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Generalized virial theorem for massless electrons in graphene and other Dirac materials
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The virial theorem for a system of interacting electrons in a crystal, which is described within the framework
of the tight-binding model, is derived. We show that, in the particular case of interacting massless electrons in
graphene and other Dirac materials, the conventional virial theorem is violated. Starting from the tight-binding
model, we derive the generalized virial theorem for Dirac electron systems, which contains an additional term
associated with a momentum cutoff at the bottom of the energy band. Additionally, we derive the generalized
virial theorem within the Dirac model using the minimization of the variational energy. The obtained theorem
is illustrated by many-body calculations of the ground-state energy of an electron gas in graphene carried out in
Hartree-Fock and self-consistent random-phase approximations. Experimental verification of the theorem in the
case of graphene is discussed.
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I. INTRODUCTION

The virial theorem (VT) provides an exact relationship
between mean kinetic and potential energies of classical and
quantum systems when these energies are power-law functions
of coordinates and momenta of the constituent particles [1,2].
Applications of VT include estimations of various quantities in
the physics of atoms, molecules, solids, plasmas, and in astro-
physics. Additionally, VT and its hypervirial generalizations
are used to calculate matrix elements, to improve variational
calculations in quantum chemistry, as well as to check and
improve equations of states and electron density functionals.
(See Refs. [1–5] and references therein.)

From a fundamental point of view, VT is associated with the
scale transformations of the system [1,6] or with dilatations
of a ground-state wave function in the quantum mechanical
case [7,8]. When a spatially confined many-particle system
(for example, electron gas in a finite-sized solid) is considered,
VT acquires an additional “boundary” term proportional
to the thermodynamic pressure in the system [1] that can
be interpreted as a manifestation of non-Hermiticity of the
Hamiltonian [9,10]. The same term appears in VT for a
uniform electron gas that can be attributed to existence of
an intrinsic length scale in the system, namely, the Bohr
radius [11,12].

There are a number of materials intensively studied in
recent years where electrons at low excitation energies behave
as massless particles: two-dimensional graphene [13,14],
surfaces of topological insulators [15,16], three-dimensional
Dirac semimetals [17], and Weyl semimetals, which were
discovered in very recent experiments [18–20]. When Dirac
electrons are massive, their kinetic energy is not a power-law
function of momentum and hence VT does not provide an exact
relationship between kinetic and potential energies [7,21–23].
However, for massless Dirac electrons with linear dispersion
such a relationship can be obtained [24].

In this article, we derive the virial theorem for Coulomb-
interacting massless electrons in Dirac materials. First, using

*lozovik@isan.troitsk.ru

the example of graphene, we obtain general VT for electrons in
a crystal, described by a tight-binding model. Then we proceed
to the approximate model of massless Dirac electrons with
the momentum cutoff imposed at the bottom of the valence
band. The obtained theorem should be as accurate as the Dirac
approximation for electron dynamics.

It is shown that massless electrons in a Dirac material
disobey conventional VT but instead they can be described
by the generalized virial theorem (GVT), which contains an
additional term proportional to the derivative of the ground-
state energy with respect to the cutoff momentum [25]. This
term can be interpreted as a manifestation of the underlying
crystal lattice, characterized by a definite lattice constant,
during the scale transformations. The role of a periodic
potential of a crystal lattice in VT for electrons was also studied
in the Kronig-Penney model [26] and in the density functional
context [27]. Another approach to obtain GVT presented in the
article is the restricted minimization of the variational energy
with respect to dilatations of the ground-state wave function.

The obtained GVT is illustrated in the case of graphene by
the many-body diagrammatic calculations in Hartree-Fock and
self-consistent random-phase approximations. It is shown that
the relative contribution of the cutoff-induced term in GVT
for graphene ranges from 5% to 20% at typical conditions.
However, the obtained form of GVT is applicable to any other
Dirac material with massless electrons near the Fermi energy.

The article is organized as follows. We derive GVT for
graphene in the tight-binding model in Sec. II and obtain
its approximation in the Dirac model in Sec. III. GVT for
Dirac materials will also be obtained in Sec. IV by means
of restricted minimization. We illustrate this theorem by
many-body calculations of the ground-state properties of the
electron gas in graphene in Sec. V, considering separately
the cutoff-induced term in Sec. VI, and draw conclusions in
Sec. VII.

