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Current-driven plasmonic boom instability in three-dimensional gated
periodic ballistic nanostructures
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An alternative approach of using a distributed transmission line analogy for solving transport equations for
ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic
nanostructures with periodically changing width. The structures with varying width allow for modulation of the
electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by
a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the
instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to
above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated
structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability.
The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma
modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a
strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by
the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the
periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful
tunable terahertz electronic sources.
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I. INTRODUCTION

Plasma wave propagation in two-dimensional electron gas
is strongly affected by electron drift. At the values of drift
velocity smaller than the plasma velocity, the Doppler effect
leads to plasma wave instability [1,2]. When the drift velocity
reaches the plasma velocity, the electron flow is “choked,”
leading to the current saturation [3]. The transition from the
subplasmonic drift velocity to the superplasmonic drift veloc-
ity should be accompanied by a “plasmonic boom” similar to
the sonic boom. This analogy is due to the hydrodynamic
equations describing the plasma wave of small amplitude
being identical to those describing the sound waves. The
plasmonic boom effect can be used for exciting plasmons with
rapidly increasing amplitude in the periodically modulated
two-dimensional electron gas (2DEG) [4,5]. Since the plasma
frequency in the periodically modulated 2DEG structures
is typically in the terahertz (THz) range, this instability
should lead to the emission of the THz radiation enabling
an alternative type of THz electronic sources. As shown in
this paper, the instability is resonantly enhanced if the plasma
velocity is the same in all device regions (we refer to this
condition as a superplasmonic boom.)

Developing an efficient electronic THz source is one of
the key challenges to be met for closing the famous THz
gap [6]. The existing electronic sources use Gunn diodes with
frequency multiplication by Schottky diodes [7] and InGaAs-
based high electron mobility transistor integrated circuits [8].
These and other similar electronic sources suffer from low
power, low efficiency, and high cost. Using the plasma wave
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instabilities in ballistic field effect transistors (FETs) proposed
in [1,9] has the promise of developing more efficient THz
sources. However, the observed THz radiation [10–12] has
mostly been broadband until recently, when the proposed
arrays of the ballistic FETs [13,14] have been implemented
and improved to include asymmetric digital grating gate
structures [15]. Nevertheless, the goal of reaching 1 mW at
1 THz using plasmonic sources has not been reached yet.

A recent proposal was to use a grating gate periodic
structure with two sections in each period, such that the
electron velocity has the value between the values of the
plasma wave velocity in these sections [4,5]. In such a
structure, the plasma waves behave similar to the sound waves
emitted during the sonic boom, when a jet crosses the sound
barrier, except that such transition occurs many times over. In
Refs. [4,5], a multigated structure with two sections having
different electron densities was proposed to modulate the
plasma velocity.

In this paper, we develop a theory of the plasmonic boom
instability in a periodically modulated 2D electron channel.
We propose and analyze a more general structure, where
either the periodic modulation of the electron velocity or
the plasma frequency or both achieve the repeated plasmonic
boom conditions. Our approach allows us to analyze the new
structures with a periodic modulation of the device width.
In these structures biased by a constant current the electron
drift velocity periodically changes but the plasma velocity
remains constant. The constant plasma velocity in the sections
of different widths leads to the resonant excitation of the
unstable plasma modes when the bias current is tuned thus
strongly enhancing the instability (the superplasmonic boom).
Our estimates show that the analyzed instability should enable
powerful tunable terahertz electronic sources. The proposed
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FIG. 1. Schematic diagram of the 2D transistor structure with
modulated width.

structure might be the most practical implementation of a
periodic THz source; see Fig. 1.

The structure shown in Fig. 1 consists of the alternating 2D
strips with two different widths W1 < W2 and lengths L1 and
L2. The metal gate positioned above the 2D channel controls
the electron density in the strips and allows tuning of the
plasma wave velocity. We also assume that a dc current flows
between the source and the drain. This structure represents a
periodic plasmonic medium forming a one-dimensional (1D)
plasmonic crystal [4,5,16–22]. In this paper, we demonstrate
that constant electron drift qualitatively changes the plasmonic
crystal spectrum and may result in the instability of the drifting
plasma modes different from the plasma instability regimes
described in [1] and [23].

