnetic coupling with the metal, propagate in the x-y plane.

modes, that are localized in the vicinity of the metal-insulator
interface.

We construct an effective quantum Hamiltonian that takes
into account SPP excitations, QD states, and their interaction.
The SPP Hamiltonian is obtained by using a standard repre-
sentation of a quantized bosonic field [72,73] of collective
plasma excitations proposed in early works of Pines [30],
Hopfield [31], and Ritchie [32,33]. SPP eigenmodes are
found by solving Maxwell’s equations for a continuous media
model in the geometry shown in Fig. 1. The solution is used
to calculate the SPP frequency dispersion and the QD-SPP
coupling constants.

A. Solution of Maxwell equations

SPP modes are found by solving Maxwell equations for
the field combined with the material equations for the media
charge carriers. We assume a linear electromagnetic response
of the media so that the polarization P in both materials is
given as a functional of the form

P(r,t) =
∫

χ̌ (r,r′,t − t ′) E(r′,t ′) dr′dt ′. (1)

One can safely assume that the dielectric response of the
insulator is local and can be approximated by a single constant
for an isotropic material, so that for z > 0 Eq. (1) reduces to

P = χh E. (2)

In contrast, the nonlocality of the response of the metal cannot
be neglected when the characteristic dimensions in the system
are comparable with the mean-free path of its delocalized
charge carriers.

For bulk systems, the nonlocality of the response arises
because the electrical susceptibility tensor χB which describes
the reaction to a plane-wave excitation propagating with wave
vector k and frequency ω depends on k and ω. This translates
to a nonlocal susceptibility χB(r − r′,t − t ′) in space and time
which is connected with χBωk by a Fourier transformation. For
a simple isotropic metal χB is proportional to the unit tensor.

Treating the metal electrons in mean-field approximation
and using a single-band model the linear response can be
obtained by solving the corresponding quantum mechanical
problem leading to the well-known Lindhard formula [70,74].
Assuming a parabolic band structure with effective mass m

and concentrating on wave vectors k with |k| much smaller
than the Fermi wave number kF , which is in our calculations
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always satisfied, the Lindhard electric susceptibility simplifies
to

χωk = 3 �2
p

k2v2
F

(
1 − 1

2

ω

kvF

ln

[
ω + kvF

ω − kvF

])
, (3)

where vF is the Fermi velocity and �p =
√

ne2/m is the bulk
plasma frequency. Unlike the Drude model, which can be
obtained from Eq. (3) in the limit k → 0, this expression retains
the k dependence and thus exhibits a genuine nonlocality in
real space.

Note that the imaginary part of Eq. (3) becomes nonzero
for k > ω/vF . This is a manifestation of the Landau damping,
which describes the decay of plasmons that travel at the
Fermi velocity via excitation of electron-hole pairs [49,71,74].
Other relaxation mechanisms, e.g., due to the finite lifetime
τe = 1/� of quasiparticles in the metal, can be accounted
phenomenologically by amending the quantum kinetic equa-
tion used to derive Eq. (3). This must be done accounting
for the particle conservation law, which yields the corrected
Lindhard-Mermin expression [69]

χ̃ωk = (1 + η)(1 + χωk)

1 + η χωk/χ0k
, (4)

where η = i(ωτe)−1 and ω = (1 + η)ω. In the limit k → 0,
Eq. (4) gives the Drude susceptibility

χ̃ω = − �2
p

ω2(1 + η)
, (5)

with the correct (phenomenological) account for the relaxation
[68]. In what follows, we assume that in the interval of interest
η � 1.

The presence of a surface breaks the translational symmetry
which in a material with a nonlocal response should lead to
modifications of the response functions. To see this more
clearly, imagine a fictitious electric point source placed at
a point r0 inside such a material. In bulk geometry, this
source will generate a polarization P(r) that according to
Eq. (1) spreads isotropically away from the source with an
amplitude ∼χB(r − r0). However, the surface will interrupt
this spreading. A simple way to account phenomenologically
for the influence of the interface on the susceptibility is
provided by the so-called specular reflection model (SRM),
which assumes that the main modification is captured by
a mirror reflection of the outgoing polarization wave at the
surface [51,53]. Technically, this means that the polarization
current arising as a response to an electric field in the metal is
composed of two components traveling to and from the surface
(reflected current) [75]. The phase factor of the reflected
component must be chosen so that the normal current at the
interface is zero to ensure that no carriers leave the metal. The
tangential current is assumed to be unrestricted leading to a
reflection without phase jump. With these assumptions, χ̌ for
the half-space metallic sample is found as

χ̌ =
⎛
⎝χ+ 0 0

0 χ+ 0
0 0 χ−

⎞
⎠, (6)

where the components of this tensor are given as combinations
of the bulk susceptibility χB of the same material

χ± = χ̃ (ρ − ρ ′,z − z′) ± χ̃(ρ − ρ ′,z + z′), (7)

where we introduced a notation ρ = (x,y). Finally, in a half-
space model the r′ integration in Eq. (1) over the sources of
the polarization needs to be restricted to the half-space z′ < 0.

The SRM has been previously employed to describe
reflections of electromagnetic waves from interfaces between
different materials as well as to describe SPPs in the quasistatic
limit [51,52,54,55]. Within the SRM the material equations
satisfy additional symmetry which can be utilized by intro-
ducing auxiliary boundary conditions (ABC approach) which
greatly simplify the solution [53,76]. In fact, substituting the
representation in Eq. (1), one can see that the electrodynamic
problem in the half-space can be formally extended to the
full space with the fields at z > 0 and at z < 0 being mirror-
reflected. The solution of Maxwell’s equations is then obtained
as in the bulk with a self-consistently determined surface
charge arising from the jump of the polarization at z = 0. In
this way, explicit analytical solutions for the SPP modes can
be obtained. While details of the derivation will be published
elsewhere, here we shall only briefly summarize the main
results.

There are two types of solution localized in the vicinity of
the surface: (1) with the in-plane magnetic field perpendicular
to the surface plasmon wave vector q = (kx,ky,0) ( TM mode)
and (2) with the in-plane electric field perpendicular to q (TE
mode). It can be shown that the TE mode is overdamped
(its eigenfrequency is imaginary). For the TM solution with
frequency ω and wave vector q (without loss of generality, we
assume q ‖ ex), the fields inside the metal read as

By = −eiqx σωq ω̄

q

∫ ∞

−∞
ei kzz kz Gωk dkz,

Ex = eiqx σωq

q

∫ ∞

−∞
ei kzz

q2 − εωk ω̄2

εωk
Gωk dkz, (8)

Ez = eiqx σωq

∫ ∞

−∞
ei kzz

kz

εωk
Gωk dkz,

where ω̄ = ω/c, σωq is the mode amplitude, and

Gωk = − 4π i

k2 − εωk ω̄2
. (9)

In the above equations, εωk = 1 + χ̃ωk is the dielectric permit-
tivity of the bulk (homogeneous and isotropic) metal.

The fields at z > 0 inside the insulator are obtained
similarly and are given by Eqs. (8) with the substitutions
εωk → εh and σωq → σ ′

ωq. The total solution is found by
matching the boundary conditions at the interface z = 0.
The conditions for By and Ez yield σ ′

ωq = −σωq, while the
condition for the Ex component determines the frequency
dispersion of the SPP modes discussed in the next subsection.
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B. SPP frequency dispersion

The appearance of the Lindhard expression makes it
possible to introduce dimensionless quantities

ω̃ = ω

�p

, t̃ = �pt, k̃ = vF

�p

k, r̃ = �p

vF

r, (10)

that we shall use in the following calculations, omitting the
“tilde” unless this causes confusion. Equating Ex given by
Eq. (8) on both sides of the interface at z = 0 one obtains the
dispersion equation∫ ∞

−∞

1

εωk

q2 − εωkα
2ω2

k2 − εωkα2ω2
dkz = − π

εh

√
q2 − εhα2ω2, (11)

where α = vF /c.
Solutions of Eq. (11) can be obtained only numerically.