II. VIRIAL THEOREM IN THE TIGHT-BINDING MODEL

The many-body Hamiltonian of 2pz electrons in
graphene H = H0 + Hint + Hext includes the tight-binding
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nearest-neighbor kinetic energies

H0 =
∑

i

(
ε0 −tfpi

−tf ∗
pi

ε0

)
i

, (1)

as well as Coulomb electron-electron interaction and interac-
tions of electrons with the external potential Uext(r):

Hint = 1

2

∑
i �=j

e2

ε|ri − rj | , Hext =
∑

i

Uext(ri). (2)

Here ε0 and t are the on-site energy and the hopping integral,
fp = ∑3

s=1 e(i/�)pbs , where bs are the vectors which connect
any atom from graphene sublattice A with its nearest neighbors
from sublattice B [13,14] and ε is the dielectric constant of the
background medium; the matrix in (1) acts on the sublattice
degree of freedom of the ith electron.

As the starting point for derivation of the virial theorem,
we use, similarly to [9,10], the following equation:

〈�|[H,G]|�〉 = 0, (3)

which is satisfied identically for any stationary state |�〉 and
for any operator G, provided the Hamiltonian H is Hermitian.
To obtain VT, G is chosen to be the virial operator:

G =
∑

i

ripi + piri

2
. (4)

The commutators of each term of H with G can be calculated
explicitly:

[H0,G] = −i�
∑

i

pi

∂H0

∂pi

, [Hint,G] = −i�Hint, (5)

[Hext,G] = i�
∑

i

ri

∂Uext(ri)

∂ri

. (6)

Now we apply the general formulas (3)–(6) to the tight-
binding model, where the electron momenta pi enter (1) only
in a product with the lattice constant a (since |bs | = a/

√
3),

and thus we can write

[H0,G] = −i�a

(
∂H0

∂a

)
ε0,t

. (7)

The derivative with respect to a is taken here at ε0,t = const
because otherwise we would obtain unnecessary terms which
arise due to the physical dependence of ε0 and t on a.

For the external potential Uext(r), which confines electrons
within a definite spatial volume, we can write Uext(r) =
Ũ (r/R), where R is the linear size of this volume. Using
this relation in (6), we get

[Hext,G] = −i�R
∂Hext

∂R
. (8)

Substituting (5), (7), (8) to (3) and using the Hellmann-
Feynman theorem, we obtain

− a

(
∂Ẽ

∂a

)
ε0,t

− Ẽint − R
∂Ẽ

∂R
= 0, (9)

where Ẽ = 〈�|H |�〉 and Ẽint = 〈�|Hint|�〉 are, respectively,
the tight-binding ground state and interaction energies.

FIG. 1. Schematic tight-binding dispersion of filled single-
electron states in electron-doped graphene (solid line) and its
approximation in the Dirac model (dotted line). The electron states
in the Dirac model are filled in both valleys K and K′ down to the
cutoff momentum pc.

Equation (9) is the tight-binding version of VT. It is derived
explicitly for graphene but can be applied for any tight-binding
model with the condition that all hopping integrals and on-site
energies are constant upon taking the derivative ∂Ẽ/∂a.

III. VIRIAL THEOREM FOR MASSLESS
DIRAC ELECTRONS

When the Fermi energy in graphene (or any other Dirac
material) is close to the Dirac point, it is a reasonable
approximation to switch from the tight-binding model
of single-electron dynamics to the effective Dirac
model [13,14,17] (Fig. 1). In this model, the momentum cutoff
pc in the valence band should be introduced in order to ensure
that the total density of electrons is equal to their actual density
in the crystal.

The Hamiltonian of interacting massless Dirac electrons is
H = HD + Hint + Hext, where

HD = vF

∑
ic

(
0 cpx − ipy

cpx + ipy 0

)
ic

(10)

is the Dirac Hamiltonian of noninteracting electrons of
chiralities c = ±1 and vF = at

√
3/2� is the Fermi velocity. In

this approach, the total number Ñ = N0 + N of electrons that
fill the energy band is a sum of the number N0 ∝ (R/a)D of
electrons that fill the valence band from the cutoff momentum
pc at its bottom up to the Dirac point (D is the space dimension)
and the much smaller number N of Dirac carriers (electrons
at N > 0 or holes at N < 0). Similarly, we can define the full
energy of Dirac electrons

