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First-principles calculation of the bulk magnetoelectric monopole density:
Berry phase and Wannier function approaches
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We present a formalism to calculate the macroscopic magnetoelectric monopolization from first principles
within the density-functional-theory framework. An expression for the monopolization in the case of insulating
collinear magnetism is derived first in terms of spin-polarized Wannier functions, and then recast as a Berry
phase. We propose an extension to the general, noncollinear case, which we implement computationally in the
Wannier function form and use to calculate the magnetoelectric monopolization of LiMnPO4 and Cr2O3. We
find that, while the former is well approximated by a summation over the formal local spin moments, the latter
shows significant deviations from this approximation. We suggest that equating the Berry phase value with a
sum over local moments provides an unambiguous route to defining the size of the local magnetic moment in
magnetoelectric antiferromagnets containing only one type of magnetic ion.
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I. INTRODUCTION

The interaction energy, Hint, of a magnetization density
μ(r) with an inhomogeneous magnetic field H(r) can be
written as a multipole expansion in powers of field gradients
calculated at some arbitrary reference point r = 0:

Hint = − μ0

∫
μ(r) · H(r)d3r

= − μ0

∫
μ(r) · H(0)d3r

− μ0

∫
riμj (r)∂iHj (0)d3r − · · · , (1)

where i,j are Cartesian directions (summation over repeated
indices is implied) [1].

The first term, which is sufficient for describing many
magnetic phenomena, gives the usual interaction of the
magnetic dipole moment, m = ∫

μ(r)d3r , with a uniform
magnetic field. Well-established methods exist for calculating
the magnetic dipole moment and its energy within the
density-functional-theory formalism: For the case of the spin
contribution to the magnetic moment, the relevant quantities
are particularly straightforward to calculate, as the spin
magnetic moment per unit volume (the magnetization) in
collinear systems is simply the difference between the up- and
down-spin charge densities, which are directly accessible from
a density-functional calculation [2]. The orbital magnetization
is more complicated, since it is the expectation value of the
circulation operator r × v, which is not well defined in the
Bloch representation. In spite of this difficulty, however, a
formalism has also been recently developed for the calculation
of orbital magnetization [3] and applied, for example, to the
calculation of nuclear magnetic resonance (NMR) shielding
tensors [4] and the orbital contribution to the magnetoelectric
response [5].

In this work, we present a formalism and initial results for
the first-principles calculation of one component of the second
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terms, the so-called magnetoelectric multipoles, in the multi-
pole expansion. Our motivation is manyfold. First, these terms
are nonzero in materials that show a linear magnetoelectric
response [1,6,7], and so they can be used to classify and indeed
to identify new magnetoelectric materials. Second, since they
break both time-reversal and space-inversion symmetries, they
offer candidate order parameters for completing the group of
primary ferroics. Currently ferromagnetism, ferroelectricity,
and ferroelasticity break time-reversal only, space-inversion
only, and neither symmetries, respectively, and a ferroic
order that breaks both symmetries is sought [1,6]. Indeed,
the existence of ordered domains of such magnetoelectric
multipoles was recently demonstrated using second-harmonic
generation and hysteretic poling in LiCoPO4 [8,9]. In addition,
since routine techniques for their direct measurement are not
yet available, they represent a kind of “hidden magnetic order”
beyond that of magnetic dipoles, analogous to the challenge
presented by antiferromagnets 100 years ago.

Following earlier work [7], we decompose the nine-
component tensor Mij = ∫

riμj (r)d3r in Eq. (1) into three
irreducible tensors, each of which changes sign under time-
reversal and space-inversion symmetries.

(i) The trace of the tensor, which couples to the divergence
of the magnetic field, and so it is often referred to as the
monopole component:

a = 1

3
Mii = 1

3

∫
r · μ(r)d3r. (2)

(ii) The toroidal moment vector dual to the antisymmetric part
of the tensor: ti = 1

2εijkMjk , which couples to the curl of the
magnetic field,

t = 1

2

∫
r× μ(r)d3r. (3)

(iii) The traceless symmetric tensor qij describing the
magnetic quadrupole moment of the system, which couples
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to the field gradient:

qij = 1

2

(
Mij + Mji − 2

3
δijMkk

)
= 1

2

∫ [
riμj (r) + rjμi(r) − 2

3
δij r · μ(r)

]
d3r. (4)

The expansion of Eq. (1) can then be written in the form

μ−1
0 Hint = −m · H(0) − a(∇ · H)r=0

− t · [∇ × H]r=0 − qij (∂iHj + ∂jHi)r=0 − · · · .

