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We exploit topological edge states in resonant photonic crystals to attain strongly localized resonances and
demonstrate lasing in these modes upon optical excitation. The use of virtually lossless topologically isolated
edge states may lead to a class of thresholdless lasers operating without inversion. One needs, however, to
understand whether topological states may be coupled to external radiation and act as active cavities. We study
a two-level topological insulator and show that self-induced transparency pulses can directly excite edge states.
We simulate laser emission by a suitably designed topological cavity and show that it can emit tunable radiation.
For a configuration of sites following the off-diagonal Aubry-André-Harper model, we solve the Maxwell-Bloch
equations in the time domain and provide a first-principles confirmation of topological lasers. Our results open the
road to a class of light emitters with topological protection for applications ranging from low-cost energetically
effective integrated laser sources, also including silicon photonics, to strong-coupling devices for studying
ultrafast quantum processes with engineered vacuum.
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I. INTRODUCTION

In the context of transport phenomena, two- or three-
dimensional Bloch and Anderson models, paradigmatic for
periodic and disordered structures, allow one to observe a
crossover from extended to localized states [1] at a critical
degree of disorder [2,3]. However, a different class of struc-
tures, i.e., the topological insulators, shows a localization phase
transition [4] in one dimension (1D). Originally described in
the tight-binding formulation for electrons [5,6], and recently
for the study of localization properties of acoustic [7], electro-
magnetic [8–12], and matter waves [13], topological insulators
are characterized by the presence of peculiar edge states,
corresponding to a conducting surface for a bulk insulating
material. The geometric phase of the bulk crystal determines
the existence of these edge states and, correspondingly, they
are protected, i.e., stable against any perturbation.

Recently, the study of localization properties in topological
systems has been extended to the class of resonant photonic
crystals [14,15] sustaining topologically protected boundary
states [16], also involving the exciton-photon coupling [17].
The possibility of topologically protected states in resonant
systems opens the challenge of realizing topologically sus-
tained lasers, i.e., lasers based on edge states. These devices
are expected to benefit from the intrinsic isolation, and hence
may eventually operate at very low threshold or without
population inversion. Indeed, the potential absence of loss
reduces virtually to zero the gain needed for the laser operation.

In these terms, the first question to consider is whether
resonant topologically isolated systems can be directly excited
from external inputs and, seemingly, if topologically isolated
states can emit coherent light into propagating modes when
acting in a laser device.

In this paper, we show that a direct excitation of topological
edge states is achievable in chains of two-level systems (TLS)
by the use of an ultrashort self-induced transparency (SIT)
pulse. By the Maxwell-Bloch equations [18,19], we study
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SIT in a resonant topological insulator (RTI) where index
modulation is given by either the TLS or by the background
dielectric function. In analogy with the disordered case [20],
the spatial distribution of the active layers localizes the SIT
pulse that would otherwise induce a traveling population
inversion. This localization is a fingerprint for edge-state
detection and sustain tunable laser emission.

II. STRUCTURE AND EDGE-STATE DISPERSION

A schematic of the system considered is shown in Fig. 1.
The structured region consists of resonant two-level layers A

(width LA) in an homogenous bulk of frequency-independent
dielectric function εb. Two configurations will be considered.
In a uniform structure (US), the resonant layers, with their
background dielectric function εa = εb, are arranged in a
sequence with centers in zn = do[n + ηdH

n ], where dH
n =

cos(2πβn + φ) is the Harper modulation [6]. In a Bragg
structure (BS), the resonant layers have εa �= εb and the
widths bn of the dielectric layers B are modulated as bn =
bo[1 + ηdH

n ].
These distributions define a 1D bichromatic periodic lattice

(period do) modulated by a secondary lattice with strength η.
The phase shift φ governs the localization phase transition
and the modulation frequency 2πβ determines the number of
topological boundary states in the gap. The structure is periodic
with β−1 resonant layers in the unit cell and period d = β−1do.

structured region

zstart zend

vacuum vacuum

pulse

FIG. 1. Schematic view of the structured region: a 1D chain of
resonant two-level layers (blue) in a homogeneous bulk (green) of
frequency-independent dielectric function εb.
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FIG. 2. Real (green circles) and imaginary (blue squares) part
of the left-edge-state frequency for β = 1/3, η = 0.2/π , ωo =
1.533 eV, and εb = 12.25. The dashed vertical lines show the ξ values
(ξ/π = 0,1/6,5/6,1) where, for symmetry reasons, edge states do
not exist. The continuous lines mark the boundaries of the gap.