E(N ) = Ẽ(Ñ) − Ẽ(N0) − ε0N (11)

[the last term redefines the on-site energy in the Dirac single-
electron Hamiltonian (10) to zero] and their interaction energy
Eint(N ) = Ẽint(Ñ) − Ẽint(N0). Note that these energies also
include the energy of interaction between the N Dirac electrons
and the N0 electrons of the filled valence band. Subtracting
from (9) the same equation at Ñ = N0, we get

− a

(
∂E

∂a

)
Ñ

− Eint − R

(
∂E

∂R

)
Ñ

= 0. (12)

Hereafter we assume ε0,t = const in all derivatives; we have
also showed explicitly the condition Ñ = const implied by the
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Hellmann-Feynman theorem for the Ñ -particle ground-state
wave function.

In the Dirac model for massless electrons, the electron-
gas properties depend on the lattice constant a indirectly via
vF ∝ a and the cutoff momentum pc ∝ a−1 [13,14], so that the
energy E can be calculated as a function E(N,vF,pc,R), where
N = Ñ − N0. Consequently, the derivatives of E in (12) with
taking into account (11) are

a

(
∂E

∂a

)
Ñ

= −
(

∂E

∂N
+ ε0

)
a
∂N0

∂a
+ vF

∂E

∂vF
− pc

∂E

∂pc
, (13)

R

(
∂E

∂R

)
Ñ

= −
(

∂E

∂N
+ ε0

)
R

∂N0

∂R
+ R

∂E

∂R
. (14)

Since N0 ∝ (R/a)D , the first terms in right-hand sides of (13)
and (14) cancel upon substituting to (12). Additionally, using
the Hellmann-Feynman theorem for the kinetic energy Ekin =
〈�|HD|�〉 = vF(∂E/∂vF), we get the following form of GVT
for massless Dirac particles:

− E − R
∂E

∂R
+ pc

∂E

∂pc
= 0, (15)

where N = const during differentiations. The specific charac-
ter of electrons with linear dispersion and Coulomb interaction
is revealed in the fact that kinetic and interaction energies
enter VT with the same coefficients, yielding the full energy
E = Ekin + Eint [28], which reflects the absence of an intrinsic
length parameter in the system. The only length parameter is
introduced by the crystal lattice via the cutoff momentum pc,
which provides the last term in GVT (15). Without this term,
we would obtain the conventional virial theorem for graphene,
which is similar to that derived in [24].

The second term in (15) can be related to the pressure
p = −(∂E/∂V )N of the electron gas,

− R
∂E

∂R
= DpV, (16)

where V ∝ RD is the D-dimensional volume of the system.
In the case of a homogeneous electron gas, assuming

extensiveness of the energy E = RDε(N/RD) with respect
to the D-dimensional volume V ∝ RD , we have

R
∂E

∂R
= DE − DN

∂E

∂N
, (17)

and therefore GVT (15) takes the form

− (D + 1)E + DN
∂E

∂N
+ pc

∂E

∂pc
= 0, (18)

where R = const.
For some calculations in the limit T → 0, it is more

convenient to switch to the grand-canonical ensemble, where
the state of the system is characterized by the (zero-
temperature) grand thermodynamic potential � = E − μN .
The Legendre transformation

E(N,pc) = �(μ,pc) + μN (19)

implies the relations ∂E/∂N = μ,∂�/∂μ = −N,∂E/∂pc =
∂�/∂pc, that, upon substituting in (18), provide GVT in terms

of �:

− (D + 1)� + μ
∂�

∂μ
+ pc

∂�

∂pc
= 0. (20)

The extensiveness of the thermodynamic potential allows it to
be related to the pressure: � = −pV .

The chemical potential μ in the Dirac electron systems is
usually measured from the Dirac point, which implies μ = 0 at
N = 0 (with regard to graphene it is a charge neutrality point).
However, generally it is not the case for a system of interacting
electrons, i.e., the “background” chemical potential,

μ0 = ∂E

∂N

∣∣∣∣
N=0

, (21)

is not zero. For example, in the case of graphene,

μ0 = −e2pc

2ε�
(22)

in the Hartree-Fock approximation [29].
In Appendix A, the energy E and the thermodynamic

potential � are regularized in order to remove the contributions
of μ0. The virial theorems (A5), (A7), expressed in terms of
these regularized quantities, are derived and shown to have the
same form as (18), (20) due to the relation μ0 ∝ pc.