This decomposition transparently yields three terms that cou-
ple to the divergence, curl, and gradient of the magnetic field,
respectively. We call the first the magnetoelectric monopole to
avoid confusion with a true magnetic monopole, noting that,
while the magnetization diverges and couples to a divergent
H field, there is no divergence of the B field [10]. The
second is referred to as the toroidal moment or anapole and
the third is the magnetic quadrupole. By analogy with the
bulk magnetization, their corresponding bulk quantities per
unit volume are then the magnetoelectric monopolization,
toroidization, and quadrupolization. In this work, we focus on
the spin contribution to the magnetoelectric monopolization;
for the case of the monopolization, the orbital contribution
is formally zero, since μorb ∝ r × v, and r · (r × v) = 0.
We also outline the developments required to calculate the
toroidization and quadrupolization, which will be the subject
of future work.

The remainder of this paper is organized as follows: In
Sec. II, we derive an analytical formula for the spin contri-
bution to the macroscopic magnetoelectric monopolization
in insulating collinear antiferromagnets, both in terms of
Wannier functions and expressed as a Berry phase, in a form
that is already accessible in most existing density-functional
codes. We propose an extension of the formalism for the
noncollinear case and show that, while not formally rigorous,
it provides a practical route for extracting the monopolization
in the case of antiferromagnets with spin canting. In Sec. III,
computational details for our density-functional calculations
are given. In Sec. IV, we compute the bulk magnetoelectric
monopolization for two materials, LiMnPO4 and Cr2O3, and
we compare our results to the previously used local-moment
approximation, in which the integral in Eq. (2) is replaced by
a sum over local dipole moments at atomic sites. In the final
section, we argue that the magnetoelectric monopolization in
magnetoelectric, antiferromagnetic insulators with only one
magnetic type of atom can be used to define an effective
magnetic moment. Finally, we discuss the connection between
the magnetoelectric monopolization and the magnetoelectric
response.

II. DERIVATION OF THE EXPRESSION FOR THE
MACROSCOPIC MAGNETOELECTRIC

MONOPOLIZATION

The macroscopic magnetoelectric monopolization, A, of a
system of volume V is given by

A = 1

3V

∫
r · μ(r) d3r, (5)

where the integral is over all space [7]. In the case of a
finite system, the integral can be performed directly and the
magnetoelectric monopolization extracted without ambiguity.
For the periodic bulk solids that we consider here, however,
the nonperiodicity of the position operator poses problems
analogous to those encountered in defining a ferroelectric
polarization or an orbital magnetization in a bulk system. We
write the magnetization density in terms of the vector of Pauli
matrices, σ , and spinors, �n(r), summed over the band index
n:

μ(r) = μB

∑
n

�n(r)†σ�n(r). (6)

This gives the following expression for the magnetoelectric
monopolization:

A = μB

3V

∑
n

∫
�n(r)†σ · r �n(r) d3r, (7)

which we use as the starting point for our implementation.

A. Insulating collinear systems

For collinear spin systems, Eq. (7) can be separated into
two equations, one for each spin channel. Choosing the
quantization axis to be along z gives

A = μB

3V

[∑
n

∫
�↑

n(r)†z�↑
n(r) −

∑
n

∫
�↓

n (r)†z�↓
n(r)

]
.

(8)

One can recognize each part as the definition of the ferro-
electric polarization along the z direction for the respective
spin channel. By analogy to Refs. [11,12], one can then write
Eq. (8) for the case of a bulk periodic system as the Berry
phase expression:

A =μB

3V

⎡⎣∑
n↑

∫
d3k 〈U↑

nk|∇kz
|U↑

nk〉

−
∑
n↓

∫
d3k 〈U↓

nk|∇kz
|U↓

nk〉
⎤⎦, (9)

where |Uσ
nk〉 is the cell-periodic part of the Bloch functions for

spin channel σ .
Alternatively, one can rewrite the Berry phase expression

for the magnetoelectric monopolization using Wannier func-
tions, which can be chosen to be exponentially localized in
the case of insulators [13], and which we will see provide
a particularly intuitive basis for an extension to noncollinear
magnetic systems. The transformation from Bloch functions
|ψnk〉 to Wannier functions is in general written as [14]

|WnR〉 = V

(2π )3

∫
BZ

dk e−ik·R ∑
m

U k
mn |ψmk〉 , (10)

where U k
mn is a unitary rotation matrix, and R is a lattice

vector (in the following, we take R = 0). Also, in terms of the
cell-periodic part of the Bloch functions |Unk〉, the expectation
value of the position operator, usually termed the “Wannier
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center,” is given by

