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Fundamental gap of molecular crystals via constrained density functional theory
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The energy gap of a molecular crystal is one of the most important properties since it determines the crystal
charge transport when the material is utilized in electronic devices. This is, however, a quantity difficult to
calculate and standard theoretical approaches based on density functional theory (DFT) have proven unable to
provide accurate estimates. In fact, besides the well-known band-gap problem, DFT completely fails in capturing
the fundamental gap reduction occurring when molecules are packed in a crystal structures. The failure has to
be associated with the inability of describing the electronic polarization and the real space localization of the
charged states. Here we describe a scheme based on constrained DFT, which can improve upon the shortcomings
of standard DFT. The method is applied to the benzene crystal, where we show that accurate results can be
achieved for both the band gap and also the energy level alignment.
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I. INTRODUCTION

Molecular crystals have attracted a large amount of interest
in both basic and applied science [1]. Among their most
important properties is the fundamental gap Eg,p, defined
as the energy difference between the ionization potential (1)
and the electron affinity (A), i.e., Eqop = I — A. Although for
molecules in the gas phase Eg,, is typically several eV, this
is drastically reduced in solids, because of the electrostatic
polarization of the crystal [2-5]. According to the classical
picture, an added charge localized on a molecule causes all
surrounding molecules in the crystal to re-arrange their charge
densities. Such rearrangement generates net dipole moments
that orient so to close the electric field lines of that charge.
As the result of this, I decreases, while A increases. An
analogous effect has been also demonstrated experimentally
for molecules adsorbed on polarizable substrates [6-9]. Here,
an image charge, opposite to that of the molecule, is formed on
the surface, and the attractive Coulomb interaction between the
added hole/electron and the image charge results in the overall
reduction of the fundamental gap. Notably, it is this reduced
fundamental gap, which is relevant for applications involving
charge transport, while the gas-phase fundamental gap is too
large for any practical use.

From the theoretical perspective, the GW approximation of
many-body perturbation theory [10] has proven quite accurate
in computing E,,, and in accounting for strong polarization
effects both at surfaces [11,12] and in bulk crystals [13,14].
Unfortunately, GW is still a computationally very expensive
method, which cannot be routinely applied to crystals with unit
cells typically containing several hundreds atoms. In contrast,
density functional theory (DFT) may be seen as a much less
demanding alternative, with the occupied Kohn-Sham (KS)
eigenstates representing a good zeroth-order approximation
to the real occupied quasiparticle states (see Ref. [15] for
a detailed discussion about this issue). However, one has to
face several problems when calculating E,,, as the difference
between the KS lowest unoccupied and highest occupied
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molecular orbital (LUMO and HOMO, respectively) energies,
Ega% = eESMO — eE(S)MO. First, this procedure results in a
considerable underestimation of E,,, already for molecules
in the gas phase. This is the infamous “band-gap problem” of
DFT that affects the computation of the fundamental gap of all
materials, organic as well as inorganic. Second, for the specific
case of molecular crystals and for calculations performed
with the available approximated exchange-correlation density
functionals, Eifa% does not capture any effect induced by the
polarization of the surrounding environment [11,12,14]. This
means that £ gai is returned the same for the gas phase molecule
and its crystal. A fortuitous error cancellation between the
gap underestimation and the neglect of the environment
polarization may sometimes happen in practice, but this is not
generally the case, which makes quantitative predictions for
new materials impossible. Corrective approaches are therefore
required, based on a detailed understanding of the origin of
these shortcomings of DFT.

The band-gap problem is related to the physical interpreta-
tion of the KS eigenenergies as excitation energies. In exact
DFT, the “ionization potential theorem” [16—19] establishes
the mathematical equality between the KS HOMO energy
and the negative of the ionization potential, which means
that ef2yo = —I. In contrast, no analogous theorem exists
for the KS LUMO energy. This differs from the opposite
of the electron affinity by a number equal to the derivative
discontinuity A4, of the exchange-correlation functional at
integer electron occupation [20-28], a quantity which is not
known. Therefore, the fundamental gap and the KS gap do
not coincide and Eg,, = E KS 1 A,.. The difference becomes

. &ap . .
even larger when approximate functionals are used in DFT.