III. UNIFORM STRUCTURE

We choose do = λo/2 with λo = 2πc/(ωo

√
εb) in order to

center the photonic band gap of the ordered stack (η = 0) at ωo

(TLS resonance). The A layers have radiative (nonradiative) 
o

(
) decay rate, dielectric constant εa , and reflection coefficient
rA(ω) = −i/(w + i), with w = (ω − ωo + i
)/
o, with a

local Lorentz-like dispersion,

χA(ω) = −�
2c2

ω2
o

LAq3

16π

(
q2L2

A − 4π2
)2

16π4 sin2(qLA/2)

1

w
, (1)

with q = ω
√

εa/c. The poles of the reflection coefficient of
the whole structure give the left-edge-state frequencies w,
i.e., solutions with negative imaginary part [16] of

e2iqs1 + (w − i)2e2iq(s1+s2) + (w + i)2 + (w2 + 1)e2iqs2 = 0.

(2)

The symmetry wr (∓ξ ) = w(±ξ ), with ξ = φ − π/6, gives
the right-edge modes wr . The states lay within the gap centered
at ωo with bounds given by Tr(T ) = ±2, where T is the single-
period transfer matrix.

Figure 2 shows the ξ dependence of the real part (green
circles) of the left-edge-state frequency. When ξ varies in
(0,π ), the edge modes traverse the band gap, bounded by the
straight lines; the imaginary part (blue squares) Im[(ω − ωo +
i
)/
o] gives their inverse lifetime.

Figure 3 shows reflectivity intensity |r∞(ξ,ω)|2 [Fig. 3(a)]
and phase [Fig. 3(c)] for 
o = 10−2ωo and 
 = 10−2
o and
the corresponding Chern numbers C. The reflection coefficient
intensity allows one to locate allowed bands and gaps of the
modulated (η �= 0) structures, while the reflection coefficient
phase allows one to deduce, from its winding numbers, the

FIG. 3. Squared amplitude of the reflection coefficient r∞(φ,ω) from the left side of the semi-infinite (a) US and (b) BS chain; reflection
coefficient phase for the (c) US chain and (d) BS chain. Chern numbers C and winding numbers w are indicated.
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topological invariants of the system under consideration. The
allowed bands are indeed characterized by a Chern number
given by the winding number of the reflection coefficient in
the above-lying stop band minus that in the below-lying stop
band [21].

The edge states correspond to dips in |r∞(ξ,ω)|2: their
experimental observation requires fine spectral resolution and
a high ratio between the radiative and nonradiative decay rates

o/
. In these terms, 1D systems with weak losses and a large
resonance strength 
o/ωo are ideal candidates for edge-state
detection.

IV. BRAGG STRUCTURE

For different dielectric constants of layers A and B, the
spectral gaps of the structure with η = 0 at integer multiples
of ωB = πc/(La

√
εa + b0

√
εb) split in β−1 gaps. We choose

εa = 1 and εb = 12.25, b0 = 200 nm and La = 48 nm, so that
ωB = 0.828 eV.

For β = 1/3 and η = 0.5, Fig. 3(b) shows the reflection
coefficient |r∞(φ,ω)|2 from the left edge of the semi-infinite
system, while Fig. 3(d) shows the reflection coefficient
phase. Chern numbers C of the allowed bands and winding
numbers w of the gaps are shown [21]. Figure 4 shows
the real [Fig. 4(a)] and imaginary [Fig. 4(b)] part of the
left-edge eigenfrequencies, and the field intensity distribution
[Fig. 4(c)] for φ = 0.7π , with the localized mode profile at
ω = ωBS(0.7π ).