〈Wn|r|Wn〉 =
∫

d3k 〈Unk|∇k|Unk〉 . (11)

In the case of collinear spin-polarized systems, the spin-
up and spin-down manifolds can be treated separately, and
therefore there is a separate set of Wannier centers for
each spin channel. The expression for the magnetoelectric
monopolization then reads

A = μB

3V

∑
n

[〈W↑
n |rα|W↑

n 〉 − 〈W↓
n |rα|W↓

n 〉], (12)

where |W↑
n 〉 and |W↓

n 〉 are the Wannier functions for the up
(down) -spin channel.

Thus, A for insulating collinear systems can be obtained
using any standard first-principles code in which the Berry
phase or Wannier-function calculation of the polarization is
implemented simply by taking the difference between the
polarization for up- and down-spin bands.

One small conceptual complication arises when extracting
a collinear monopolization from a standard code, due to the
fact that P is a vector property while A is a scalar. In the former
case, the direction of the k-space derivative is a projection of
the polarization onto the respective axis. In the latter case,
however, the direction of the k-space derivative corresponds
to the direction in which the Pauli matrix σ is assumed to
be diagonal, that is, the method assumes that the k-space
derivative direction is the quantization axis of the collinear
spin system, even if spin-orbit coupling is not included
in the calculation. A standard density-functional code will
therefore automatically provide values for the monopolization
for all three orientations of the collinear spin system in a
single calculation. Those values corresponding to orientations
other than the actual orientation of interest should then be
disregarded.

B. Extension to noncollinear systems

1. Formulation in terms of Wannier functions

The Wannier function expression provides a conceptually
appealing route to extending the formalism for the case of
noncollinear spin systems. In the case of periodic crystalline
insulators, one can identify the spinors in Eq. (7) with spinor
Wannier functions |Wn〉. Then, after a switch to bra-ket
notation, Eq. (7) reads

A = μB

3V

∑
n

〈Wn|σ · r|Wn〉 . (13)

While the “ordinary” Wannier center 〈Wn|r|Wn〉 in the
multiband case is not gauge-invariant, the sum over all Wannier
centers is, so that the two terms in Eq. (12) are rigorously well-
defined. To provide a rigorous formal definition, the sum in
Eq. (13) should also be invariant under gauge transformations
among the Bloch states. Our tests indicate that the gauge
invariance of the sum of the Wannier centers transfers to the
sum in Eq. (13), although we do not have formal proof of this.

In the case when all Wannier functions are internally
collinear, the expression can be simplified to

A = μB

3V

∑
n

〈Wn|σ |Wn〉 · 〈Wn|r|Wn〉 , (14)

where 〈Wn|σ |Wn〉 is the expectation value of the spin of the
Wannier function, giving both its magnitude and the orien-
tation, and 〈Wn|r|Wn〉 is the Wannier center. The expression
above can then be directly compared to the local moment
approximation employed in Ref. [7]:

A = 1

3V

∑
i

mi · Ri , (15)

in which the local magnetic dipole moment of the ith ion, mi ,
replaces the spin of the Wannier function, and the position
of the ith ion, Ri , replaces the Wannier center. It is clear
from this comparison that in a fully ionic system, in which
the magnetic moments are “point spins” located at the ionic
sites, the Wannier centers will lie at the ionic sites and
the two expressions will lead to identical values for the
monopolization. In cases with covalency, the two values will
differ, just as the ferroelectric polarization in a covalent system
differs from that in a point-charge model.

We note that analogous Wannier function expressions for
the toroidization Ti and quadrupolization Qij can be written
as

Ti = μB

3V

∑
n

εijk 〈Wn|σj rk|Wn〉 (16)

and

Qij = μB

3V

∑
n

(〈Wn|σirj |Wn〉 + 〈Wn|σj ri |Wn〉

− 2

3
δij 〈Wn|σiri |Wn〉), (17)

respectively.

2. Formulation as a Berry phase

By using the transformation from Wannier functions to the
cell-periodic part of Bloch functions, Eq. (13) can be rewritten
as

A = μB

3V

∑
n

〈Wn|σ · r|Wn〉 (18)

= μB

3V

∑
n

∫
d3k 〈Unk|σ · ∇k|Unk〉 . (19)

Note that this expression suffers from the same ambiguity
regarding the gauge dependence as we pointed out above for
the Wannier-function case. Interestingly, Batista et al. [15]
arrived earlier at a similar result, which they interpreted only
for the ferrotoroidic case, although in principle their derivation
is also applicable to the monopolization.