However, concentrating on small q values it is instructive to
perform an expansion with respect to the two small parameters
α � 1 and q � 1. The leading-order contribution to Eq. (11)
gives rise to the standard dispersion for SPP modes in the
Drude limit, where

εω ≡ εωk→0 = 1 − 1

ω2(1 + η)
. (12)

We denote the corresponding solution for the dispersion as
ω(0)

q . Corrections to ω(0)
q can be obtained by subtracting the

identity∫ ∞

−∞

q2 − εωα2ω2

k2 − εωα2ω2

dkz

εω

= π

εω

√
q2 − εωα2ω2, (13)

from both sides of Eq. (11). Expanding the result with respect
to α and keeping the two largest contributions, we obtain the
equation

q2

π

∫ ∞

−∞

(
1

εωk

− 1

εω

)
dkz

k2
z + q2

= − q

εω

− q

εh

+ α2ω2

q
. (14)

Expanding this further with respect to q � 1, η � 1 and
taking the largest terms, one arrives at the dispersion equation
in a simplified form

q β(ω) + 1

εω

+ 1

εh

= α2ω2

q2
, (15)

where

β(ω) = 1

π
lim
q→0

lim
η→0

[ ∫ ∞

−∞

(
1

εωk

− 1

εω

)
dkz

k2

]
. (16)

One notes that with β(ω) = 0, Eq. (15) recovers the dispersion
equation in the Drude model [49]. Its solution ω(0)

q saturates
at large q reaching the constant surface plasmon frequency
�sp = 1/

√
1 + εh. In the opposite limit of small q one

has ω(0)
q � q/(α

√
εh) which coincides with the dispersion

of light propagating in the insulator with the dielectric
constant εh. These two limiting cases interchange around
q0 ∼ α

√
εh/(1 + εh) � 1.

Equation (15) can be solved perturbatively by taking into
account that β(ω) is small. Seeking the solution in the form

ωq = ω(0)
q (1 + 
q), (17)

we substitute it into Eq. (15) and then expand the result with
respect to β(ω), which yields the correction


q ≈ ε2
h β

(
ω(0)

q

)
1 + εh

q

2
− i

2

�

ω
(0)
q

. (18)

This can be further simplified at q � q0, where one can use
the quasistatic approximation ω(0)

q � �sp [51] (the validity of
this approximation is discussed in Appendix). Thus, at q � q0,
Eqs. (17) and (18) give a simple linear dispersion

ωq ≈ �sp− i

2
� + vp q, (19)

where the velocity vp is given by Eq. (18) with ω(0)
q → �sp.

The integral in Eq. (16) is estimated by separating real
and imaginary parts in the integrand and then expanding its
imaginary part with respect to large k/ω 
 1. This yields

vp = ε2
h

(1 + εh)2

(
1 − i

12

ln[1 + εh]√
1 + εh

)
. (20)

One notes that the obtained dispersion (19) is complex,
ωq = ω′

q + iω′′
q , even when one neglects other relaxation

processes, � = 0, because of a nonzero imaginary part of
the complex velocity vp = v′

p + iv′′
p in Eq. (20). It is not

difficult to see that the origin of the complex velocity is the
Landau damping, manifested in the logarithmic singularity in
the Lindhard expression. The corresponding damping rate rises
linearly with the plasmon wave vector, so that the contribution
of the Landau damping increases, becoming the largest decay
channel at larger q. However, direct calculations reveal that the
SPP modes are still weakly damped, ω′′

q � ω′
q , in the entire

validity domain of Eq. (19).
We also stress that the linear character of the SPP dispersion

at larger q is a consequence of the nonlocality of the dielectric
function, which is manifested in a finite value of β. Moreover,
the SPP group velocity at q � q0 can be estimated as v′

p ∼ 1
(v′

p ∼ vF in the original units), which is considerably smaller
than the velocity of the polariton propagation c/

√
εh at q � q0.

An important consequence of this fact is that the SPPs DOS at
ω ∼ �sp is much larger than at ω � �sp. The relation between
the linear plasmon dispersion at q � q0 and the nonlocality of
the dielectric response was noted earlier by calculating the
plasmon dispersion in the quasistatic approximation for the
Maxwell equations, which gives numerical results close to
ours for a metal-vacuum interface (εh = 1) [76].

Figure 2 compares results for the real part of the dispersion
obtained by solving Eq. (11) numerically and the linear
dependence in Eqs. (19) (the calculations are done for the silver
material parameters discussed later in Sec. IV). The dispersion
ω(0)

q is also shown for comparison. The results demonstrate a
good accuracy of the linear approximation at q � q0.

C. Quantized SPP modes and QD coupling

Weakly damped SPP excitations in fact represent an en-
semble of independent harmonic oscillators. Such excitations
can be quantized using bosonic field operators âq and â

†
q,

which act in the usual way in the space of the SPP mode
occupation numbers [30–33]. The quantum Hamiltonian of
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FIG. 2. Real part of the SPP frequency dispersion ω′
q . Continuous

(blue) line, labeled “exact,” gives the numerical solution of Eq. (11).
Dotted (violet) line, labeled “no dispersion,” is the result obtained
for the local approximation for the permittivity εω, which yields the
limiting value of the plasmon frequency �sp/�p = 1/

√
1 + εh ≈

0.29 (εh = 11). Dashed (red) line, labeled “linear,” shows the linear
dispersion in Eq. (19). All quantities are shown in scaled units defined
in Eq. (10), the material parameters are typical for silver and discussed
in the text.

the SPP subsystem writes as

ĤSPP =
∑

q

� ω′
q

(
â†

qâq + 1

2

)
. (21)

Here, we took into account only the real part ω′
q of the

SPP frequency, while its imaginary part ω′′
q , which describes

the damping of SPP oscillations, can be taken into account,
e.g., by introducing an interaction between SPP modes
and other system excitations. However, when the damping
is weak, ω′′

q � ω′
q, its influence on the dynamics can be

studied phenomenologically by appropriate modifications of
the dynamical equations.

The quantum interaction Hamiltonian between SPP modes
and the QD states assumes the form [49,72,73]

V̂ = −Ê · P̂, (22)

where P̂ is the operator of the QD dipole moment and Ê is
the electric field operator. We assume that the contribution of
the SPP modes to the electric field operator can be written in
terms of the creation/destruction operators âq and â

†
q for the

SPP modes as

Ê =
∑

q

(Eq âq + E∗
q â†

q), (23)

where the field Eq associated with the excitation of the SPP
mode q (now the direction of q is arbitrary) is given by Eq. (8).
The resulting expression for the QD-SPP interaction contains
the amplitudes σωq which still need to be fixed. To this end,
we note that the energy of weakly damped SPP modes can
be well approximated by the energy of the corresponding
electromagnetic field in the media. Other contributions due to,
e.g., changes in the particles kinetic energy, can be neglected

in this case. For the electromagnetic energy of a single
(nonquantized) SPP mode, we use the following standard
expression for the field energy in dispersive linear responding
media [73]:

Wq = 1

16π

∫ {
E∗

q

∂(ω ε̂)

∂ω
Eq + B∗

qBq

}
dr, (24)

where the integrals are calculated separately in the half-spaces
z ≶ 0 for the metal and for the insulator. We interpret Wq as
the energy of a single excitation of the SPP mode q which
allows us to determine σωq by demanding for consistency that
�ω′

q = Wq .
Substituting the solution of the TM mode from Eq. (8), we

obtain the energy as the sum of four components:

Wq = W
(+)
q,E + W

(−)
q,E + W

(+)
q,B + W

(−)
q,B, (25)

where “±” denotes contributions by the insulator (z > 0) and
the metal (z < 0), given as

W
(±)
q,E = S

32π

∫ ∞

−∞

dkz

2π
Re

[
∂(ω ε±)

∂ω

]

× {|E(±)
x |2 + |E(±)

z |2},

W
(±)
q,B = S

32π

∫ ∞

−∞
|B(±)

y |2 dkz

2π
, (26)

where ε+ = εh, ε− = εωk , and S is the area of the surface (set
to infinity in the end).

Further, we neglect a small interval kz � q0 ∼ α � 1 in
the integral in Eq. (26), where the spectrum is of the polariton
(lightlike) type and the SPP DOS is small. We also note that in
the interval q � q0, the magnetic field contribution contains a
small factor ∝ αω/q � 1 and can be neglected. The electric
field contribution is calculated with the same accuracy as
assumed for the SPP dispersion. This yields

W
(−)
q,E = Sσ 2

ωq

4
Re

[(
1 − ω

∂

∂ω

) ∫ ∞

−∞

1

εωk

dkz

k2
z + q2

]
, (27)

where we set ω = ωq in the end of the calculations. Then,
we expand the integrand with respect to small q and retain
the two leading contributions. The expansion is conveniently
done after adding to and subtracting from Eq. (27) the same
expression with the substitution εω k → εω. The result reads as

W
(−)
q,E = Sσ 2

ωq

4q
Re

[(
1 − ω

∂

∂ω

)(
1

εω

− q β(ω)

)]
, (28)

where β(ω) is given by Eq. (16). The contribution by
the insulator W

(+)
q,E is obtained similarly from Eq. (27) by

substituting εω → εh and by setting β(ω) = 0.
Using Eqs. (15), (19), and (20) to simplify Eq. (28) we

obtain from the condition �ω′
q = Wq the mode amplitude as

σωq = �ωq

Zq

, (29)

where the normalization factor Zq , calculated to terms linear
in q, is given by

Zq = πS(1 + εh)

2 ε2
h q

{
1 + 2 εh(2 + εh) q

(1 + εh)3/2

}
. (30)
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Finally, using this normalization in Eq. (8) the electric field
associated with the SPP mode in the insulator can be written
as

Eq = 2π

εh

√
� ωq

Zq

(
κ

q
ex − i ez

)
ei q ρ−κ z, (31)

where κ2 = q2 − εhα
2ω2

q .