In fact one has Egyp, = Egaf) + AL + Al [23], with AL the

derivative discontinuity of the approximate functional and Al
determined by the deviation of the approximate DFT energy
from the exact linear dependence on the electron number
between two consecutive integer occupations [18,24]. For
the local density approximation (LDA) and the generalized
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gradient approximation (GGA) of the exchange-correlation
functional [25], AfZ"PA/GGA
has that A{ZLDA/ GGA s not zero.

Nevertheless, for finite-size systems and, in particular, for
small molecules in the gas phase, the fundamental gap can be
accurately computed with the ASCF method by finite-energy
differences [26]. This, instead, is not true for extended systems,
such as molecular crystals. In fact, because of the inherent
LDA/GGA self-interaction error [27] leading to an excessive
charge delocalization, a charge added to a system is incorrectly
spread over the entire system in order to lower its total energy.
As a result, the ASCF gap is determined by the fractional
charge error of the approximate functional [28] (A{ ) and
becomes equal to the KS gap [21,29] so that the two share
the same error. This is the essence of the band-gap problem
for extended systems in DFT with LDA/GGA [28,30,31].

While the derivative discontinuity and the band-gap prob-
lem are intrinsic to DFT even in its exact formulation (where
the exact energy density functional is used) the deficiency
in predicting the polarization-induced gap reduction is due
to the utilization of functionals, where the correlation energy
depends only on the local density and its gradient. In such
functionals the exchange-correlation potential entering into
the effective single-particle KS equations does not mimic any
effect ascribable to nonlocal correlations, such as environmen-
tal screening. If the exact correlation functional was known,
the calculated KS HOMO eigenenergy for the crystal would
show the correct shift with respect to the gas phase value, in
agreement with the ionization potential theorem, since exact
DFT will return the exact I for both systems. In contrast, the
KS LUMO eigenenergy is not expected to be equal to the
real excitation energy in any case, because of the derivative
discontinuity.

A common approach to go around these problems of
standard DFT consists in using hybrid functionals within the
generalized-KS scheme (gKS) introduced by Seidl et al. [32].
In fact, the derivative discontinuity of the exact functional
is expected to be small [32] and the delocalization error is
mitigated [33]. Furthermore, an effective way to describe
the fundamental gap reduction has been recently proposed
by Rafaely-Abramson et al. [14]. These authors introduced
a novel range-separated hybrid functional, called screened
RSH, where the short-range part of the exchange functional
is treated in a semilocal approximation, while the long-range
part is treated in a screened Fock-like manner, appropriate for
incorporating the dielectric response of the crystal.

Here we propose an alternative and complementary ap-
proach, which is an extension of the ASCF method and
prevents the added charge from delocalizing over the entire
system. As a consequence the computed fundamental gaps
do not revert to the KS gaps. The critical observation is that
in molecular crystals the hybridization between the various
molecular units is rather weak, and each of these units is charge
neutral, presenting an electron count identical to that of their
gas phase. A molecular crystal thus appears naturally quite
similar to a chain of distant atoms [29], and the fundamental
gap can be described with finite total energy difference
calculations by enforcing the localization of the added charge
on a single molecule. In this way, one bypasses the KS

spuriously vanishes, but one still
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band-gap problem and, at the same time, captures the response
of the electron density of the surrounding molecules to the
added charge. The calculations can be efficiently implemented
by using the constrained DFT (CDFT). We note that, in contrast
to the case of organic crystals, in inorganic semiconductors
electrons are delocalized, and the considerations above do not
hold [29]. An extension of the ASCF method to treat inorganic
semiconductors has been proposed by Chan and Ceder [34].
In their work they suggested adding a charge to a volume
commensurate with the range of the dielectric screening effects
determined from the extent of the LDA exchange-correlation
hole. By studying approximately 100 different compounds,
they have shown that the accuracy of the results rivals other
state-of-art approaches, for instance, hybrid functionals and
G W, while requiring much less computational resources.