C. Multivaluedness of the magnetoelectric monopolization

It is clear from Eq. (12) that the magnetoelectric monopo-
lization is a multivalued quantity, since the center of a Wannier
function is only defined up to a lattice vector, Rα . The term
“monopolization increment,” �A, was introduced in Ref. [7]
to describe the difference between branches of the associated
monopolization lattice. For the case of collinear spin systems,
denoting the spin quantization axis of the system by σ , the
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THÖLE, FECHNER, AND SPALDIN PHYSICAL REVIEW B 93, 195167 (2016)

0 10 20 30 40 50 60 70 80 90
angle [degrees]

0

2

4

6

8

10

12

A
[1

0−
3
µ

B
/
Å
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FIG. 1. Magnetoelectric monopolization in LiMnPO4 as a func-
tion of the angle of the spins to the a axis. The monopolization has
its maximum value when the spins are aligned along a, and it drops
to zero as they rotate away from the a axis and their arrangement
becomes toroidal. The gray line shows the monopolization increment.
On top, the alignment of the spins along the crystal axis is shown for
the direction that maximizes the monopolization (0◦), an intermediate
direction, and a direction with zero monopolization (90◦).

monopolization increment is

�A = μB

3V
σ · Rα. (20)

For noncollinear systems the situation is more subtle,
since in principle each Wannier function in Eq. (13) can
have a different spin direction. Therefore, the monopolization
increment can be different for each Wannier function:

�An = μB

3V
σ n · Rα, (21)

where σ n is the vector describing the spin of the nth Wannier
function, and multiple monopolization increments can exist.

We see also that the monopolization increment changes as
the direction of spins changes. This situation is illustrated in
Fig. 1, where we show the calculated evolution of the magneto-
electric monopolization and the monopolization increment as a
function of the angular rotation of the spin direction away from
that which maximizes the magnetoelectric monopolization
(0◦). One noteworthy case occurs when σ n becomes almost
perpendicular to Rα and the monopolization tends to zero;
then the increment also becomes small, and changes between
branches cannot be easily distinguished. Therefore, difficulties
arise when one tries to define the monopolization difference
between a nonmonopolar reference structure and a monopolar
structure if the change involves only the rotation of spins and
no structural change.

In this respect, the correspondence between the polarization
and the monopolization is not exact. While both the electron
charge and the electron spin have well-defined single values,
the charge enters the expression for the polarization as a
scalar quantity, whereas the spin enters as a vector, in a dot

product with its position. This means that the polarization
quantum is unchanged (provided that the lattice vectors are
unchanged) even if the atomic positions evolve, whereas, as
we have just seen, the monopolization increment evolves with
the orientation of the spin moment.

The situation is more straightforward in the case of a
monopolization arising from a structural change. In this case,
the monopolization increment is unchanged, in direct analogy
to the polarization quantum. An example of this case is FeS, in
which the transition from space group P 63/mmc to P 6̄2c goes
along with a loss of the inversion center and the occurrence of
a magnetoelectric monopolization [16].

III. COMPUTATIONAL DETAILS

Calculations presented here were performed using the
QUANTUM ESPRESSO code [17]. We used the PBE functional
and norm-conserving pseudopotentials, with 2s valence states
for Li, 3d and 4s for Mn and Cr, 3s and 3p for P, and 2p

and 2s states for O. For both Cr2O3 and LiMnPO4, well-
converged magnetoelectric monopolizations were obtained
with an energy cutoff of 100 Ry for both total-energy and
Berry phase calculations. The k-point grid was 3 × 5 × 5 for
LiMnPO4 and 4 × 4 × 2 for Cr2O3 in a hexagonal setting.
For LiMnPO4, we used the Hubbard U correction [18] on
the Mn sites with U = 4 eV and J = 0.5 eV. Note that the
allowed antiferromagnetic Az-type canting of the Mn spins
does not lead to an energy lowering in our calculations, so our
system remains collinear. (Fortuitously, this allows for a direct
comparison of our results with those of Ref. [7], where the
canting was neglected.)

Collinear magnetoelectric monopolizations were obtained
with the Berry phase implementation of QUANTUM ESPRESSO.
To compare the Berry phase prescription and the Wannier
function description of Eq. (14), we used the WANNIER90 code
[19] to generate maximally localized Wannier functions.