V. TIME-DOMAIN DYNAMICS

To obtain the electric-field amplitude, polarization, and
population inversion, we describe the dynamics of light
propagation in the RTI through the Maxwell-Bloch equations,

μ0∂tHy = −∂zEx, ε0∂tEx = −∂zHy − ∂tPx,

with Px = 2γNρ1, where N is the resonant dipole density and
γ is the dipole coupling coefficient, and

∂t

⎡
⎢⎣

ρ1

ρ2

δρ3

⎤
⎥⎦ = −

⎛
⎜⎝

γ2 −ωo 0

ωo γ2 −2ωR

0 2ωR γ1

⎞
⎟⎠

⎡
⎢⎣

ρ1

ρ2

δρ3

⎤
⎥⎦

+
⎡
⎣

0
2ωRρ30

0

⎤
⎦, (3)

where δρ3 = ρ3 − ρ30, the vector [ρ1 ρ2 ρ3]T is the state
density vector, with ρ1 (ρ2) proportional to the in-phase
(in-quadrature) polarization, ρ3 proportional to the inversion
population, and ωR = γEx/� the Rabi frequency; γ1 and γ2

denote the population and polarization relaxation rates, while
ρ30 is the initial population inversion.

In the steady state and for a slowly varying field, for which
Ex = E

eq
x = const, the Bloch equations give

∂tρ
eq

1 = ωoρ
eq

2 = 0,

∂tρ
eq

2 = −ωoρ
eq

1 + 2 γ

�
E

eq
x ρ

eq

3 = 0,
(4)
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FIG. 4. (a) Real and (b) imaginary part of the left-edge-state
frequency for β = 1/3, η = 0.5, εa = 1, and εb = 12.25. (c) Field
intensity distribution inside the system for the configuration with
φ = 0.7π .

so that ρ
eq

2 = 0 and ρ
eq

3 = ωoρ
eq

1 /(2ω
eq

R ). Substituting
ρi(z,t) = ρ

eq

i (z) + δρi(z,t) and neglecting fluctuations terms
of order higher than one, we obtain the linearized equations
around the steady state,

∂tρ1 = −γ2ρ1 + ωoρ2,

∂tρ2 = −ωoρ1 − γ2ρ2 − 2γEx/�,

∂tρ3 = −γ1ρ3,

(5)

which, through a Fourier transform, allow us to define a
susceptibility, χ (ω) = −Nγρ1/(εoEx), in the form

χ (ω) = 2Nγ 2

εo�

ωo

(iω + γ2)2 + ω2
o

. (6)

VI. SIT PULSE IN TOPOLOGICAL INSULATORS

Following Ref. [19], we consider the evolution of a pulse
that coming from vacuum (εo) moves in the structured
region of Fig. 1 with an initial sech profile: Ex(0,t) =
Eosech[10(t − τ/2)/(τ/2)] sin [2πfot]. We choose the pulse
frequency resonant with the medium, 2πfo = ωo/�, the pulse
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FIG. 5. Field and population inversion ρ3(z,t) spatial profile for different observation times ti for the US structure with ξT C = 0.5π . (a)–(c)
Reference configuration with γ = 1 × 10−29 Cm. (d)–(f) Topological configuration with γ = 1.4 × 10−27 Cm.

duration τ = 191 fs, and Eo to have a 2π pulse [22] after
the reflection on the input face due to the εo,εb mismatch.
The one-dimensional periodic active medium consists of Nc

cells with resonant layers LA wide, separated by slices of
transparent material with relative permittivity εb = 12.25.
The dielectric layers where the TLS are not present have
ρ30 = 0 and widths sn = zn+1 − zn − LA for the US and
sn = bn for the BS. We model the US system as a collection
of two-level atoms with density N = 1024 m−3 and dipole
coupling coefficient γ = 1.4 × 10−27 Cm, such that Nγ 2 =
w
oχA(ωo). Moreover, we fix γ1 = γ2 = 0.23 THz. For the BS
structure, we choose N = 1024 m−3 and γ = 1 × 10−29 Cm.