IV. RESTRICTED MINIMIZATION

GVT for Dirac electrons (15) can be obtained directly
by minimizing the energy with respect to dilatations of the
ground-state wave function, similarly to its original variational
derivation in [7,8]. Let

�λ(r1 . . . rN ) = 1

λND/2
�

(r1

λ
· · · rN

λ

)
(23)

be the ground-state wave function �, which is stretched by a
factor of λ uniformly in all directions. Without resorting to the
coordinate representation, we can write |�λ〉 = Dλ|�〉, where

Dλ = exp

{
− i

�
G ln λ

}
(24)

is the dilatation operator [9,30] and G is given by (4).
Since the energies of Dirac particles are unbounded from

below, we cannot minimize 〈�λ|H |�λ〉 to obtain the ground
state. One of the possible ways to overcome this obstacle,
which is most appropriate to the physical problem of a Dirac
electron gas in a solid (Fig. 1), is to impose the momentum
cutoff, requiring that all electron momenta in the many-body
state |�〉 do not exceed pc. This can be achieved by using the
operator Ppc which projects the many-body state vector on a
subspace of Slater determinants that consists of all possible
single-particle plane-wave states with momenta |p| � pc

(see Appendix B).
Although the ground state |�〉 belongs to this subspace,

i.e., Ppc |�〉 = |�〉, the dilated state |�λ〉 generally does not.
Therefore, in our restricted minimization procedure, we need
to return |�λ〉 back into the subspace at every λ, acting on it
by Ppc and normalizing the resulting variational state vector.
The variational energy

Eλ = 〈�|D−1
λ PpcHPpcDλ|�〉

〈�|D−1
λ PpcDλ|�〉 , (25)
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which is obtained via this restriction procedure, must have
a minimum in the ground state, when λ = 1, and thus its
derivative in λ must vanish:

∂Eλ

∂λ

∣∣∣∣
λ=1

= − i

�
〈�|[PpcHPpc ,G] − E[Ppc ,G]|�〉 = 0. (26)

Here we used (24) and denoted E = Eλ=1.
The second term in (26) vanishes because Ppc |�〉 = |�〉

for the ground state. The first term, with a help of (B5), can be
presented as

[PpcHPpc ,G] = Ppc [H,G]Ppc + i�pc
∂

∂pc
(PpcHPpc ). (27)

Using the Hellmann-Feynman theorem, Eq. (26) will result in

∂Eλ

∂λ

∣∣∣∣
λ=1

= − i

�
〈�|[H,G]|�〉 + pc

∂E

∂pc
= 0. (28)

Comparing (28) with (3), we see that the restriction which is
imposed on the state vector during minimization results in the
appearance of an additional term in GVT.

For Dirac electrons with the Hamiltonian H = HD +
Hint + Hext, similarly to (5), (8), we have

[H,G] = i�

(
−HD − Hint − R

∂Hext

∂R

)
. (29)

Substituting (29) and neglecting 〈�|Hext|�〉 (see [28]), we get
the same GVT for Dirac particles (15) as obtained in Sec. III
from the tight-binding model.

Alternatively, instead of imposing the hard cutoff |p| < pc,
we can supplement the Hamiltonian with the term

�H = (−HD + A)(1 − Ppc ), (30)

which ensures that the electron states with |p| > pc have
large positive energy A and so pushes the ground state |�〉
into the low-energy subspace with |p| � pc. In this case the
system energy becomes bounded from below and the ground
state |�〉 becomes well defined. Therefore we can apply the
conventional VT (3) with H + �H instead of H . Using (29)
and the property (B5), we get

〈�| − HD − Hint − R
∂Hext

∂R
− Apc

∂Ppc

∂pc
|�〉

+〈�|H0(1 − Ppc )|�〉 = 0. (31)

The last term is proportional to the part (1 − Ppc )|�〉 of
the ground-state vector, which goes beyond the low-energy
subspace of |�〉 and thus behaves as ∼1/A at A → ∞.
Then if we apply the Hellmann-Feynman theorem to ∂E/∂R

and ∂E/∂pc and tend to the limit A → ∞, we again obtain
GVT (15).