In CDFT an appropriate external potential is introduced
in the Kohn-Sham equations in order to implement the
desired constraint on the charge density [35]. Importantly,
the CDFT approach is fully variational, so that the energy
minimum of the constrained functional represents the ground
state of the system under that particular constraint [36-38].
CDFT has been used successfully for problems concerning
molecular systems, for instance, for describing long-range
charge-transfer excitations between molecules [36,39,40].
Moreover, in some recent works [41-43], it has been employed
for determining the energy level alignment at hybrid organic-
inorganic interfaces. The results have been promising, showing
that the method can capture image charge and polarization
effects.

The goal of the present work consists in providing a well-
defined procedure for the calculation of electron affinities,
ionization potentials, and fundamental energy gaps of molec-
ular crystals by means of CDFT. This is done by considering
the prototypical example of the benzene crystal. The paper
is organized as follows: We first describe the computational
approach and the methods used in the calculations. Then, we
present their application and the results. Finally we conclude
mentioning some possible directions for further studies and
for additional methodological improvements.

II. COMPUTATIONAL METHODS

Calculations have been performed by using a development
version of the DFT package SIESTA [44], which includes an
implementation of the CDFT method [42]. Norm-conserving
Troullier-Martin pseudopotentials have been employed to-
gether with a basis set of double-zeta plus polarization
quality. In order to compare our results to those obtained by
Rafaely-Abramson et al. [14] with GW and the screened-RSH
functional, we have used the same unit cell considered in that
work. The lattice vectors have been fixed to the experimental
values, while the atomic coordinates inside the cells have been
optimized with the Perdew-Zunger (PZ) parametrization of the
LDA [45].

The benzene crystal has an orthorhombic unit cell contain-
ing four molecules and with lattice parameters a = 7.44A,
b =9.55A, and ¢ = 6.92A (see Fig. 1). All computed energy
differences are converged up to 5 meV with respect to
the number of k points. The CDFT calculations have also
been performed with PZ-LDA. In our implementation, the
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FIG. 1. The orthorhombic unit cell of the benzene crystal con-
taining four molecules. Color code as follows: C atoms, yellow; H
atoms, cyan.

constraint is applied by requiring that the total charge projected
onto a given set of basis orbitals is equal to a specified value.
We utilize the Lowdin projection scheme [46], which has been
shown to give more accurate results than other considered
schemes [36,42].

In the ASCF method, the HOMO and LUMO energies
of an isolated molecule are computed through total-energy
differences,

evomo = —I = E(N) — E(N — 1), ey

ecumo = —A = E(N + 1) — E(N), ()

where E(N) is the energy of the neutral molecule and E
(N — 1) and E(N + 1) are the energies of the corresponding
cation and anion, respectively. Analogously, we calculate the
HOMO and LUMO energies of molecular crystals by CDFT as

enomo = E(N) — Ecprr(N — 1), 3)

eLumo = Ecprr(N + 1) — E(N), @

where E(N) is the total energy of the neutral cell and
Ecprr(N — 1) and Ecppr(N + 1) are the total energies of
the same cell with an added hole or electron, respectively.
E(N — 1), E(N + 1), ECDFT(N — 1), and ECDFT(N + 1) are
obtained via spin-polarized calculations.

In the computation of both the HOMO and the LUMO
energies by CDFT, the additional charge is usually constrained
to a single molecule. We note that for energies above
the vacuum potential additional delocalized unbound states
appear, usually termed as vacuum states [47]. If the molecular
LUMO states have negative electron affinity, then the vacuum
states will be lower in energy. Inclusion of such delocalized
vacuum states within localized orbital basis sets calculations
can be achieved by adding additional basis orbitals in the
vacuum region [48]. However, vacuum states are neglected in
the present study, which only concerns with molecular states.