We can now calculate the matrix elements of V̂ between the
quantum states, constructed as products of SPP and QD states.
For the SPP subsystem the quantum states are characterized
by the mode occupation numbers. We shall need the matrix
elements between SPP states nq and nq ± 1 and the QD has
states |G〉 and |E〉. The matrix elements can be formally
written as [77,78]

γq = 〈nq,�a| V̂ |nq + 1,�b〉

=
∫

�∗
a (r)�b(r)(P · Eq(r))dr, (32)

where P = e〈χe|r|χh〉 is the dipole matrix element calculated
between the microscopic Bloch electron (hole) states |χe (h)〉,
e is the electron charge, and �a(b) are the envelope wave
functions of the QD states.

The microscopic calculation of P is beyond the scope of this
work and is actually not needed. Its absolute value p can be
estimated from the available experimental data for the lifetime
of QD excitons. The direction of P depends on the QD growth
direction, the crystal symmetry, and the involved bands. It is,
e.g., P = p/

√
2 (1,0, ± i) for a σ± transition from heavy-hole

states in GaAs-type QDs, when the growth direction is along
the y axis.

The integral in Eq. (32) is easily estimated when the QD
size d is much smaller than its distance a to the surface d � a.
Then, the product �∗

a (r)�b(r) can be approximated by the
Dirac delta function. Combining Eqs. (31), (30), (32), and (19),
expanding the result with respect to small q, and retaining, as
before, the two leading orders in the expansion, we obtain the
square of the coupling constant as

|γq|2 = 8π

S

p2 q e−2qa

(1 + εh)3/2

{
1 − εh (4 + εh) q

(1 + εh)3/2

}
. (33)

As mentioned, p is estimated from the experimentally mea-
sured QD exciton lifetime τ0 = 1/γ0 using the standard
relation between the dipole moment and radiative decay of
the pointlike dipole [73]

γ0 = 4

3

p2

λ3
ex

, (34)

where the wavelength λex = c/�ex corresponds to the dot
transition frequency �ex .

D. Effective Hamiltonian

Using the results of the previous subsection one can write
a simple effective quantum Hamiltonian, which describes QD
states, SPP bosonic excitations, and their coupling as

Ĥ = ĤQD + ĤSPP + ĤQD-SPP, (35)

where the Hamiltonian of SPP modes has been defined earlier
in Eq. (21), the Hamiltonian of the quantum dot is given by

ĤQD = � �ex

2
(1 + σz),

where σi denote Pauli matrices acting in the space of the QD
states, ��ex is the QD transition energy, and the interaction
between QD and SPP modes is described by

ĤQD-SPP = σx

∑
q

�(γqâq + γ ∗
q â†

q),

with the coupling constants γq defined in the previous section.
The Hamiltonian in Eq. (35) neglects the interaction of the
QD with an external laser field. Instead, we assume that
a laser pulse prepares the QD in the excited state quasi-
instantaneously, and then the QD evolves with time due to
the interaction with SPP states.

In this model, we neglected pure dephasing processes
that describe scatterings, e.g., with acoustic phonons, without
changing a QD state. Such interactions lead to dephasing
typically on a time scale of a few picoseconds while the
dynamics to be discussed in the following takes place on
a subpicosecond time scale. Furthermore, our Hamiltonian
neglects the decay of SPP modes which will be taken into
account phenomenologically in the analysis of the dynamics.

We finally stress that the model Hamiltonian comprises only
TM modes, while the overdamped TE modes are neglected.
Although strongly damped excitations can in principle create
an effective relaxation channel, in practice the coupling to such
excitations is weak.

III. TIME EVOLUTION

The system dynamics is studied by calculating the time
evolution of the QD that is initially in its excited state |E〉.
The solution to this problem can be easily found analytically
in the rotating wave approximation (RWA) which neglects the
transitions, where the creation/destruction of an SPP excitation
is accompanied by the creation/destruction of the QD exciton
[72]. The RWA approximation modifies the interaction part of
the Hamiltonian to

Ĥ
(RWA)
QD-SPP =

∑
q

�{γqσ+âq + γ ∗
q σ−â†

q}, (36)

with σ± = (σx ± iσy)/2. It is assumed that before the dynam-
ics started (t < 0), the SPP subsystem is in its ground state
(nq = 0). This assumption is justified when the temperature of
the system is small in comparison with the average energy of
SPP states, T � �〈ωq〉 ∼ ��sp.

A. Dynamical equations and exact solution

Under the above assumptions, the time evolution of the sys-
tem involves only two types of states: (1) |�q〉 = |G〉 ⊗ |1q〉
(QD in the ground state, single SPP nq = 1, nq′ �=q = 0) and
(2) |�e〉 = |E〉 ⊗ |0〉 (QD in the excited state, no plasmons).
At any later time the state of the system is a linear combination
of these states

|�〉 = a(t)|�e〉 +
∑

q

cq(t)|�q〉, (37)
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where the coefficients a(t) and cq(t) satisfy the equations

i ȧ = �ex a +
∑

q

γqcq, i ċq = ωq cq + γ ∗
q a. (38)

This system must be solved with the initial conditions
a(0) = 1 and cq(0) = 0. Resolving the second equation and
substituting the result into the first one we obtain the following
integrodifferential (Volterra) equation

ȧ = −i�ex a −
∫ t

0
K(t − t ′)a(t ′) dt ′, (39)

with memory kernel

K(t) =
∑

q

|γq|2 exp(−iωqt). (40)

Its solution is found by Laplace transformation which yields

a(s) = 1

s + i�ex + K(s)
, (41)

where the Laplace transform of the kernel is

K(s) =
∑

q

|γq|2
s + iωq

. (42)

Finally, the time evolution of the system is found by the inverse
Laplace transform which is defined as a contour integral in the
complex s plane

a(t) = 1

2πi

∫
C

a(s) est ds, (43)

where the contour C is a vertical line placed to the right of all
singularities of a(s).

B. Two relaxation mechanisms

The dynamical equations (38) conserve the total energy of
the system. However, the QD energy decreases with time due to
its redistribution over the continuum of SPP modes, which is a
typical relaxation mechanism in quantum dissipative systems
[44,45]. The relaxation rate can be estimated if the kernel
K(t) decays faster than the solution a(t) such that one can use
the Markov approximation, where a(t) is assumed a slowly
changing function and is taken outside the integral in Eq. (39).
This yields an exponentially decaying solution

a(t) = a(0)e−i�ex t−�Kt , �K =
∫ ∞

0
ei�ex tK(t)dt. (44)

This expression of the decay rate coincides with the result of
Fermi’s golden rule.

The decay of SPP modes introduces another relaxation
mechanism in the QD dynamics, which is not present in the
Hamiltonian (35). This mechanism can be taken into account
by amending Eq. (35) with the interactions that describe
such a decay. Alternatively, one can employ the Linblad
formalism with phenomenological decay rates. However, since
the frequency dispersion ωq is already known, we can simply
modify K(t) in Eq. (39) by adding the factor exp(−ω′′

q t) with a
correct decay rate for each mode. This procedure modifies the
Laplace transform of the kernel in Eq. (42) accordingly. The
amended dynamics in Eq. (39) accounts for both relaxation

mechanisms: the energy redistribution over the continuum
and the decay of the modes in the continuum. Obviously, this
approach is valid as long as the continuum modes are weakly
damped.