II. BASIC EQUATIONS

We will describe plasma oscillations in the 2D electron gas
in the presence of a dc electric current within the hydrodynamic
model. In this model, the local electron density n(x,t) and
velocity v(x,t) obey the Euler and continuity equations,

∂v

∂t
+ v

∂v

∂x
= e

m∗
∂ϕ

∂x
,

(1)
∂n

∂t
+ ∂(nv)

∂x
= 0,

where we assumed that the plasma wave in the 2D layer
(z = 0) propagates in the x direction between the source and
the drain. Here ϕ(x,z = 0,t) is the electric potential in the
2D plane; −e and m∗ are the electron charge and effective
mass, respectively. The hydrodynamic model can be used for
description of the 2D plasma oscillations if the mean free
path for electron-electron collisions is much smaller than both
the sample size and the mean free path for collisions with
impurities and phonons. We also assume the ballistic transport
in the nanostructure and neglect the collisional damping term
due to scattering on impurities and phonons as well as the
pressure gradient term in the Euler equation. Justification of
these approximations is presented in Sec. IV of the paper.
Equation (1) could be linearized for small fluctuations of
the electron density and velocity: n = n0 + δn, v = v0 + δv,
where n0 is the equilibrium electron density in the 2D channel
and v0 is the electron drift velocity due to dc source-drain
electric current. We also assume that the system fluctuations
of the electron density δn and electric potential δϕ in the gated

2D electron channel are connected as −eδn = Cδϕ, where
C = ε/4πd is the capacitance per unit area between the 2D
channel and the metal gate separated by the distance d; ε is
the dielectric constant of the barrier layer between the metal
and the 2D channel. This assumption is justified if d is much
less than the plasmon wavelength. The solution of Eq. (1)
[linearized with respect to δn,δv ∝ exp(−iqx + iωt)] is

Iω = I1e
−iq1x + I2e

−iq2x,
(2)

Vω = 1

CW

(
I1

v0 + vp

e−iq1x + I2

v0 − vp

e−iq2x

)
,

where Iω = Wδjω = −eW (v0δnω + n0δvω) is the total cur-
rent in the 2D channel of width W and Vω ≡ δϕω(x) is
the voltage distribution in the plasma wave (both taken at
frequency ω). The plasmonic wave vectors q1,2 are determined
as q1,2 = ω/(v0 ± vp) where vp =

√
e2n0/m∗C is the velocity

of the gated acoustic 2D plasmon in the absence of the
drift [24]. The drifting plasmon in the gated channel also has
linear dispersion but with Doppler shifted wave velocity due
to constant electron drift [1]. Constants I1,2 in Eq. (2) are
determined by the boundary conditions.

The total power carried by the drifting plasma wave includes
the electromagnetic power and the kinetic power due to the
drift of the electrons oscillating in the wave. The average
complex power Pω(x) carried by the drifting plasmon in the x

direction can be written as

Pω(x) = W

∫ ∞

−∞
Sxdz − m∗v0

2e
δvωI ∗

ω, (3)

where Sx = −(c/8π )Ez,ωB∗
y,ω is the x component of the

complex Poynting vector averaged over the THz period, Ez,ω

and By,ω are the components of the electric and magnetic fields
in the plasma wave, and c is the speed of light. The first term
in Eq. (3) describes the electromagnetic power. The second
one represents the kinetic power and vanishes at v0 = 0. The
electric and magnetic fields in the plasma wave as well as the
kinetic power can be expressed in terms of the voltage Vω and
the current Iω from Eq. (2). After the integration Eq. (3) yields

Pω = 1

2

(
v2

p − v2
0

v2
p

Vω + v0

CWv2
p

Iω

)
I ∗
ω. (4)

At v0 = 0 the standard expression P = V I ∗/2 for the
power flow in the plasmonic waveguide in the limit of
the strong gate screening is recovered. The electron drift
effectively modifies the voltage distribution in the plasmonic
waveguide by adding the so-called kinetic voltage V kin

ω =
−m∗v0δv/e first introduced for description of the electron
beam waves in tubes [25]. Expression for the power flow in
Eq. (4) reduces to its standard form after defining an effective
voltage,

V eff
ω = Vω + V kin

ω = v2
p − v2

0

v2
p

Vω + v0

CWv2
p

Iω. (5)

According to Eqs. (2) and (5), the values of V eff
ω and Iω

at the opposite boundaries of the 2D electron strip of length
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� (x = 0,�) are connected via the transfer matrix t̂ :[
V eff

ω (0)
Iω(0)

]
= t̂

[
V eff

ω (�)
Iω(�)