The use of Eqgs. (3) and (4) implies that one has to perform a
calculation for a charged molecule in a periodic cell. However,
the electrostatic energy of a periodically repeated system
diverges (the total energy is not bound from below). In order
to avoid this problem, it is customary to introduce a uniform
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charged jellium, which exactly neutralizes the net charge in
the cell. As first noted by Leslie and Gillan [49], the energy
of the new system then presents an additional contribution,
which is equal to the electrostatic energy of a periodically
repeated system containing a point charge ¢ immersed in the
background jellium. Such additional contribution is just the
Madelung energy, which writes

Ey=-+2
M e Q)

where vy is the Madelung potential and € is the macroscopic
dielectric screening constant of the material (note that we
use atomic units here). Since the Madelung energy represents
a spurious addition to the system energy introduced by the
computational methodology and due to the use of periodic
boundary conditions, it must be removed from the calculated
DFT total energy. Once this is done, the correct expressions
for the HOMO and LUMO energies, Eqgs. (3) and (4), read

efiomo = E(N) — [Ecprr(N — 1) — Emlg=—1],  (6)

ef umo = [Ecorr(N + 1) — Emlg=11 — E(N).  (7)

These equations show that the LUMO energy increases after
the application of the Madelung correction, while, conversely,
the HOMO energy decreases. This means that the corrected
fundamental gap is larger than the uncorrected one.

For a cubic cell of lateral dimension L, the Madelung
potential is available from literature [49,50] and it is equal to
vm = o/ L with @ = 2.8373. However, for the orthorhombic
benzene unit cell, the Madelung potential vy must be explicitly
computed by using the Ewald summation [51,52],

G2
e 2n T
IGi|?

§ e@RD 4

M =
IR

NZEER L

)
where the first and second term are sums over all vectors with
cell index i # 0 of the direct ({R;}) and reciprocal ({G;})
lattice. The rate of convergence of both sums is governed by
the parameter 1, which needs to be chosen so that they can be
truncated without introducing any sizable error. This is done
by imposing an error tolerance and a cutoff for the direct space
sum and then by evaluating 1 and the reciprocal space cutoff
accordingly.

Once vy has been obtained, the Madelung correction in
Eqg. (5) and, consequently, the corrected HOMO and LUMO
energies can be calculated if the dielectric constant € is known.
The value of € can be obtained from experimental data if
available, or computed with the random phase approximation
[53]. However, we here calculate € by applying a finite size
scaling approach, similar to that originally considered by Hine
et al. in the study of defect formation energies in oxide
insulators [54]. First, we compute the HOMO and LUMO
energies, egomo(£2) and epymo(£2), for many supercells of
different volume 2 by using Egs. (3) and (4), which are now
rewritten as

R;(i#0) G (i#0)

enomo(2) = E(2,N) — Ecprr(2,N — 1), &)

erumo(2) = Ecprr(R2,N + 1) — E(Q,N), (10)
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and thus depend explicitly on €. Then, for each super-
cell we plot enomowumo)(§2) as a function of Madelung
potential vy calculated by the Ewald summation. Finally
we fit the corrected value of the HOMO (LUMO) energy
€Homo@umo) and the dielectric constant € by using the linear
equation,

enoMoLuMo)(£2) = efomorumoy T (—)vm/2€, (11)

which is obtained from Egs. (6)—(8) with ¢> = 1.

The procedure introduced here has several strengths. First,
the dielectric constant is obtained without relying on any
input from experiments or any theoretical approach other
than CDFT. Second, we can inspect whether our results for
eromowumo)(§2) versus vy deviate from the linear behavior
predicted by Eqs. (6) and (7), thus checking the reliability of the
Madelung correction for the present problem. In fact, we note
that the Madelung correction is expected to be adequate only
for systems where the charge distribution can be approximated
as pointlike. In contrast, for systems where this is not true (for
instance, for charged defects in semiconductors [29]), different
extensions of the Madelung correction have been discussed by
Makov and Payne [55], as well as other authors [50,56,57].