C. Memory kernel and inverse Laplace transform

An explicit expression for the memory kernel is obtained
by substituting γq from Eq. (33) and ωq from Eq. (19) into
Eqs. (42) and taking the sum (integral) over q. This expression
can be simplified by keeping only the leading contribution
to the integrand with respect to small q. In the integral we
neglect the interval q � q0, which introduces an error of the
order of α � 1 (a more accurate estimation of the accuracy
of this approximation is found in Appendix). The frequency
dispersion is then approximated by the linear dependence in
Eq. (19). This yields a simplified expression for the kernel

K(s) = g2
∫ ∞

0

q2 e−2qa

s + i�sp + �/2 + i vpq
dq, (45)

where the effective coupling constant is found as

g2 = 3

(1 + εh)3/2

γ0

α3 �3
ex

, (46)

and we used dimensionless quantities γ0 → γ0/�p and
�ex → �ex/�p similar to Eq. (10). The integral in Eq. (45)
can be estimated analytically. It is convenient to change the
Laplace variable s to

ξ = −i a

vp

(s + i�sp + �/2), (47)

and to introduce scaled constants

g = a

vp

g̃, g̃ = g

a3/2
, 
 = a

vp

(δ� + i�/2), (48)

where the difference δ� = �ex − �sp will be referred to as
“detuning.” The transformation in Eqs. (47) and (48) helps to
write the inverse Laplace transform in Eq. (43) in the form

a(t) = e−i�spt−�t/2
∫

I

exp
(
i vp

a
ξ t

)
ξ + 
 − g2 K(ξ )

dξ

2πi
, (49)

with a simple analytic expression for the kernel

K(ξ ) = 1

4
− ξ

2
+ ξ 2e2ξ �(0,2ξ ), (50)

with �(0,x) being the incomplete gamma function. The
integration contour I in Eq. (49) (see Fig. 3) is obtained from
the original contour C in Eq. (43) by the same change of
variables. The tangent angle of the straight line I is equal to
the argument of the complex velocity of the SPP excitations,
θ = − arg[vp].

The integral in Eq. (49) is evaluated by extending the
integral contour I by closing it in the upper half-space of
the complex plane Im[ξ ] > 0, as illustrated in Fig. 3. The
contour should bypass singularities (simple poles at ξi) and the
branch-cut line J = (−∞,0] defined by the analytic structure
of the function K(ξ ) in Eq. (50). The integral over the closed
contour I is equal to a sum

a(t) = −aJ (t) −
∑

i

ai(t), (51)
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FIG. 3. Illustration of the integration contour for the inverse
Laplace transformation in Eq. (49). The line I is obtained from
the vertical line of the integral in Eq. (43), its tangent is given as
− arg[vp]. The branch cut of K(ξ ) is indicated by a zigzag line. Ji are
the poles of the integrand in Eq. (49).

where the branch-cut contribution is

aJ (t) = 1

2πi

∫ 0

−∞
ei

vp

a
ξ t {a(ξ + i0) − a(ξ − i0)}dξ, (52)

and the pole residues are

ai(t) = −
[
da(ξi)

dξi

]−1

exp

(
i
vp

a
ξit

)
. (53)

IV. QD DYNAMICS

The results of the previous section demonstrate that the
QD dynamics depends on three main parameters: detuning

, coupling g, and decay rate �, which contain material
parameters �p, vF , and a in their scaling. As a prototype
we consider a system where the QD is embedded in the
semiconductor GaAs and is placed close to a silver sample.
Material parameters for silver can be found in Ref. [79].

The dielectric constant of the embedding GaAs material is
εh � 11 (estimated at ω = �sp). The energy of bulk plasmons
in silver is ��p � 9.2 eV. The energy of surface plasmons,
obtained from the condition ε = −εh, is ��sp � 2 eV. For
the Fermi velocity in bulk silver we take vF � 1.4 × 106 m/s,
so that α = vF /c � 5 × 10−3. The rate of SPP decay due to
the finite carrier lifetime in silver at ω = �sp is estimated
as � � 0.02 eV. This rate is smaller than the rate due to the
Landau damping and can be neglected in the time scale of
interest. The recombination time of the dot is assumed τ �
0.5 ns, which yields the corresponding exciton relaxation rate
γ0 � 2 × 109 s−1. The QD transition energy �ex is taken as a
variable because we intend to consider dynamical patterns at
different values of the detuning δ�.

With these material parameters we can estimate the validity
interval of the approach and of the approximations made
in the analysis of the previous two sections using the
results of Appendix. The interval of admissible values of
the QD-interface distances is estimated as a ∼ 5–500 nm.
At distances a � 500 nm, details of the dispersion at q � q0

become important, while at a � 5 nm the expansion condition
q � 1 (in the dimensionless units) is considerably violated.
The validity of the continuous media approximation and
the specular reflection assumption breaks at much smaller
distances a � 1 nm. In principle, the calculations within the
continuous models can thus be done also in the interval
1 nm � a � 5 nm. However, this requires the exact numerical
solution of the dispersion equation (11) as well as the analysis
of the influence of the shape of the effective potential at the
metal boundary on the susceptibility (4) (see Appendix), which
although interesting is beyond the scope of this work.

A. Two characteristic times

Examples of the time evolution of |a(t)|, calculated at
different detunings δ�, are shown in Figs. 4(a)–4(d) by thick
(color) lines. In all panels, the time dependence is initially
oscillatory, which is then followed by a longer monotonic
decay. One can distinguish three parameters that characterize
the dynamical pattern: the frequency of the oscillations �R

(Rabi frequency) and two decay rates γR 
 γt , that determine
the decay of the Rabi oscillations and of the subsequent
monotonic relaxation, respectively. A time evolution with two
very different rates is a notable feature of this system. We
want to consider it in more detail by looking into the analytical
structure of a(ξ ) in Eq. (41) or in (49).

We note that a(ξ ) can have at most two poles. In the case of
two poles (the regime of strong coupling) the contribution of
the branch-cut integral J is negligible and the time dependence
is

|a(t)| ∼ |a1e
−i�Rt−γ1t + a2e

−γ2t |, (54)

where the frequency �R and the decay rates γi are defined by
the poles

�R = Re

[
vp

a
(ξ1 − ξ2)

]
, γi = Im

[
vp

a
ξi

]
. (55)

Equation (54) describes decaying Rabi oscillations with two
characteristic decay rates γ1 and γ2. The larger rate γR =
max(γi) describes the decay of the Rabi oscillations, while
the smaller one γt = min(γi) defines the subsequent long
monotonic relaxation. In our examples, the decay of the Rabi
oscillations turns out to be much faster than the long-time
decay. In fact, Fig. 4 reveals a large difference between the
rates that reaches orders of magnitude: γR/γt ∼ 10–100.

The appearance of two distinct rates can be traced by
looking for solutions of a(ξ )−1 = 0 in the limit of large
coupling constants. An approximate solution for the poles can
be obtained by employing the asymptotic expansion of the
kernel for |ξ | 
 1:

K(ξ ) � 1

4ξ
− 3

8ξ 2
. (56)
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FIG. 4. Examples of the time evolution of the dot. Thick colored
lines in panels (a)–(d) represent |a(t)| obtained from Eq. (49) at
δ� = −0.02, 0, 0.02, 0.03 (in �p units) for the QD-surface distance
a = 10 nm and other material parameters as discussed in the text.
Thin black lines are obtained by neglecting the plasmon dispersion
ωq = �sp and choosing the parameters �̃ and δ� to reproduce the
frequency �R of the Rabi oscillations and the overall relaxation rate
which determines the long-time asymptotic of the QD in the original
dynamics (thick lines in this figure).

At negative (real) ξ , this expansion should be amended by
the imaginary contribution equal to the jump of the kernel on
the branch cut: Im[K(ξ < 0)] = iπ ξ 2e2ξ . Substituting this
expansion into Eq. (49) we find two poles of the integrand
which yield the Rabi frequency

�R � �0 − 3

2

δ�

τp �0
, (57)

where �0 = g̃ and τp = a/v′
p, as well as the decay rates

γ1 � 3

4

|v′′
p|
a

(
1 + 2

δ�

�0

)
,

γ2 � 3

4

|v′′
p|
a

(
1 − 2

δ�

�0

)
+ π�0

4
(�0τp)3e−(�0+δ�)τp . (58)

This result for the rates comprises two contributions of differ-
ent nature. The first one, found in both γ1,2, is proportional

to |v′′
p| and appears due to the Landau damping. The second

contribution is found only in γ2 and depends on the new
characteristic time τp, which is equal to the plasmons time
of flight over the distance a.