]
, (6)

where

t̂ = e
−iω

v0
vp

	

(
cos 	 i

WCvp
sin 	

iWCvp sin 	 cos 	

)
,

	 = ω�vp

v2
p − v2

0

. (7)

The dispersion relation for the drifting 1D plasmonic crystal
formed in the structure of Fig. 1 depends on the boundary
conditions between strips 1 and 2 in the crystal elementary
cell. In the limit of a strong gate screening, the 2D channel
in each strip can be considered as a plasmonic transmission
line (TL) supporting 2D transverse electromagnetic (TEM)
plasma waves [20,21]. In the absence of drift, the continuity
of the current and voltage at the boundary between the strips
represents the standard TL boundary conditions providing the
continuity of the power flow through the boundary. A finite
drift breaks the reciprocity of the TL due to the different
wave velocities of the plasmons propagating in the opposite
directions. To preserve the continuity of the power flow, we
assume the continuity of the current Iω together with the
continuity of the effective voltage V eff

ω defined in Eq. (5).
The latter condition accounts for the conservation of the total
electron energy equal to the sum of electric energy and kinetic
energy due to electron drift at the boundary. For these boundary
conditions, the values of Iω and V eff

ω at the opposite sides of the
crystal elementary cell are connected by the transfer matrix t̂2 t̂1
where t̂i , i = 1,2 are the transfer matrices defined in Eq. (7)
for strips 1 and 2. In the translationally invariant periodic
plasmonic medium, the dispersion equation for the 1D drifting
plasmonic crystal can be found using the Bloch theorem and
solving the resulting 1D Kronig-Penney problem [26]

cos(kL + ωT ) = cos ωT1 cos ωT2

−1

2

(
γ + 1

γ

)
sin ωT1 sin ωT2. (8)

Here γ = W1vp1d2

W2vp2d1
, L = L1 + L2 is the crystal lattice con-

stant; k ∈ [−π/L, π/L] is the plasmon Bloch wave vector;
and indices 1 and 2 refer to strips 1 and 2, respectively.
Parameters T and Ti , i = 1,2 are defined as [5]

Ti = Livpi

v2
pi − v2

0i

, i = 1,2; T =
∑
i=1,2

v0i

vpi

Ti . (9)

Equation (8) generalizes the dispersion equation for the
1D drifting plasmonic crystal found in Ref. [5] to the case
of periodically changing strip width W and the gate-to-
channel distance d. Parameter γ � 1 in Eq. (8) describes the
modulation depth of the plasmonic medium.

One should point out that the periodic modulation of the
channel width may also cause the gaps to open in the single
electron spectrum. However, we restrict our consideration to
the situation when the period of modulation is much larger than
the electron Fermi wavelength, and the electron band structure
can be ignored.

FIG. 2. First three quantized plasmonic levels in the noninteract-
ing plasma cavities formed in strips 1 (ω(1)

0,p , red lines) and strips

2 (ω(2)
0,m, blue lines) as a function of the electron drift velocity in

strips 1. Open (solid) circles indicate stable (unstable) transparency
points. Vertical dashed lines marked with red arrow correspond to the
super-resonance condition.

III. RESULTS

We will now consider Eq. (8) in the limit of strong
modulation, γ � 1, and look for solution in the form of the
power asymptotic series ω = ∑∞

p=0 ωpγ p. Substituting this
expansion into Eq. (8) and combining terms of the same order,
we find for the first two terms of the asymptotic series,

ω(i)
m = ω

(i)
0,m + 2

[
(−1)m+1 cos

(
kL + ω

(i)
0,mT

) + cos ω
(i)
0,mTj

]
Ti sin ω

(i)
0,mTj

γ

+O(γ 2);

ω
(i)
0,m = πm

|Ti | , i,j = 1,2, i �= j, m = 1,2, . . . . (10)

Frequencies ω
(i)
0,m in Eq. (10) are the frequencies of the

drifting plasmons confined in the cavity of length Li with
the symmetric boundary conditions. In Fig. 2, we plot the
frequencies of the first three quantized plasmonic levels in
strips 1 and 2 as a function of the electron drift velocity in the
narrow strip 1, v01. In this figure, we assume that both strips
1 and 2 have the same parameters except for the width, that
is, vp1 = vp2 = vp , d1 = d2 = d, and L1 = L2 = L/2. In this
case, γ = W1/W2 < 1, and as it follows from the continuity of
the constant bias current, the electron drift velocity in the wide
strip, 2, is v02 = γ v01. The frequencies are plotted in units of
ω0 = 2vp/L.