We analyze the field and population inversion spatial profile
for different observation times ti . The Ex(z,t) and ρ3(z,t) plots
are shown in Fig. 5 for the US chain for which Nc = 40 and
in Fig. 6 for the BS one for which Nc = 50. For both of
the structures, zstart = 4 μm and a 2 μm layer of material εb

is present at the front and rear side. To point out that the
edge states are excited by the external input, we compare a
topological configuration (TC) with a reference configuration

FIG. 6. (a) Field and (b) population inversion ρ3(x,t) spatial
profile for different observation times ti for the BS structure with
φT C = 0.7π .

(RC). In particular, according to the dispersion relations
(Figs. 2 and 4), we choose

(i) for the US, ξT C = 0.5π , with an edge state at the
frequency ν = 369.4 THz and lifetime τ = 0.98 ps; and

(ii) for the BS, φT C = 0.7π , with an edge state at the
frequency ν = 121.48 THz and lifetime τ = 0.014 ps.

The reference configuration is given by the choice εa = εb

for the BS chain. In the uniform one, we switch off the edge
state by simply decreasing the dipole coupling coefficient. We
remark that in the US, the modulation in the refractive index,
given by the pulse interaction with matter, is the origin of both
the gap and the edge state.

In the absence of an edge state [Fig. 5(a)], the incident
laser pulse with its initial intensity and width evolves in a
steady-state envelope and propagates without attenuation at a
constant velocity. As a consequence, the maxima ρ3(z,t) = 1,
i.e., population inversion [Figs. 5(b) and 5(c)], track, in space
and time, the same path for the excitation through the structure.
The BS chain gives similar results.

On the contrary, in the topological configuration, the
localization at the input face of the spectral component of the
pulse corresponding to the edge-mode frequency is evident.
For the US topological configuration, where the refractive
index modulation is given only by the contribution of the
resonance, the pulse propagates with a lower dispersion
[Fig. 5(d)] with respect to the BS configuration [Fig. 6(a)].
In both cases, as a consequence of localization, the main
pulse no longer meets the SIT condition and undergoes
attenuation due to absorbtion by the TLS. The asymmetry
in the ρ3(z,t) shape for the US chain, shown in Fig. 5(e),
and in an enlarged scale in Fig. 5(f), is a fingerprint of this
localization. The ρ3(z,t) shape in Fig. 6(b) for the BS chain
shows attenuation of the main peak and evidence for the
onset of the edge-mode propagation for times longer than its
lifetime.
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FIG. 7. (a) Time-dependent output intensity in the left side of the BS chain; mode beating is observed in the time range (1 ÷ 30 ps).
(b) Time evolution of its spectrum. (c) Snapshot of the electric field for t = 35 ps.

VII. TOPOLOGICAL LASING

Our challenge is to show that the interplay of topological
localization and amplification can be exploited to design mir-
rorless laser systems in analogy with random structures [23].
To this end, with the resonant layers as the light-amplifying
material, we study edge modes in the stimulated emission
process. We start with the two-level system population initially
inverted in the upper state ρ30 = 1 and add, following Ref. [24],
as the only source, a stochastic term with Gaussian statistic in
the electric-field evolution Ex = √−2ξE ln(a)cos(2πb), with
a and b random numbers uniformly distributed in (0,1) interval
and variance ξE = 10−3 V2 m−2.