We note that the latter contribution is a consequence of the
nonzero SPP velocity v′

p at q � q0, and thus of the nonlocality
in the dielectric response of the metal. When the latter is
neglected the frequency dispersion degenerates, ωq = �sp,
and the kernel K(s) is given by Eq. (A5) in the Appendix,
where the decay rate �̃ stands for all relaxation channels. The
resulting time dependence is defined by two poles

ξ1,2 = δ� + i �̃

2
± 1

2

√
(δ� + i �̃)2 + g̃2

4
. (59)

This well-known expression describes the poles that corre-
spond to the dynamical equations for a QD placed in a
resonator and coupled to a single electromagnetic mode [72].
The poles for this system reveal a bifurcation point at g̃ = 2�̃

that separates the strong coupling regime with Rabi oscillations
from the weak coupling regime where a monotonic decay
is found. Equation (59) yields two relaxation rates γ1,2 �
�̃(1 ± δ�/�0)/2, which coincide with the first contribution
in Eq. (58), if we take �̃ = 3|v′′

p|/(2a). However, the second
contribution to γ2 in Eq. (58) cannot be reproduced without
accounting for the nonlocality in the dielectric response.

The difference between the decay rates in Eq. (59) is
determined by the relative detuning δ�/�0. This quantity
is small (or zero) and thus Eq. (59) cannot explain the large
differences between the rates seen in Fig. 4. An attempt to
reproduce the dynamics induced by the Lindhard permittivity
function using the results for the local response, with δ�, �̃,
and g playing the role of fitting parameters, does not lead to
a satisfactory agreement. This is clearly seen in Fig. 4, where
the best fits (thin black lines) are plotted alongside the original
time dependencies (color thick lines).

When the coupling strength decreases one or both poles of
a(ξ ) move toward the branch cut and at some critical value of
the coupling strength one of them disappears. In this case, the
contribution of the integral along the branch cut in Eq. (52)
becomes comparable with that of the remaining pole. However,
for a wide range of coupling constants the dynamical pattern
does not differ qualitatively from the case of two poles. The
reason is that the dependence of a(ξ ) along the branch cut is
similar to the Lorenzian dependence (this happens if the pole
is not too far from the branch cut in the unphysical sheet). In
this case, the integral yields a time evolution which resembles
a simple exponential dependence, as would result from the
pole residue. We note that for the parameters used to plot
Figs. 4(a)–4(c) the system has a single pole and a Lorenzian-
type dependence of a(ξ ) along the branch cut. The second pole
appears only at a � 5 nm (g ∝ a−1/2), where the applicability
of the employed theoretical approach becomes questionable.
Nevertheless, the conclusion on the two distinct decay times
remains valid in a broad range of coupling strengths.

Finally, we note that the smaller of the two decay times γt

can be estimated without the full analysis of the dynamics, e.g.,
by a simple analysis of the energy loss rate due to the dipole
dot-plasmon coupling, as is done, in particular in Refs. [50–
52]. Calculations based on such estimations are more accurate
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far from the resonance, where the ultrafast dynamics is
suppressed. In Sec. IV D we determine the dependence on the
distance a and demonstrate that the asymptotic dependence of
γt coincides with the earlier results.

B. Power-law asymptote

When the coupling constant g decreases or the detuning
becomes larger, the dependence a(ξ ) ceases to be a Lorenzian-
type function. In this case, the branch-cut integral aJ (t) in
Eq. (52) gives a power-law long-time asymptotic t−α . This
qualitative change is most visibly manifested in a much slower
decay of the Rabi oscillations and not in the longer time
asymptotic of |a(t)|. The latter follows from the fact that
similarly to Eq. (54), the time dependence comprises two
contributions, the exponential and the power-law functions

|a(t)| ∼ |a1e
−i�Rt−γ1t + a2t

−α|. (60)

It turns out that the coefficient a2 is much smaller than a1 so that
the power-law contribution is smaller than the exponential one
at intermediate times. As long as this condition holds, the decay
of the oscillations is governed by the power law as can be seen
by expanding the square root which is contained in the modulus
in Eq. (60) with respect to the parameter a2/a1e

γ1t t−α which
is small for not too long times. Consequently, the oscillations
persist much longer than in the case when both contributions
are exponential. At longer times, the power-law contribution
in Eq. (60) becomes dominant. However, in this limit the
dynamics is suppressed by the common exponential factor
exp(−�t/2) in Eq. (49), such that in practice the power-law
dependence does not reveal itself in the long-time asymptote.

The time evolution in this regime is illustrated in Fig. 4(d)
where the time dependence is calculated at δ� = 0.03. One
can see that, although the overall relaxation is faster [compared
with Figs. 4(a)–4(c)], the decay of the Rabi oscillations slows
down, so that the oscillations are visible at much longer times.

The power-law time contribution can be estimated analyti-
cally from Eq. (52) by looking at the asymptote of its integrand
at ξ → 0. Expanding K(ξ ) at small ξ we obtain

K(ξ ) � 1

4
− ξ

2
− ξ 2 ln (2eγ ξ ). (61)

With the help of this expansion, Eq. (52) is rewritten as

aJ (t) � −
∫ 0

−∞

g2ξ 2 exp
(
i vp

a
ξ t

)
(ξ + 
 − g2/4)2 + π2g2ξ 4

dξ. (62)

Its long-time asymptotic is then found by substituting x = ξ t

and expanding the integrand with respect to large t which
yields

aJ (t) � 2a3g2

b3(
 − g2/4)2

1

t3
. (63)

This expression formally diverges at 
 = g2/4. This means
that close to this point the next order contributions of the
expansion in Eq. (62) must be taken into account giving even
a slower decaying function aJ (t) ∼ t−1.

We stress again that the power-law dependence is a
direct consequence of the linear dependence of the plasmon
frequency dispersion at larger q that appears due to the

nonlocality of the metal permittivity function. The power-law
decay cannot appear for the Drude permittivity model.

C. Dependence on detuning

According to Eq. (49), the QD dynamics depends on two
parameters: the (scaled) detuning 
 and the coupling constant
g (we assume that � is negligibly small). As demonstrated
above, a typical dynamical pattern is an oscillating relaxation
characterized by two decay rates γR and γt (the latter is defined
only for the exponential decaying case) and the Rabi frequency
�R . Here, we investigate the dependence of �R and γt,R on
the detuning 
 (δ�). The parameters �R and γt,R are obtained
directly from the numerical time dependence of |a(t)| by fitting
it with the approximate expression (54).

The results are shown in two panels in Fig. 5. For a
convenient comparison with the time evolution in Fig. 4,
the values of the detuning δ� = −0.02,0,0.02,0.03, used to
obtain the dynamics in panels Figs. 4(a)–4(d), respectively, are
marked by (colored) points in Fig. 5. We note that γ1 and γ2

in Fig. 5(b) reflect the structure of the integrand in Eq. (49)
and are thus continuous functions of the system parameters.
Since γt,R are defined as the minimum/maximum of γ1,2, the

FIG. 5. Dependence of the characteristics of the system dynamics
on the detuning δ� = �ex − �sp . (a) Frequency of the Rabi oscilla-
tions �R . (b) Two decay rates γ1,2. All quantities are shown in the
scaled units of Eq. (10). Circles A–D (colored) mark the detunings
δ� used in the calculation of the time evolution in Figs. 4(a)–4(d),
respectively. The QD-surface distance is a = 10 nm, other material
parameters are as discussed in the text.
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correspondence γt,R ↔ γ1,2 may change as is seen in Fig. 5(b),
where it interchanges at δ� ∼ 0.02.

The dependence �R(δ�), shown in Fig. 5(a), is well
described by the parabolic function

�R ∼
√

(δ� − δ�0)2 + g̃2/4, (64)

with the minimum at δ�0 > 0. This is similar to the well-
known result for the Rabi frequency of a QD coupled to a
single resonator mode [72], obtained from Eq. (59), where the
additional shift δ�0 ∝ a−1 reflects the position of the maximal
value of the spectral weight of the QD-SPP coupling.

In contrast to �R(δ�), the decay rates γi(δ�) [Fig. 5(b)] are
nonsymmetric functions of δ�. At δ� < 0 the smallest rate
γt = γ2, that defines a slow monotonic relaxation, corresponds
to the pole J2 in the upper half-plane in Fig. 3. The larger rate
γ1 is determined by either the pole J1 in the lower half-space
or by the branch cut J . It is important that with increasing δ�

the rates γ1 and γ2 shift toward each other, so that the decay of
the Rabi oscillations slows down while the overall relaxation
becomes faster. At δ� � 0.015, the rate γ2(δ�) becomes a
decreasing function. It reaches zero at δ� � 0.025 where the
dynamics changes qualitatively. When the detuning exceeds
this value aJ (t) has the power-law long-time asymptote ∝ t−3

(the exponential decay rate is formally zero). This change is
manifested in the longer visibility of the Rabi oscillations as
illustrated in Fig. 4(d).