It follows from Eq. (10) that the quantized plasmonic energy
levels in the identical strips (1 or 2) are weakly coupled
and broadened into the narrow plasmonic bands at γ � 1.
In this limit, strips 1 and 2 form two independent plasmonic
sublattices. The plasmon frequencies in the bands in Eq. (10)
are real. Hence, no instability occurs at any value of the
electron drift velocity.

Points where ω
(1)
0,m = ω

(2)
0,p, m,p = 0,1,2, . . . present spe-

cial interest. In the absence of a dc drift, the band gaps in
the plasmonic crystal spectrum vanish in these points, and
the plasma wave propagates through the entire crystal in a
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resonant manner [21]. The dispersion law for the drifting
plasmon in these transparency points cannot be found from
Eq. (10) because all terms in the asymptotic series used in this
equation diverge, and an alternative asymptotic expansion is
developed below.

Let ω
(1)
0,m = ω

(2)
0,p ≡ ω0,mp. At γ � 1 solution of Eq. (8) has

the form ωmp = ω0,mp + �ω, where �ω → 0 at γ → 0. We
expand Eq. (8) into a quadratic polynomial with respect to
�ω and look for �ω in the form of an asymptotic series
�ω = ∑∞

k=0 αkγ
δk , δk+1 > δk . Coefficients αk and δk can

be found by the standard Newton diagram method used for
finding asymptotic expansion of the polynomial roots [27].
Our calculations yield

ω(±)
mp = ω0,mp ± 2γ 1/2

√
T1T2

{
sin

( kL+ω0,mpT

2

)
, m + p even

cos
( kL+ω0,mpT

2

)
, m + p odd

+ (−1)m+pT sin(kL + ω0,mpT )

T1T2
γ + O(γ 3/2). (11)

It follows from Eq. (11) that at T1T2 > 0, the resonant
coupling of the quantized plasmonic levels in the adjacent
nonidentical strips 1 and 2 splits each unperturbed degenerate
plasmonic level into the two plasmonic bands described by
the second term in Eq. (11). If T1T2 < 0, the degenerate
plasmonic level broadens into one narrow plasmonic band
described by the third term in Eq. (11). The second term in
this equation becomes purely imaginary and corresponds to
either unstable or decaying plasmon modes. The instability
increment depends on the Bloch wave vector. From Eq. (9) it
follows that the instability occurs when v01 > vp1 (v01 < vp1)
but v02 < vp2 (v02 > vp2). These inequalities constitute the
necessary conditions for the repeated “sonic boom” with the
dc current flowing in the structure. In Fig. 2, the stable and
unstable transparency points are marked by the open and closed
circles, respectively. One can also show that at ω(1)

0,m �= ω
(2)
0,p but

|ω(1)
0,m − ω

(2)
0,p| → 0 the interaction between nearly degenerate

plasmonic levels in strips 1 and 2 results in either two split
plasmonic bands with real eigenvalues or one band with
unstable and decaying branches dependent on the value of
k in the Brillouin zone.

These analytical results are confirmed by the direct numer-
ical solution of Eq. (8). For the structure shown in Fig. 1,
we choose identical, except for the width, strips 1 and 2 as
described above and use dimensionless units for the complex
plasma frequency (ω′ + iω′′)/ω0 and the electron drift velocity
in the narrow strips ṽ0 = v01/vp.

Figures 3–6 show the results of the numerical solution of
Eq. (8) for γ = 0.1. Figure 3 shows the drifting plasmonic
crystal spectrum for ṽ0 = 0.43. At this value of the drift
velocity, ω

(1)
0,m �= ω

(2)
0,p at any m,p � 1, and the low-energy

spectrum consists of the two sets of plasmonic bands ω(1)
m and

ω(2)
m , m = 1,2, . . . , formed due to the resonant coupling of

the plasmon energy levels ω
(1)
0,m and ω

(2)
0,m in strips 1 and 2,

respectively, as described by Eq. (10). One additional low-
energy solution appears in the transparency point ω

(1)
0,0 = ω

(2)
0,0.