III. RESULTS

Before investigating the molecular crystal, we evaluate the
fundamental gap of the benzene molecule in the gas phase by
using the ASCF method. In order to explain how the DFT
energies calculated by imposing periodic boundary conditions
must be corrected for the Madelung contribution, we employ
a supercell approach, where a single molecule is put inside
a finite-sized box. In particular, here we consider several
symmetric orthorhombic boxes of volume €2, = n3(abc) with
n=2,...,10 and a, b, and c being the lattice parameters
of the benzene crystal unit cell. Then, by following the
procedure outlined above, we compute the HOMO and LUMO
energies according to Egs. (1) and (2) for each system and
plot the obtained values as a function of the corresponding
Madelung potential vp(€2,,). The results are presented in Fig. 2
and display an almost perfect linear trend for the HOMO
(LUMO) energy, which decreases (increases) inversely to
vm(€2,), or, alternatively, as a direct function of the supercell
volume. We note that vy (€2,) = vy (unit cell)/n, so that larger
supercells correspond to smaller Madelung potentials. The fit
of the data then provides ef;yyo = —9.49 eV and ef o =
1.83 eV, so that the gas phase benzene fundamental gap
is 11.32 eV. These results for ey and efyyo are just
slightly larger in magnitude than the experimental estimates,
eZ(SMO = —9.24eVand efﬁMo = 1.14 eV, found, respectively,
in Refs. [58,59]. Finally, we note that the computed dielectric
constant (expressed in the system of atomic units) is € = 0.98,
which is very close to the expected vacuum dielectric constant
€) = 1.

Next, we move to study the benzene crystal. The HOMO
and LUMO energies are computed for supercells of different
volumes by CDFT according to Egs. (9) and (10). We can
visualize directly the CDFT charge density of the added
electron/hole and the consequent rearrangement of the charge
density of the surrounding environment (Fig. 3). These
rearrangements of the charge density computed by CDFT
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FIG. 2. HOMO and LUMO energies of gas phase benzene
computed for several supercells with different Madelung potential
vm. The energies are in Hartree for better display. Decreasing the
Madelung potential is equivalent to increasing the supercell volume
Q, as vm(£2,) = vm(unitcell)/n. The data have been fitted through a
straight line with Eq. (11).

represent the screening of the host crystal and therefore are
of central importance for the subsequent evaluation of the
fundamental gap. In Fig. 3 we clearly note that the presence of
the electron/hole localized on one molecule induces the
formation of a large dipole moment on the molecules of the first
coordination shell. This effect, however, becomes already quite
small for the second coordination shell and almost negligible
for the third, showing that most of the screening happens in
the first coordination shells.

Importantly, as pointed out by Hine et al [54], the
fitting procedure that we employ permits for the use of very
asymmetric supercells constructed as an array of [ x m x n
copies of the unit cell. This has the advantage that we can
access a very large range of systems and, therefore, we can
collect a large number of data to address the finite-size scaling
problem. In contrast, if only symmetric n x n x n supercells

' o~
i y YW A
b Yy Yy ¥ Y pY Yy Y Y

FIG. 3. Difference between the charge density of the neutral
supercell and of the supercell with one extra hole (left panel) and
on one extra electron (right panel) constrained on one molecule. Red
(blue) isosurfaces represent positive (negative) values, i.e., charge
accumulation (depletion).
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FIG. 4. HOMO and LUMO energies of the benzene crystal
computed for several supercells with different Madelung potential
vm. The energies are in Hartree for better display. The data have been
been fitted through a straight line with Eq. (11).

were considered, as done in our calculations for the gas-phase
molecule, just three data points for the HOMO and LUMO
energies would be available, since the calculations become
computationally unfeasible already for n = 4.

The dependence of the HOMO and LUMO energies over
the Madelung potential is presented in Fig. 4. As for the
gas phase case, we find an almost perfect linear behavior of
egomo($2) and ep umo(§2) against vy, with the absolute value
of the correlation coefficient of the fit being equal to about
0.98. This is very close to the maximal value of 1.0 for an
exact linear dependence. Such excellent linear behavior also
indicates that the dielectric properties of the benzene crystal
are isotropic. If this was not the case, then the data obtained for
supercells of different shapes would have shown a large spread,
and only data for supercells constructed by repeating the same
units along a specific crystallographic direction would have
been on a straight line [60]. We remark here that our CDFT
energies have an uncertainty of about 10-20 meV with our
calculation parameters.