D. Dependence on the QD-surface distance

The second parameter that determines the system dynamics
is the coupling strength g, which according to Eq. (48) is
controlled by the QD-surface distance a (g̃ ∝ a−1/2). Unlike
the QD dipole moment, this distance is easily controlled in
experiments.

The Rabi frequency �R as a function of a is shown in Fig. 6.
We note that the obtained dependence is also well described
by Eq. (64). The calculations at δ� = −0.02,0, labeled as A
and B in Fig. 6, correspond to the similarly labeled curves

FIG. 6. Frequency of the Rabi oscillations �R as a function of
the QD-surface distance a, calculated at δ� = −0.02, 0, 0.02 (in �p

units), labeled as A, B, and D, that correspond to the time evolution
in panels Figs. 4(a), 4(b), and 4(d).

FIG. 7. Log-log plot of the decay rates γR (a) and γt (b) as func-
tions of the QD-surface distance a calculated at δ� = −0.02, 0, 0.02
(in �p units). The labeling of the curves corresponds to that in
Fig. 6. The case δ� = 0.02 (D) is absent for γR in (a) because the
corresponding contribution has a power-law asymptotic.

and points in the other figures. The line D in Fig. 6 (δ� =
0.02) corresponds to results in Fig. 4(d) and at point D in
Fig. 5, that are both calculated for a QD-surface distance a �
15 nm. However, at smaller distances a � 15 nm, the line D
in Fig. 6 corresponds to Fig. 4(c) and to point C in Fig. 5.
This interchange follows from the fact that the scaled detuning
depends on the distance as 
 ∝ a and, therefore, variations in
a lead to respective changes in δ�.

The rates γR and γt are shown, respectively, in panels
(a) and (b) in the log-log Fig. 7. The calculations at δ� =
−0.02,0,0.02 are labeled as A, B, and D. Figure 7(a) does
not show line D (δ� = 0.02) since it exhibits a power-law
asymptotic.

Both γt and γR are decreasing functions of a. In the limits of
small and large a, the smallest rate γt can be approximated by
power-law dependencies of the type γi ∝ a−ν . In particular, at
small a and large coupling constants Eq. (58) gives γt ∼ a−1,
which is shown by a dashed line for small a’s in Fig. 7(b).
One sees that the asymptotic estimate is close to the numerical
results at δ� = −0.02,0 (lines A and B). It must be noted,
however, that this asymptote is achieved at very small a, which
is beyond the validity interval of the approach (a � 5 nm). At
δ� = 0.02 (line D) this asymptote could not be achieved.
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In the opposite limit of large a, the coupling constant g ∝
a−1/2 is small. However, since the scaled detuning 
 ∝ a is
large in this limit, the asymptotic in Eq. (56) can be used for the
estimations of the pole. From this one estimates the asymptote
of the smallest rate γt as

γt � 3

8

|v′′
p|

δ�2

g2

a4
. (65)

As mentioned earlier at the end of Sec. IV A, the results of the
calculations for γt far from the resonance should coincide with
previous calculations of the dot relaxation rate, based on the
estimate for the QD decay rate from the plasmon energy loss
as described by the imaginary part of the frequency dispersion
ω′′

q . Indeed, the asymptote a−4 obtained in Eq. (65) coincides
with the earlier results in this limit, derived in particular in
Ref. [51].

As seen in Fig. 7(b), where Eq. (65) is shown by the dashed
lines at larger a, the asymptote γt ∼ a−4 is in good agreement
with the numerical results at δ� �= 0. Finally, at δ� = 0 the
analytic estimation yields γt ∼ a−2, however, it is achieved at
much larger a than shown in Fig. 7.

The asymptotes of γR are not so simple, which can be
seen from the approximation in Eq. (58). Figure 7(a) reveals a
more complicated dependence γR(a). At small a the additional
contribution disappears and one obtains γR ∼ a−1. However,
the numerical curves in Fig. 7(a) are not close to these
asymptotes, showing instead a more complicated pattern.

V. SUMMARY

This work presents an investigation of the quantum dynam-
ics of a QD in the vicinity of a metallic surface. The dynamics
is induced by the electromagnetic interaction between the
QD and SPP excitations localized near the metal-insulator
interface. The calculations are done using a continuous media
model with linear electromagnetic response for both metal
and insulator. The approach takes into account the nonlocality
of the electromagnetic response of the metal, given by
the Lindhard function which is modified for the half-space
geometry. An analysis of the validity of the model and the used
approximations indicates that the conclusions can be trusted
in a wide range of parameters. In particular, for a typical metal
the interval of acceptable dot-surface distances is estimated as
5 � a � 500 nm.

Calculations of the SPP modes demonstrate that the
nonlocality significantly modifies their frequency dispersion.
It becomes linear at larger wave vectors, so that plasmons in
this interval propagate with a finite velocity estimated as ∼vF .
It is also shown that the damping of SPP modes is controlled by
the Landau damping in the metal. Both effects lead to notable
changes in the system dynamics.

The time evolution of the system is calculated for the case
where the QD is initially prepared in its excited state while SPP
excitations are absent. The dynamics is shown to comprise two
components: a rapidly decaying oscillation followed by a much
slower monotonic decay at longer times. The appearance of
two relaxation rates that differ by large amounts is shown to be
another consequence of the nonlocality of the electromagnetic
response.

The system dynamics is controlled by two main parameters:
(i) the detuning between the surface plasmon frequency
derived from the Drude model and the dot transition frequency
and (ii) the coupling strength. The latter can be adjusted by
the distance between the dot and the surface. The analysis
reveals specific dependencies of the dynamical characteristics
on these parameters.

Finally, it is found that under certain conditions, one of the
contributions to the relaxation dynamics has a power-law long-
time asymptote. Although at longer times this contribution
is suppressed by other relaxation channels, it leads to a
considerably reduced damping of the Rabi oscillations.
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APPENDIX: ACCURACY OF THE APPROXIMATIONS

The calculations in this work involve several approxima-
tions. The first one is the continuous media model in the
calculations of SPP modes, in particular, the electromagnetic
response of the metal. This approximation neglects changes of
the spatial distribution of the charge carriers in the vicinity of
the interface. The corresponding width where such changes are
important can be estimated as 2πk−1

F , and this approximation
is obviously not valid at smaller dot-interface distances. For
parameters of silver and gold, one estimates 2πk−1

F ≈ 0.5 nm,
which is close to the interatomic distance in these metals
am ≈ 0.3 nm. This sets the lowest limit of the validity interval,
further limits are determined by the approximations used in
the calculations within the model.

The lower limit for a follows from the applicability of
the linear approximation for the dispersion (19). Taking
the validity interval for this expansion as q � 1 and the
exponential cutoff exp(−2qa), that appears in the expression
of the QD-SPP coupling constants, one obtains the validity
interval for dot-surface distances as a 
 1, or a 
 vF /�p in
the original dimensional units. With the material parameters
discussed in the text, this yields the lowest limit of the validity
interval vF /�p ≈ 0.7 nm. In practice, however, a must be
larger than this limit. The accuracy of the linear approximation
(19) is estimated as ∼3% for 1/q = 5 nm, which implies a
similar accuracy for a ≈ 5 nm.

We note that the formalism developed in this work can
be in principle extended to the interval of smaller distances,
0.5 nm � a � 5 nm. However, in this interval the linear
approximation for the dispersion is not applicable and Eq. (11)
must be solved numerically. In addition, at such small distances
the size of the dot becomes larger than a, which requires more
elaborate calculations of the coupling constants than used to
obtain Eq. (33). However, other components of the model
may become questionable in this interval. In particular, at
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such distances the influence of the interface can distort the
wave functions of the metal carriers, which can break the
SRM assumptions and lead to considerable modifications in
the dielectric permittivity, which is beyond the scope of this
work.

The upper limit for distance a is defined by the approx-
imations used for the calculation of the memory kernel in
Eq. (45), which neglects the interval q � q0 = α

√
εh/(1 + εh)

of the polariton SPP states. The correct dispersion in this
interval is substituted by extending its linear approximation
in Eq. (19) to all q. In order to estimate the validity of this
approximation, we note that the exponential cutoff factor
selects the most contributing interval in the integration in
Eq. (45) to q � q0. This gives an estimate for the validity
interval a � 1/q0 ∼ 1/α. With the material parameters used
in the calculations, we obtain a � 100 nm.