This solution can be interpreted as a lattice acoustic plasmon
similar to the acoustic phonons in the atomic crystal lattice and
corresponds to the ω

(±)
00 modes in Eq. (11). Since at the given

FIG. 3. Energy band spectrum of the drifting plasmonic crystal
when the electron drift velocity in both strips 1 and 2 is less than
the plasma wave velocity: v01,v02 < vp . Here v01 = 0.43vp, v02 =
0.1v01. The two lowest stable plasmonic bands formed due to the
resonant coupling of the quantized plasmonic levels in strips 1 (ω(1)

m )
and strips 2 (ω(2)

m ) are shown. Stable bands ω
(±)
00 correspond to the

lattice acoustic plasmon as described in the text.

FIG. 4. Energy band spectrum of the drifting plasmonic crystal
when the electron drift velocity is within the instability range:
v02 < vp < v01. Here v01 = 1.12vp, v02 = 0.1v01. (a) Plasmonic band
frequencies in the stable bands (ω(1)

m , solid black lines) and unstable
bands (ω(±)

mp , red circles and blue squares); (b) instability increments
in the unstable plasmonic bands.
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FIG. 5. Totally unstable energy band spectrum of the drifting
plasmonic crystal at v01 = 1.41vp, v02 = 0.1v01 corresponding to
the resonant coupling of all quantized plasmonic levels in strips 1
and 2. The first four unstable bands are shown. (a) Plasmonic band
frequencies; (b) instability increments.

value of the drift velocity T1T2 > 0, there is no imaginary part
in the frequencies ω

(±)
00 .

At γ = 0.1, the instability occurs in the range of 1 <

ṽ0 < 10. Figure 4 shows the numerically found plasmonic
spectrum for ṽ0 = 1.12 when ω

(1)
0,4p = ω

(2)
0,p, p = 0,1,2, . . ..

The real part of the plasma frequencies, ω′/ω0, is plotted in
Fig. 4(a). The plasmonic spectrum consists of the stable bands
with purely real frequencies formed by the coupled strips 1,
ω(1)

m , and unstable bands, ω(±)
mp , in the transparency points where

ω
(1)
0,m = ω

(2)
0,p. Figure 4(a) shows two of these unstable bands.

The instability increment, |ω′′|/ω0, in these bands depends on
the plasmonic Bloch wave vector as shown in Fig. 4(b). These
results correlate very well with asymptotic analytical formulas
in Eqs. (10) and (11).

All the quantized plasmonic levels in strips 1 and 2
are perfectly matched if |T1| = |T2|; see Eqs. (9) and (10).
This last equation represents the super-resonance condition
when the plasmonic crystal becomes unstable at any plasma
frequency ω(±)

mp , provided that T1T2 < 0 (the superplasmonic
boom). For the structure considered here, it happens at
ṽ0 =

√
2/(1 + γ 2) ≈ 1.41. In Fig. 2, the super-resonance

condition is marked by the dashed vertical lines with red arrow.

FIG. 6. Energy band spectrum of the drifting plasmonic crystal
at the electron drift velocity within the instability range: v01 =
1.71vp, v02 = 0.1v01. (a) Plasmonic band frequencies in the stable
bands (solid black lines) and unstable bands (red circles and blue
squares); (b) Instability increments in the unstable bands. Inset:
the ω

(±)
12 unstable band at v01 = 1.65vp showing the evolution of

the unstable band with the changing drift velocity as described in the
text.

Plasma frequencies and instability increments for this totally
unstable plasmonic crystal are shown in Figs. 5(a) and 5(b),
respectively.

The results presented in Figs. 4 and 5 indicate that the
instability has a resonant character and occurs every time when
there is a perfect plasmonic level matching between different
strips in the transparency points. In this case, the plasma modes
are unstable at any value of the plasmonic Bloch wave vector
k. However, if the level mismatch is small the instability does
not completely vanish but occurs at some intervals of k in the
Brillouin zone. In Fig. 6, we plotted the plasmon dispersion
curves for ṽ0 = 1.71 when ω

(1)
0,p = ω

(2)
0,2p, p = 0,1,2, . . .. Two

unstable modes ω
(±)
12 and ω

(±)
00 are shown in Fig. 6(a) with the

corresponding instability increments shown in Fig. 6(b). The
unstable mode ω

(±)
12 is the result of the resonant coupling of

the plasmonic levels ω
(1)
0,1 and ω

(2)
0,2. When the drift velocity ṽ0

changes, these two levels shift differently and decouple. The
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inset shows the dispersion curves for this mode at ṽ0 = 1.65.
The instability disappears at some interval of k, where instead
of one unstable band two split stable bands emerge. When the
level mismatch increases the region of stability expands and
finally the unstable band ω

(±)
12 transforms into two stable bands,

ω
(1)
1 and ω

(2)
2 , described by Eq. (10).