This last method does not require Ppc |�〉 = |�〉 in the
ground state, which is, generally, not the case in nonuniform
systems where H and Ppc do not commute.

V. MANY-BODY CALCULATIONS FOR GRAPHENE

In the case of graphene, we can illustrate GVT (15)
with many-body calculations of the ground-state energy E.
Throughout Secs. V and VI we assume D = 2 and use the
symbol S instead of V for a two-dimensional volume (area).

δΩ = −
⎛
⎝ excess

diagrams

⎞
⎠, δΩBG =

= +

FIG. 2. The diagrams presenting the interaction-induced
correction δ� to the thermodynamic potential and its Brueckner-
Goldstone part δ�BG, which contains no “anomalous” diagrams, in
the Hartree-Fock approximation. Thin and thick straight lines are
bare and dressed electron Green functions, and the wiggly line is the
Coulomb interaction.

As known, the interaction-induced correction δ� = � −
�0 to the grand thermodynamic potential �(μ) at given
chemical potential μ can be calculated as a sum of closed
connected diagrams [31,32]; �0(μ) is the thermodynamic
potential of the noninteracting electron gas. Summation of an
infinite diagrammatic series is usually carried out by means of
Dyson equations, where bare Green functions are replaced
with the dressed ones; thus the diagrammatic calculations
become self-consistent. Analogous replacements in closed
diagrams for δ� produce excess terms, which, however, can
be compensated by using the Luttinger-Ward functional [33].
(See its application for graphene in [34].)

Here we use another approach, also described in [33]: at
T = 0 in the spherically symmetric system, self-consistent
calculation of the ground-state energy E(N ) at given electron
number N can be carried out according to the formula

E(N ) = �0(μ0(N )) + μ0(N )N + δ�BG(μ0(N )), (32)

where μ0(N ) is the chemical potential of a noninteracting
electron gas at given N and δ�BG(μ) is the Brueckner-
Goldstone sum of all closed connected diagrams except the
“anomalous” ones [35] calculated at given chemical potential
μ. This approach reduces the problem of self-consistent
diagrammatic calculations of δ� to a simpler problem of
non-self-consistent calculations of the diagrammatic series
δ�BG.

We apply this approach to the Dirac electron gas in graphene
to calculate E in the Hartree-Fock and self-consistent random-
phase approximations. In the Hartree-Fock approximation, the
self-consistently evaluated thermodynamic potential (Fig. 2)
can be calculated using (32), where the Brueckner-Goldstone
perturbation series is reduced to a single first-order diagram.
In the self-consistent random-phase approximation (Fig. 3),
we take into account all possible diagrams without vertex
corrections. The corresponding Brueckner-Goldstone pertur-
bation series is presented by the sum of non-self-consistent
random-phase approximation diagrams that can be calculated
analytically [36].

Having analytical results for δ�BG in both approximations
(see [29,36] and also [34]), we can calculate the ground-state
energy (32) and substitute it into GVT (15). Following the
lines of Appendix A, we omit the large constant term (22) in
the chemical potential, which appears due to exchange with
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δΩ = −
⎛
⎝ excess

diagrams

⎞
⎠

δΩBG = + + + . . .

= +

= +

FIG. 3. The same as Fig. 2, but in the self-consistent random-
phase approximation. The thick wiggly line is the screened Coulomb
interaction.

the filled valence band, and thus we actually work with the
regularized energy (A3) and GVT (A5).

In our calculations, we use the following parameters: the
bare Fermi velocity is vF = 0.9×106 m/s, as retrieved from
the comparison of theory and experimental data on graphene
quantum capacitance [34]. For the cutoff momentum, we

assume the value pc/� = 1.095 Å
−1

, found by equating the
density of valence-band electrons 2/S0 to the same density in
the Dirac model gp2

c/4π�
2, where S0 = a2

√
3/2 is the area

of the graphene elementary cell and g = 4 is the degeneracy
factor. For the dielectric constant ε we take ε = 1 (suspended
graphene), ε = 4.5 (encapsulation in hexagonal boron nitride),
and ε = 8 (some medium with stronger screening).