A more accurate estimation of the allowed interval of a can
be obtained by calculating corrections to the memory kernel
K(s) that are given by the SPP states in the interval q � q0. In
this interval, the frequency dispersion is obtained by solving
Eq. (15) with β(ω) = 0 which yields the leading contribution
in the form

ωq�q0
= q

α
√

εh

(
1 − 1

2

q2

α2

)
. (A1)

The electric field for those SPP modes is given by Eq. (31)
with the dispersion, defined in the above equation, and the
normalization constant, obtained as

Zq�q0
= πS

4

α

εhq2
. (A2)

The so-obtained expression for the electric field of the SPP
modes is then used to calculate the coupling constants.
Corrections to the memory kernel are given by the integral
over wave vectors q as in Eq. (45), but with the upper
limit q0. This limit is conveniently carried out by introducing
an exponential cutoff exp(−q/q0). This procedure yields a
corrective contribution for the kernel in the form

δK1(ξ ) = g2 α3a2vp√
1 + εh

K1

(
vp

a
ξ − 1

)
, (A3)

where

K1(x) = 6 + ξ (−2 + ξ − ξ 2) + ξ 4eξ �(0,ξ ). (A4)

Comparing this with the main contribution to the memory
kernel in Eqs. (49) and (50) and taking into account that
K(x) ∼ K1(x) and that vp ∼ 1, one obtains the condition that
the correction is small, as α3a2/

√
1 + εh � 1. This result

helps to estimate the validity interval of the calculations as
a � α−3/2

√
1 + εh, which with the numerical parameters used

in the calculations yields the validity interval a � 0.5μ. At
larger distances, the corrections due to small wave vectors
must be taken into account. Furthermore, the upper restriction
on the distance to the dot is also related to the time light needs
to propagate between the dot and the surface. At larger a �
0.5μ, this time becomes long enough to influence the system
dynamics and this invalidates the quasistatic approximation,
where the delay due to the finite flight time is neglected.

We next note that, unlike the interval q � q0, the linear
dispersion ωq at q � q0 cannot be neglected, so that one
cannot approximate ωq by a constant �sp. Indeed, with this
approximation the memory kernel is found to be

K(s) = g2

4a3

1

s + i�sp + �̃
, (A5)

where �̃ represents all relaxation mechanisms. The discussion
in Sec. IV demonstrates that the dynamics obtained with
Eq. (A5) differs qualitatively from Eq. (49).

Finally, in the calculations of the memory kernel in Eq. (45),
we neglected the next-to-leading order corrections ∝ q that
appear in the coupling constants in Eq. (33). Taking those
corrections into account, we obtain corrections to the memory
kernel as

δK2(ξ ) = −g2

a

εh(4 + εh)

(1 + εh)3/2
K2(ξ ), (A6)

with

K2(ξ ) = 1

4
{1 + ξ (−1 + 2ξ ) − 4ξ 3e2ξ �(0,2ξ )}. (A7)

Noting that the functions K2(ξ ) ∼ K(ξ ) are of the same order,
we get the interval a � εh(4 + εh)/(1 + εh)3/2, where such
corrections can be neglected. This yields the validity condition
a � 5 nm for the assumed material parameters. Summarizing
the results in this appendix we conclude that the analysis in
this work is valid for distances 5–500 nm.
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[61] A. Trügler and U. Hohenester, Phys. Rev. B 77, 115403 (2008).
[62] A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, Phys.

Rev. B 82, 035411 (2010).
[63] A. Gonzalez-Tudela, F. J. Rodrı́guez, L. Quiroga, and C. Tejedor,

Phys. Rev. B 82, 115334 (2010).
[64] E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P.

Vinogradov, and A. A. Lisyansky, Phys. Rev. B 85, 035405
(2012).

[65] C. Van Vlack, P. T. Kristensen, and S. Hughes, Phys. Rev. B 85,
075303 (2012).

[66] M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V.
Zayats, and M. S. Kim, Phys. Rev. Lett. 101, 190504 (2008).

[67] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[68] J. Lindhard, Kgl. Danske Videnskab. Selskab. Mat.-Fys. Medd.
28, 8 (1954).

[69] N. D. Mermin, Phys. Rev. B 1, 2362 (1970).
[70] N. W. Ashcroft and N. D. Mermin, Solid State Physics,

(Thomson Learning, Toronto, 1976).
[71] L. V. Keldysh, D. A. Kirzhnitz, and A. A. Maradudin, The

Dielectric Function of Condensed Systems (North-Holland,
Amsterdam, 1989).

[72] G. Knight, Introductory Quantum Optics (Cambridge University
Press, Cambridge, 2005).

[73] V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz,
Quantum Electrodynamics (Butterworth-Heinemann, Oxford,
1982).