One should also point out that the low-frequency acoustic
mode ω

(±)
00 in the plasmonic crystal lattice remains unstable

at any value of ṽ0 within the instability window 1 < ṽ0 <

1/γ . This result follows from the asymptotic expansion in
Eq. (11) and is confirmed by the numerical simulations shown
in Figs. 3–6.

IV. DISCUSSION

The results of this paper have been derived based on
the hydrodynamic equation (1). For Eq. (1) to be valid the
mean free path for electron-electron collisions lee has to
be smaller than both the sample size and the mean free
path for collisions with impurities and phonons [1]. For 2D
electron density of the order of 1013 cm−2 the average distance
between electrons is of the order of several nanometers.
Frequent electron-electron collisions at these distances form
the local equilibrium electron distribution function while
electron-electron collisions at larger distances (larger than the
Bohr radius, ∼10 nm) are accounted for by the self-consistent
macroscopic electric field [28]. The characteristic macroscopic
spatial scale in this problem is defined by the structure
periodicity which determines the plasmon wavelength and
is of the order of 0.1–1 μm. Since this scale is at least
an order of magnitude larger than lee the hydrodynamic
equation (1) can be derived from the kinetic equation using the
standard Chapman-Enskog method [29]. The hydrodynamic
approximation works better at elevated temperatures since lee
decreases with temperature. The hydrodynamic model was
successfully used for description of the plasma oscillations in
the 2D electron systems in the semiconductor nanostructures
for a very long time [30] and more recently was used in
graphene nanostructures [31].

The Euler equation in Eq. (1) relies on the assumption
that the electron scattering by impurities and phonons can be
neglected (i.e., for the ballistic transport regime). This assump-
tion is justified if the mean electron free path due to scattering
by impurities and/or phonons exceeds the characteristic sample
size. In the modern day semiconductor nanostructures, with the
scattering mean free paths ranging from a few micrometers
in the high-mobility samples at cryogenic temperatures to a
fraction of a micrometer at room temperature this condition can
be easily satisfied. In this context, it is worthwhile to point out
that the drift velocities of the electron fluid introduced in our
model are ballistic velocities that are not related to the electron
mobility dependent on the electron scattering by impurities or
lattice vibrations but are determined by the so-called ballistic
mobility [32]. A more detailed discussion of this issue and
additional relevant references can be found, for example, in
the recent paper by Lin et al. [33].

Electron scattering by impurities and phonons suppresses
the instability. This effect can be accounted for by adding
the friction term −v/τp into the right-hand side of the Euler
equation in Eq. (1). Here, τp is the electron momentum

relaxation time. The friction term leads to the additional
contribution 1/2τp to the imaginary part ω′′ of the plasma
frequency and describes the decay of the plasma wave. As seen
from Figs. 4–6, the value of ω′′ is of the order of ω0 where ω0

is the plasma frequency. Hence, the plasma wave decay due
to random electron scattering is negligible at ω0τp � 1. With
plasma frequencies in the THz range the latter condition can
be satisfied in the semiconductor nanostructures even at room
temperatures.

Another effect potentially suppressing the plasma wave
instability is the Landau damping. The Landau damping refers
to the transfer of energy from the collective plasma excitation
to the individual electrons. This effect is ignored in the
hydrodynamic model where the gas of individual electrons
is replaced with the classical macroscopic electron fluid. The
hydrodynamic approximation cannot be used if the Landau
damping is the dominant effect. Transfer of energy from
the plasma wave to the individual electron occurs when the
electron moves in phase with the wave because, in this case, the
wave electric field acting on these electrons is stationary and
does not disappear after the time averaging as it happens for
all other electrons which feel an oscillating electric field [34].
Therefore the Landau damping disappears if the plasma wave
phase velocity vp is larger than the electron Fermi velocity vF

in the degenerate electron gas or becomes exponentially small
if vp is larger than the thermal velocity in the nondegenerate
electron gas. Using the expression for vp from Sec. II and the
Fermi velocity vF = �

√
2πn0/m

∗ in the inequality vp > vF

we obtain the condition d > rB/2 for the Landau damping to
disappear in our system. Here, rB = ε�

2/m∗e2 is the 2D Bohr
radius. The microscopic derivation of the last inequality based
on solution of the kinetic equation can be found in Ref. [35].
With the typical effective Bohr radius of the order of 10 nm and
the thickness of the gate dielectric d of the order of 30–100 nm
the latter condition is met and there is no dominant Landau
damping in the system even at finite temperatures [35].