After the linear extrapolation of the data of Fig. 4 we
find a dielectric constant € of 1.98 and 1.92 depending on
whether the fit was performed for the HOMO or LUMO energy,
respectively. Although these values somewhat underestimate
the experimental one for (liquid) benzene [61,62], which is
2.28, they are very close to the RPA value [14] of =2.
By extrapolating the data to an infinite-sized supercell we
find ef;5p0 = —9.56 €V and ¢f ;o = —0.28 eV so that the
fundamental gap decreases from that of the gas phase to
9.28 eV. This corresponds to a reduction of about 2 eV.
Therefore, in the considered insulating molecular crystal,
CDFT is demonstrated to capture nonlocal correlation effects
due to the screening properties of the material. Analo-
gous results have been found for molecules physisorbed
on metallic surfaces [41,42], which shows that CDFT can
correctly describe screening for both metallic and insulating
materials.

Note that for all the methods used here (DFT KS eigen-
values, ASCF, and CDFT) the effective vacuum energy for
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FIG. 5. Vacuum energy and middle of the KS gap for supercells,
which contain slabs constructed by repeating N benzene crystal
unit cells along the nonperiodic direction (see inset, which displays
one of such supercells for N = 3). The vacuum energy is obtained
from the Hartree potential in the middle of the vacuum region. The
middle of the KS gap is calculated as (efSy0 + efomo)/2- The lines
interpolating the data are guides for eyes and not fitting curves.

the crystal needs to be removed from the calculated HOMO
and LUMO energies in order to obtain the correct level
alignment. This is necessary, since one needs to add to the DFT
total energy of the charged system the energy from/to which
the added/removed electron is transferred in a hypothetical
experimental setup. Such energy is equal to the vacuum
potential above the surface of the molecular crystal. We
calculate such vacuum potential for the crystal by making
a slab of increasing thickness, and evaluating the KS potential
in the vacuum region. The results are displayed in Fig. 5,
and show that for the considered system the vacuum potential
decreases with increasing the thickness of the slab. Note that
this shift in itself is arbitrary and depends on the used DFT
code, since the potential of the entire cell is always defined only
up to a constant. The only physically meaningful quantities are
differences between eigenvalues or total energies with respect
to this vacuum energy. In Fig. 5 we therefore also show the
shift of the midpoint energy of the KS HOMO-LUMO gap
with increasing number of layers, which for this system is
essentially identical to the shift of the vacuum energy. This
implies that for the crystal calculation the middle of the band
gap for all methods needs to be at the same energy as for the
gas phase, since its relative position with respect to the vacuum
energy does not change.

The frontier energy levels for the benzene molecule in the
gas phase and crystal form as obtained by directly looking
at the DFT KS eigenvalues and by using ASCF and CDFT,
are summarized in Fig. 6. As outlined above, for this system
the midpoint of the fundamental gap is at the same energy for
both the isolated molecule and the crystal. As expected, we find
that the KS gap drastically underestimates the fundamental gap
for both the single molecule and the crystal. Even for the KS
eigenvalues there is an apparent symmetric 0.3 eV reduction of
the KS HOMO and LUMO energies of the crystal compared to
the KS HOMO and LUMO energies of the molecule. However,
this is not due to polarization effects, but it results from the
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FIG. 6. HOMO and LUMO energies for gas phase and crystalline
benzene. The results have been obtained by directly looking at the KS
DFT eigenenergies and by using the ASCF and the CDFT methods.
In the case of ASCEF for the crystal, the displayed results have been
computed for the largest supercell considered (i.e., 3 x 3 x 3). The
crosses are the experimental values for the gas phase molecule, while
we have found no available data for the crystal.

energy dispersion of the KS band structure in the crystal. In
fact, the KS HOMO and the LUMO energies of the benzene
crystal are the top of the KS valence band and the bottom of
the KS conduction band, respectively, both located at the I’
point in the Brillouin zone (see Fig. 7). These bands have a
finite width equal to about 0.6 eV, so that their top and bottom
turn out to be displaced by about 0.3 around the band centers,
which in turn are perfectly aligned with the isolated molecule
KS HOMO and LUMO.