Our results for uniform Dirac electron gas of the density
n = N/S are presented in Fig. 4(a). The first term in GVT (15),

FIG. 4. (a) Ground-state energy of electron gas in graphene per
unit area E/S (thick lines) and its derivative (pc/S)(∂E/∂pc) (thin
lines), calculated as functions of carrier density n at different values of
ε. (b) The normalized derivative K = (pc/E0)(∂E/∂pc), as defined
by (33). All curves present calculations in the Hartree-Fock (dashed
lines) and self-consistent random-phase (solid line) approximations.
Inset: K at n → 0 as a function of the dielectric constant ε.

i.e., the ground-state energy E, is plotted with thick lines. In
the absence of both scale-invariance breaking factors, namely,
the system boundary and the momentum cutoff, we would
obtain E = 0. Thus the nonzero value of E demonstrates the
role of these factors. Adding the boundary term, we get the
quantity E + R(∂E/∂R) = pc(∂E/∂pc), which would be zero
in the absence of momentum cutoff, if conventional VT would
have been applicable to graphene. Thus a nonzero value of
pc(∂E/∂pc) [shown in Fig. 4(a) with thin lines] demonstrates
the degree of violation of conventional VT in graphene due to
the momentum cutoff.

As we can see, both approximations show similar results at
large ε and disagree at ε → 1. The Hartree-Fock approxima-
tion always predicts a stronger influence of the scale-invariance
breaking terms. At moderate dielectric constants ε � 2, the
momentum cutoff provides a much smaller contribution to
GVT than the boundary of the system, as demonstrated in
Fig. 4(a) where the thick curves pass much higher than the
thin ones.

VI. CUTOFF-INDUCED TERM
IN THE CASE OF GRAPHENE

Consider the ratio

K = pc

E0

∂E

∂pc
(33)

of the cutoff-induced term in GVT (15) to the energy

E0 = 4

3

√
π

g
S�vF|n|3/2 (34)

of the noninteracting Dirac electron gas. Explicit calculations
of the ground-state energy E provide the following analytical
forms of this ratio:

K = rs

4
+ O

(
pF

pc

)
(35)

in the Hartree-Fock approximation and

K = rs

4
+ 3

2πg
a(grs) + O

(
pF

pc

)
(36)

in the self-consistent random-phase approximation. Here rs =
e2/ε�vF is the effective fine-structure constant for graphene
(note that the virial theorem in [24] implies a different defini-
tion of rs), and pF = �

√
4π |n|/g is the Fermi momentum; the

function a(grs) was described in [34].
The formulas (35) and (36) show that the cutoff-induced

term pc(∂E/∂pc) in (15) becomes proportional to E0 in the
limit pc → ∞ or |n| → 0. In the range of carrier densities
|n| � 1013 cm−2, which is accessible in experiments using the
electric field effect, their ratio K indeed weakly depends on
n, as shown in Fig. 4(b). The magnitude of K , ranging from
5% to 20% at typical values of ε [see the inset in Fig. 4(b)],
demonstrates the relative contribution of the scale-invariance
breaking momentum cutoff to GVT in the case of graphene.

Moreover, the quantity K can be related directly to ob-
servable characteristics of the electron gas. By differentiating
GVT in the form (18) at D = 2 with respect to N , assuming
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∂K/∂N ≈ 0 and using (34), we get

2n2 dμ

dn
− μn = 3

2

E0

S
K, (37)

where ∂E/∂N = μ and K can be taken at |n| → 0. Since
E0 ∝ |n|3/2 according to (34), we get

lim
|n|→0

2n2(dμ/dn) − μn

|n|3/2
=

√
4π

g
�vFK. (38)

From this equation, using again (34), we can restore the cutoff-
induced term

pc
∂E

∂pc
≈ 2

3
S|n|3/2 × lim

|n|→0

2n2(dμ/dn) − μn

|n|3/2
. (39)

The quantities in the right-hand side of this formula can
be evaluated from experimentally observable characteristics:
dμ/dn is related to compressibility and quantum capacitance
(see [34] and references therein), while μ can be found by
integrating dμ/dn. Thus the cutoff-induced term in GVT (15)
can be both extracted from experimental data [using (39)] and
calculated theoretically [using a diagrammatic approach or the
approximate formulas (35) or (36)].