Also omitted in the Euler equation (1) is the pressure
gradient term (−1/nm∗)∂P/∂x where P is the local pressure
in the 2D electron gas. The pressure term can be ignored
because it is small compared with the field term (e/m∗)∂ϕ/∂x.
Pressure in the 2D electron gas depends on the electron density
as P = π�

2n2/2m∗. For small fluctuations of the 2D electron
density δn(x) the pressure term in the Euler equation reduces
to (−π�

2/m∗2)∂δn/∂x. In the same linear approximation,
the field term is equal to (−e2/m∗C)∂δn/∂x. The pressure
term becomes much smaller than the field term if d � rB/4
and can be neglected in the structures considered in this
paper. The same inequality can also be written as C/CQ � 1
where CQ = m∗e2/π�

2 is the quantum capacitance [36]. In
the transmission line formalism, the effect of the quantum
pressure is accounted for by adding the quantum capacitance
in series with the gate capacitance C. The last inequality
indicates when this effect can be neglected. One should also
point out that inclusion of the quantum pressure into the Euler
equation reduces to some renormalization of the constant
plasma velocity [37] and does not change qualitatively the
results presented in this paper.

Finally, we estimate the effect of viscosity. For the viscosity
term to be neglected, we must have νq2 � 1/τp, where ν is
the kinematic viscosity coefficient (of the order of ∼10 cm2/s).
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This inequality is easily met for our characteristic space period
scale of the order of 0.1−1 μm.

As discussed above, the predicted instability increment is of
the order of the plasma frequency ω0. This corresponds to the
gain coefficient g ∼ ω0/ṽp, where ṽp = ∂ω/∂k is the plasma
group velocity in the plasmonic crystal energy band, ṽp ∼
γ vp. For the plasma frequency of 3 THz (ω0 ∼ 2 × 1013 s−1)
and ṽp ∼ 105 m/s, the gain g ∼ 2 × 108 m−1. Demanding
g � 1 for the efficient generation, we need structures with
the length on the order of 1 micron. For a ballistic structure,
the contact resistance on the order of 0.5 � mm limits the
device resistance. Assuming a typical radiation resistance of
300 � and a device width of 10 μm we estimate the current
carrying capability on the order of Imax ∼ 30 mA for the
electron velocity ∼2 × 105 m/s and the 2D electron density
of 1013 cm−2. Assuming a current swing of 0.5Imax, we obtain
the power of 80 mW with efficiency of approximately 20%.

V. CONCLUSIONS

The results of the analytical theory and numerical simula-
tions show that the plasma waves in a 1D plasmonic crystal
become unstable when the electron drift velocity changes from
a value smaller than the plasma velocity to a value larger than
the plasma velocity. This can be achieved by changing either
the drift velocity or the plasma wave velocity in the strips
constituting the plasmonic crystal. The qualitative physics of
the instability is similar to the physics of the sonic boom,

which occurs when a jet airliner crosses the sound barrier. The
difference is that such plasmonic boom is repeated many times
in the periodic plasmonic structure leading to a much stronger
instability. Further enhancement of the instability occurs due
to the resonant excitation of the unstable plasma modes
including the super-resonance condition when all plasma
modes become unstable (the superplasmonic boom). Another
advantage of this approach is that the plasmonic crystal can
efficiently couple with THz electromagnetic radiation. In our
analysis, we neglected the electron collisions with impurities
and lattice vibrations. The modern silicon very-large-scale
integration (VLSI) fabrication techniques reached a feature
size of 10 nm in 2015 [38], which is smaller than the mean
free path in Si at room temperature (∼30 nm). This makes
the ballistic plasmonic crystal analysis to be realistic as the
first approximation at room temperature and to be a very good
approximation at cryogenic temperatures. High values of the
electron mobility in graphene (up to 200 000 cm2/V s at room
temperature [39]) make this material a good candidate for THz
plasmonic crystal applications [40]. Therefore, we believe that
the THz generation mechanism proposed in this paper should
enable next generation of efficient and compact THz sources.
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