Furthermore, Fig. 6 shows that ASCF performs well for
the single molecule (note that for the gas phase ASCF and
CDFT are identical). However, when applied to the crystal,

E-E, (eV)

X s

FIG. 7. KS valence and conduction band of the benzene crystal.

Y I' Z

PHYSICAL REVIEW B 93, 195208 (2016)

the HOMO and LUMO energies turn out to be equal to the
KS HOMO and LUMO energies (i.e., the top of the KS
valence band and the bottom of the KS conduction band), and
therefore ASCF drastically underestimates the gap. In contrast,
the CDFT HOMO and LUMO energies are symmetrically
displaced, respectively, toward lower and higher energies when
compared to the crystal KS values, so that the calculated
CDFT gap becomes notably larger than the KS gap (Fig. 6).
Most importantly, the CDFT crystal gap shows the expected
reduction when compared to the gas phase one. Qualitatively
correct results are therefore recovered only with CDFT. From
a quantitative point of view, the assessment of the results is
hindered by the lack of accurate experimental data for the
crystal. We can however compare CDFT and GW results (see
Fig. 1 in Ref. [14]), and we observe that the CDFT gap is
about 1 eV smaller than the G W one. This difference is already
present for the gas phase results, while remarkably the size of
gap reduction predicted by the two methods is in quite close
quantitative agreement.

Despite the very satisfactory results obtained for the
benzene crystal our method has a number of limitations, which
are worth mentioning since one may encounter them when
extending the procedure to other systems. The first limitation
concerns the spatial distribution of the additional charge. In the
case of the benzene crystal such charge is almost completely
localized on a single molecular unit, but this may not always be
the case for other materials. If the intermolecular hybridization
is large, the constraint may not be well defined. As such
enforcing localization on just one molecule will lead to a
considerable systematic error. In these cases, one will need to
develop a scheme for selecting the correct localization radius,
which could follow from considerations about the screening
length as proposed by Chan and Ceder in their work on
inorganic materials [34]. A second consequence of such partial
delocalization is that the Madelung corrections might not be
always adequate and more advanced corrective schemes might
be required. For instance, if one considers long polyacene
compounds, where the added charge is likely to spread over
the length of the molecule, the basic assumption that the added
charge can be approximated as a pointlike one will break down.
Finally, at a practical level we note that the method as presented
here relies on several calculations for supercells of different
sizes. Even though the use of asymmetric supercells effectively
helps to limit the maximum size needed, CDFT will become
computationally quite demanding for systems where already
the unit cell contains many atoms.

IV. CONCLUSIONS AND PERSPECTIVES

We have presented a well-defined computational scheme
based on CDFT, which allows for the calculation of the
ionization potentials and electron affinities, and consequently
of the fundamental gap, of molecular crystals. As demonstrated
for the case of benzene this scheme can potentially yield very
accurate results, and most importantly capture effects due to
electronic polarization.

We have shown that CDFT is a valuable alternative to GW
or screened-RSH approaches, since it provides a different and
complementary approach to the calculation of the screening
properties of organic materials and of the fundamental gap.
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In particular we expect CDFT to provide additional insight
in systems with highly anisotropic screening. Similarly to
those approaches the computational cost is rather large, mainly
due to the calculations of larger supercells required in order
to carry out the linear scaling analysis for the electrostatic
correction. The main fundamental strength of the method is
that it relies on DFT total energies rather than on the evaluation
of KS eigenvalues. As such one can use local and semilocal
functionals, which typically provide an accurate evaluation of
the total energy.
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