For the BS chain, with a gap in the range (120 ÷ 134) THz,
and φ = 0.7π , the TLS resonance frequency is νo = ν(0.7π ).
Other parameters are N = 1023 m−3, γ = 4.8 × 10−28 Cm,
T1 = 1/γ1 = 10−11 s, and T2 = 1/γ2 = 7 × 10−15 s. For this
system, Figs. 7(a) and 7(b) show the time-dependent output
intensity in the left side of the structure, and the time-resolved
spectrum. After a wide-band transient (t ≈ 1 ps), for t ∈
(1 ÷ 30) ps, the emission is multimodal with a spectrum
corresponding to delocalized Bloch modes at the photonic
band gap (PBG) edges. At longer times (t � 30 ps), the high-
quality factor modes survive and the spectrum is characterized
by two main peaks: one at shorter wavelengths corresponding
to the PBG lower edge and one inside the gap corresponding to
the edge state λ(0.7π ) = 2469 nm. This is confirmed by the
electric-field spatial profile in Fig. 7(c) for t = 35 ps, which
reveals the coexistence of a extended mode and a localization
at z ∼= 4 μm.

The US chain provides similar results. From Eqs. (6)
and (1), for given N and 
o, the dipole coupling coefficient
is fixed by Nγ 2 = w
oχA(ωo). On the other hand, the 
o

value allows one to control the gap width �ω = 2wU
o

and the left-edge-mode resonance ω = wL
o + ωo. This
circumstance allows a tunable field emission, either varying

0 or the pumping rate N . We choose ξ = 0.5π , furnishing
w = wU = 0.4179 and w = wL = −0.3465 for the stop band
upper edge and left-edge mode in Fig. 2.

As shown in Fig. 8(a) for N = 1023 m−3 and 
o =
5.89 × 10−3 eV, stimulated emission starts to overtake the
spontaneous one after a transient regime (t ≈ 3 ps) of laser
field buildup. Once the steady state is reached, the spectrogram
of the emitted signal shows characteristic peaks. The peak at
ν ≈ 385 THz corresponds to a delocalized mode. In addition,
the optical feedback edge-mode localization gives rise to
emission at ν = 370.2 THz. For this system, a wavelength
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FIG. 8. (a) Time-dependent spectrum of the output signal in the
left side of the US chain. Emitted spectrum for (b) 
o = 5.89 ×
10−3 eV and (c) 
o = 2.945 × 10−2 eV.
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tuning of the emitted spectrum can be obtained, changing the

o value as shown in Fig. 8(b) for 
o = 5.89 × 10−3 eV where
λ = 810.2 nm, and in Fig. 8(c) for 
o = 2.945 × 10−2 eV
where λ = 814 nm.

One of the main advantages of topological protection and
intrinsic isolation of the edge states is to lower the threshold
for laser action. This is achieved by loss reduction and high
gain efficiency due to limited emission bandwidth of the active
medium. In our calculation, this is reflected in a reduction of
the two-level atoms’ density N = 1023 m−3 to achieve lasing
in the topological configuration with respect to an equivalent
periodic array for which N = 1024 m−3, corresponding to one
order of magnitude reduction in the laser threshold.

VIII. CONCLUSIONS

In this paper, we have analyzed the time-resolved optical
response to an ultrashort light pulse and focused on edge-
state detection in 1D resonant topological insulators given
by two-level layers in uniform and modulated refractive
index structures. For favorable system parameters obtained
through linearized Maxwell-Bloch equations, we show that
a direct observation of topological protected edge states can
be achieved following the time evolution of the population
inversion with different properties of uniform structures with
respect to periodic systems. We provide evidence that a RTI

can act as a resonator with laserlike emissions due to localized
edge modes; we also show that the emission frequency can
be tuned by acting on the pumping energy or other system
parameters.

An experimental test of our results is possible by the use
of active TLS of quantum wells embedded in a semicon-
ductor structure with periodically alternating linear index of
refraction. For these systems, the mechanism of emission is
expected to have a low or vanishing laser threshold since,
being the resonator directly etched in the amplifying material,
an effective feedback can be obtained.

The use of topologically protected states for lasing in
resonant systems may open a variety of several new directions
in laser physics. Achieving laserlike action may be favored
in regimes in which no feasible way for inversion population
can be imagined as, for example, for silicon lasers; in addition
topologically protected states may also allow very narrow band
emission because of the low coupling with radiation modes,
proving extremely coherent sources at room temperature for
metrological and spectroscopic applications.
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