195414-14

http://dx.doi.org/10.1038/nature08318
http://dx.doi.org/10.1038/nature08318
http://dx.doi.org/10.1038/nature08318
http://dx.doi.org/10.1038/nature08318
http://dx.doi.org/10.1103/PhysRevA.88.053826
http://dx.doi.org/10.1103/PhysRevA.88.053826
http://dx.doi.org/10.1103/PhysRevA.88.053826
http://dx.doi.org/10.1103/PhysRevA.88.053826
http://dx.doi.org/10.1038/nmat3356
http://dx.doi.org/10.1038/nmat3356
http://dx.doi.org/10.1038/nmat3356
http://dx.doi.org/10.1038/nmat3356
http://dx.doi.org/10.1021/cr1002672
http://dx.doi.org/10.1021/cr1002672
http://dx.doi.org/10.1021/cr1002672
http://dx.doi.org/10.1021/cr1002672
http://dx.doi.org/10.1063/1.4858935
http://dx.doi.org/10.1063/1.4858935
http://dx.doi.org/10.1063/1.4858935
http://dx.doi.org/10.1063/1.4858935
http://dx.doi.org/10.1021/nl062528t
http://dx.doi.org/10.1021/nl062528t
http://dx.doi.org/10.1021/nl062528t
http://dx.doi.org/10.1021/nl062528t
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1103/PhysRevLett.106.113601
http://dx.doi.org/10.1103/PhysRevLett.106.113601
http://dx.doi.org/10.1103/PhysRevLett.106.113601
http://dx.doi.org/10.1103/PhysRevLett.106.113601
http://dx.doi.org/10.1103/PhysRevB.85.195463
http://dx.doi.org/10.1103/PhysRevB.85.195463
http://dx.doi.org/10.1103/PhysRevB.85.195463
http://dx.doi.org/10.1103/PhysRevB.85.195463
http://dx.doi.org/10.1103/PhysRevLett.97.053002
http://dx.doi.org/10.1103/PhysRevLett.97.053002
http://dx.doi.org/10.1103/PhysRevLett.97.053002
http://dx.doi.org/10.1103/PhysRevLett.97.053002
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevLett.97.266808
http://dx.doi.org/10.1103/PhysRevLett.97.266808
http://dx.doi.org/10.1103/PhysRevLett.97.266808
http://dx.doi.org/10.1103/PhysRevLett.97.266808
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1021/nl903455z
http://dx.doi.org/10.1021/nl903455z
http://dx.doi.org/10.1021/nl903455z
http://dx.doi.org/10.1021/nl903455z
http://dx.doi.org/10.1103/PhysRev.92.626
http://dx.doi.org/10.1103/PhysRev.92.626
http://dx.doi.org/10.1103/PhysRev.92.626
http://dx.doi.org/10.1103/PhysRev.92.626
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1103/PhysRevB.4.4129
http://dx.doi.org/10.1103/PhysRevB.4.4129
http://dx.doi.org/10.1103/PhysRevB.4.4129
http://dx.doi.org/10.1103/PhysRevB.4.4129
http://dx.doi.org/10.1021/nl303440w
http://dx.doi.org/10.1021/nl303440w
http://dx.doi.org/10.1021/nl303440w
http://dx.doi.org/10.1021/nl303440w
http://dx.doi.org/10.1038/nphoton.2012.340
http://dx.doi.org/10.1038/nphoton.2012.340
http://dx.doi.org/10.1038/nphoton.2012.340
http://dx.doi.org/10.1038/nphoton.2012.340
http://dx.doi.org/10.1103/PhysRev.69.37
http://dx.doi.org/10.1103/PhysRev.69.37
http://dx.doi.org/10.1103/PhysRev.69.37
http://dx.doi.org/10.1103/PhysRev.69.37
http://dx.doi.org/10.1103/PhysRevB.90.235313
http://dx.doi.org/10.1103/PhysRevB.90.235313
http://dx.doi.org/10.1103/PhysRevB.90.235313
http://dx.doi.org/10.1103/PhysRevB.90.235313
http://dx.doi.org/10.1103/PhysRevLett.101.116801
http://dx.doi.org/10.1103/PhysRevLett.101.116801
http://dx.doi.org/10.1103/PhysRevLett.101.116801
http://dx.doi.org/10.1103/PhysRevLett.101.116801
http://dx.doi.org/10.1103/PhysRevB.66.153305
http://dx.doi.org/10.1103/PhysRevB.66.153305
http://dx.doi.org/10.1103/PhysRevB.66.153305
http://dx.doi.org/10.1103/PhysRevB.66.153305
http://dx.doi.org/10.1063/1.2010602
http://dx.doi.org/10.1063/1.2010602
http://dx.doi.org/10.1063/1.2010602
http://dx.doi.org/10.1063/1.2010602
http://dx.doi.org/10.1038/nphoton.2012.112
http://dx.doi.org/10.1038/nphoton.2012.112
http://dx.doi.org/10.1038/nphoton.2012.112
http://dx.doi.org/10.1038/nphoton.2012.112
http://dx.doi.org/10.1103/PhysRevLett.113.226401
http://dx.doi.org/10.1103/PhysRevLett.113.226401
http://dx.doi.org/10.1103/PhysRevLett.113.226401
http://dx.doi.org/10.1103/PhysRevLett.113.226401
http://dx.doi.org/10.1103/PhysRevLett.103.063003
http://dx.doi.org/10.1103/PhysRevLett.103.063003
http://dx.doi.org/10.1103/PhysRevLett.103.063003
http://dx.doi.org/10.1103/PhysRevLett.103.063003
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/PhysRevLett.110.263901
http://dx.doi.org/10.1103/PhysRevLett.110.263901
http://dx.doi.org/10.1103/PhysRevLett.110.263901
http://dx.doi.org/10.1103/PhysRevLett.110.263901
http://dx.doi.org/10.1103/PhysRevLett.108.106802
http://dx.doi.org/10.1103/PhysRevLett.108.106802
http://dx.doi.org/10.1103/PhysRevLett.108.106802
http://dx.doi.org/10.1103/PhysRevLett.108.106802
http://dx.doi.org/10.1021/jp807345h
http://dx.doi.org/10.1021/jp807345h
http://dx.doi.org/10.1021/jp807345h
http://dx.doi.org/10.1021/jp807345h
http://dx.doi.org/10.1016/0370-1573(84)90098-X
http://dx.doi.org/10.1016/0370-1573(84)90098-X
http://dx.doi.org/10.1016/0370-1573(84)90098-X
http://dx.doi.org/10.1016/0370-1573(84)90098-X
http://dx.doi.org/10.1103/PhysRevB.69.121403
http://dx.doi.org/10.1103/PhysRevB.69.121403
http://dx.doi.org/10.1103/PhysRevB.69.121403
http://dx.doi.org/10.1103/PhysRevB.69.121403
http://dx.doi.org/10.1021/nl047957a
http://dx.doi.org/10.1021/nl047957a
http://dx.doi.org/10.1021/nl047957a
http://dx.doi.org/10.1021/nl047957a
http://dx.doi.org/10.1103/PhysRev.172.607
http://dx.doi.org/10.1103/PhysRev.172.607
http://dx.doi.org/10.1103/PhysRev.172.607
http://dx.doi.org/10.1103/PhysRev.172.607
http://dx.doi.org/10.1103/PhysRevB.24.554
http://dx.doi.org/10.1103/PhysRevB.24.554
http://dx.doi.org/10.1103/PhysRevB.24.554
http://dx.doi.org/10.1103/PhysRevB.24.554
http://dx.doi.org/10.1103/PhysRevB.35.3722
http://dx.doi.org/10.1103/PhysRevB.35.3722
http://dx.doi.org/10.1103/PhysRevB.35.3722
http://dx.doi.org/10.1103/PhysRevB.35.3722
http://dx.doi.org/10.1103/PhysRevB.37.6799
http://dx.doi.org/10.1103/PhysRevB.37.6799
http://dx.doi.org/10.1103/PhysRevB.37.6799
http://dx.doi.org/10.1103/PhysRevB.37.6799
http://dx.doi.org/10.1103/PhysRevA.54.5227
http://dx.doi.org/10.1103/PhysRevA.54.5227
http://dx.doi.org/10.1103/PhysRevA.54.5227
http://dx.doi.org/10.1103/PhysRevA.54.5227
http://dx.doi.org/10.1103/PhysRevA.69.013812
http://dx.doi.org/10.1103/PhysRevA.69.013812
http://dx.doi.org/10.1103/PhysRevA.69.013812
http://dx.doi.org/10.1103/PhysRevA.69.013812
http://dx.doi.org/10.1103/PhysRevA.79.033815
http://dx.doi.org/10.1103/PhysRevA.79.033815
http://dx.doi.org/10.1103/PhysRevA.79.033815
http://dx.doi.org/10.1103/PhysRevA.79.033815
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.77.115403
http://dx.doi.org/10.1103/PhysRevB.77.115403
http://dx.doi.org/10.1103/PhysRevB.77.115403
http://dx.doi.org/10.1103/PhysRevB.77.115403
http://dx.doi.org/10.1103/PhysRevB.82.035411
http://dx.doi.org/10.1103/PhysRevB.82.035411
http://dx.doi.org/10.1103/PhysRevB.82.035411
http://dx.doi.org/10.1103/PhysRevB.82.035411
http://dx.doi.org/10.1103/PhysRevB.82.115334
http://dx.doi.org/10.1103/PhysRevB.82.115334
http://dx.doi.org/10.1103/PhysRevB.82.115334
http://dx.doi.org/10.1103/PhysRevB.82.115334
http://dx.doi.org/10.1103/PhysRevB.85.035405
http://dx.doi.org/10.1103/PhysRevB.85.035405
http://dx.doi.org/10.1103/PhysRevB.85.035405
http://dx.doi.org/10.1103/PhysRevB.85.035405
http://dx.doi.org/10.1103/PhysRevB.85.075303
http://dx.doi.org/10.1103/PhysRevB.85.075303
http://dx.doi.org/10.1103/PhysRevB.85.075303
http://dx.doi.org/10.1103/PhysRevB.85.075303
http://dx.doi.org/10.1103/PhysRevLett.101.190504
http://dx.doi.org/10.1103/PhysRevLett.101.190504
http://dx.doi.org/10.1103/PhysRevLett.101.190504
http://dx.doi.org/10.1103/PhysRevLett.101.190504
http://dx.doi.org/10.1103/PhysRevB.1.2362
http://dx.doi.org/10.1103/PhysRevB.1.2362
http://dx.doi.org/10.1103/PhysRevB.1.2362
http://dx.doi.org/10.1103/PhysRevB.1.2362


ROLE OF NONLOCALITY AND LANDAU DAMPING IN THE . . . PHYSICAL REVIEW B 93, 195414 (2016)

[74] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon,
New York, 1981).

[75] M. Wilkinson and B. Mehlig, J. Phys.: Condens. Matter 12,
10481 (2000).

[76] R. H. Ritchie and A. L. Marusak, Surf. Sci. 4, 234
(1966).

[77] A. Thränhardt, C. Ell, G. Khitrova, and H. M. Gibbs, Phys.
Rev. B 65, 035327 (2002).

[78] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-
Photon Interactions (Wiley, New York, 1992).

[79] V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W.
Cai, and V. M. Shalaev, Opt. Express 16, 1186 (2008).

195414-15

http://dx.doi.org/10.1088/0953-8984/12/50/310
http://dx.doi.org/10.1088/0953-8984/12/50/310
http://dx.doi.org/10.1088/0953-8984/12/50/310
http://dx.doi.org/10.1088/0953-8984/12/50/310
http://dx.doi.org/10.1016/0039-6028(66)90003-3
http://dx.doi.org/10.1016/0039-6028(66)90003-3
http://dx.doi.org/10.1016/0039-6028(66)90003-3
http://dx.doi.org/10.1016/0039-6028(66)90003-3
http://dx.doi.org/10.1103/PhysRevB.65.035327
http://dx.doi.org/10.1103/PhysRevB.65.035327
http://dx.doi.org/10.1103/PhysRevB.65.035327
http://dx.doi.org/10.1103/PhysRevB.65.035327
http://dx.doi.org/10.1364/OE.16.001186
http://dx.doi.org/10.1364/OE.16.001186
http://dx.doi.org/10.1364/OE.16.001186
http://dx.doi.org/10.1364/OE.16.001186