VII. CONCLUSIONS

We have addressed the problem of the quantum mechanical
many-body virial theorem for electrons in a periodic crystal
lattice. First, we derive VT, which is applicable for electrons
described by an arbitrary tight-binding model (9). Then we
proceed to the model of massless Dirac particles with linear
dispersion and a momentum cutoff imposed at the bottom of
the valence band and derive GVT (15) for this system as well as
its grand-canonical counterpart (20). GVT for massless Dirac
electrons includes the additional term pc(∂E/∂pc), which is
absent in the case of usual electron gas. Equations (9), (15),
and (20) are the main results of our paper.

Alternative ways to obtain GVT, which start immediately
from the Dirac model, were demonstrated. We considered the
Dirac particles with the momentum cutoff |p| < pc imposed
in order to bound the system energy from below. In this case
GVT can be obtained by means of restricted minimization (25)
and (26) of the variational energy with respect to dilatations
of the ground-state wave function. Another way is to add an
additional term (30) to the Dirac Hamiltonian, which expels
electrons from the states with momenta |p| > pc. Note that
GVT can also be deduced by means of diagrammatic or
dimensional analysis, which will be considered elsewhere.

We analyzed GVT on the example of massless electrons
in graphene, where the ground-state energy was calculated
by means of a diagrammatic perturbation series. Using the
method of Luttinger and Ward [33], we calculated the ground-
state energy in the Hartree-Fock and self-consistent random-
phase approximations. Our analysis shows that the relative
contribution of the cutoff-induced term pc(∂E/∂pc), which
enters GVT, is about 5%–20% in the case of graphene.

The obtained GVT demonstrates the role of two physical
factors which break the scale invariance of the system: its
finite boundary and momentum cutoff. These factors restrict
electron motion in coordinate and momentum spaces and
manifest themselves through corresponding terms in GVT. In

the case of graphene, GVT can be verified experimentally as
described in Sec. VI. Possible applications of the obtained
theorem can include checking the validity of “relativistic”
density functional calculations of ground-state properties of
disordered graphene [37–39]. In addition, the tight-binding
version of VT or its hypervirial generalizations can be applied
to study the properties of interacting electrons in other crystals.
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APPENDIX A: CHEMICAL POTENTIAL
AT DIRAC POINT μ0

First, let us take the derivative of (18) with respect to N at
N = 0: (

− ∂E

∂N
+ pc

∂2E

∂N∂pc

)∣∣∣∣
N=0

= 0. (A1)

Changing the order of derivatives and using (21), we get

pc
∂μ0

∂pc
= μ0 (A2)

and thus μ0 ∝ pc.
Then we can regularize the energy of the Dirac electron gas

in the following way:

Ereg = E − μ0N. (A3)

According to (21),

∂Ereg

∂N

∣∣∣∣
N=0

= 0. (A4)

Substituting (A3) to (18), we get GVT in terms of the
regularized energy:

− (D + 1)Ereg + DN
∂Ereg

∂N
+ pc

∂Ereg

∂pc
= 0, (A5)

which has the same form as (18) due to the relation (A2).
Finally, using the Legendre transformation

Ereg(N,pc) = �reg(μreg,pc) + μregN, (A6)

we can convert (A5) to GVT in terms of the regularized
thermodynamic potential:

− (D + 1)�reg + μreg
∂�reg

∂μreg
+ pc

∂�reg

∂pc
= 0, (A7)

where

μreg = ∂Ereg

∂N
(A8)

is the regularized chemical potential. According to (A4),
μreg = 0 at N = 0, as it should be when the chemical potential
is measured from the Dirac point.
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APPENDIX B: OPERATOR OF MOMENTUM
CUTOFF Ppc

The action of Ppc on a many-body wave function can be
represented as

Ppc�(r1 . . . rN ) =
∫

dr′
1 . . . r′

NKpc (r1 − r′
1)Kpc (r2 − r′

2)

. . . Kpc (rN − r′
N )�(r′

1 . . . r′
N ). (B1)

An integral operator with the kernel

Kpc (r) =
∫

|p|<pc

dp
(2π�)D

e
i
�

pr (B2)

projects a one-particle wave function onto a subspace of
momenta |p| < pc; this kernel has the scale property

Kpc (λr) = 1

λD
Kλpc (r). (B3)

Using it in (B1), we get the following scale property of Ppc :

D−1
λ PpcDλ = Pλpc . (B4)

For infinitesimal dilatations (λ → 1) we get, according to (24),
that

[Ppc ,G] = i�pc
∂Ppc

∂pc
. (B5)
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