IV. RESULTS

A. LiMnPO4

We choose LiMnPO4, which was shown previously to
have a diagonal magnetoelectric response [20,21] and a
corresponding macroscopic magnetoelectric monopolization
[7], as our first model system. The crystallographic space
group of LiMnPO4 is Pnma and the antiferromagnetic Cx-type
order of the Mn ions has the magnetic space group Pn′m′a′,
which allows a macroscopic magnetoelectric monopolization.
In Ref. [7], the size of the monopolization obtained from
summing over the localized magnetic moments as in Eq. (15),
using the moments obtained from projecting into the muffin-

tin spheres (4.26μB), was found to be 5.89×10−3μB/Å
2
.

In addition, a small contribution of 0.03×10−3μB/Å
2

from
summing the magnetoelectric monopoles in the spheres around
each atom was found. Using the lattice parameters and atomic
positions from Ref. [7], we obtain a slightly smaller magnetic
moment of 4.17μB on the Mn sites, which gives a cor-
respondingly slightly smaller local-moment magnetoelectric

monopolization of Alm = 5.77×10−3μB/Å
2
. Note that all

results from this section and the next are summarized in Table I.
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TABLE I. Summary of the calculated magnetoelectric monop-
olizations for LiMnPO4 and Cr2O3. The upper panel gives the
formal and DFT local spin magnetic moment and corresponding
local moment monopolizations Alm, whereas the bottom values give
the calculated Berry phase magnetoelectric monopolization and the
derived effective moment.

LiMnPO4 Cr2O3

mformal (μB) 5 3
mDFT (μB) 4.17 2.27

Alm,formal (10−3μB/Å
2
) 6.917 7.388

Alm,DFT (10−3μB/Å
2
) 5.77 5.173

ABP (10−3μB/Å
2
) 6.945 5.488

meff (μB) 5.02 2.25

We begin by using the Berry phase formalism to cal-
culate the macroscopic magnetoelectric monopolization of
LiMnPO4. As expected for an antiferromagnetic system in
which the crystal structure contains inversion symmetry, we
obtain values of equal magnitude but opposite sign for the
two spin channels along the three crystal axes. Their sum
gives the polarization, which is zero in all directions. Their
difference is different from the monopolization quantum in
the a direction, corresponding to the case in which the Pauli
matrix in this direction is diagonal, that is, the magnetic
spins are aligned along a. The resulting monopolization

is A = 6.945×10−3μB/Å
2 ± n�A, where the monopoliza-

tion increment �A = 11.53×10−3μB/Å
2
. For spin directions

along b and c, as found in the Fe, Co, and Ni analogs of
LiMnPO4, the Berry phase magnetoelectric monopolization is
equal to zero or the monopolization increment.

We now compare this result from the Berry phase cal-
culation to the Wannier function formalism outlined above.
Still in the collinear framework, we choose the Mn d orbitals
and O p orbitals as projections and carry out the Wannier
transformation in WANNIER90. The numerical result for A

is almost unchanged (A = 6.953×10−3μB/Å
2
). While this

might seem trivial, it indicates that our choice of Wannier
function projection has captured all relevant hybridizations
that contribute to the monopolization. Including spin-orbit

coupling changes the monopolization by only 10−6μB/Å
2
.

We see that in the case of LiMnPO4, use of the local-
moment approximation to calculate the magnetoelectric mo-
nopolization makes an underestimate of ∼15% compared to
the full calculation, when the dipole moment projected into
the atomic sphere is taken as the local magnetic moment.
Interestingly, when we take the full formal spin-only moment
of 5μB for Mn2+, we arrive at a local moment monopolization

very close to Alm = 6.917×10−3μB/Å
2
, and the difference

between the local moment magnetoelectric monopolization
and the full Berry phase magnetoelectric monopolization,

�A = 0.03×10−3μB/Å
2
, corresponds precisely to the con-

tribution of the atomic site terms obtained previously [7]. We
suggest, however, that this intriguing correspondence is likely
coincidental, and we wait to discuss it further until after our
analysis of Cr2O3, which follows.

TABLE II. Lattice parameters and Wyckoff positions for Cr2O3.
Values were obtained by structural relaxation using the PBE
exchange-correlation functional. Experimental values are taken from
Ref. [22].

DFT Experiment

a (Å) 4.962 4.9570
c (Å) 13.570 13.5923
Cr 12c z 0.348 0.348
O 18e x 0.304 0.306

B. Cr2O3

Next, we turn our attention to chromium dioxide, Cr2O3,
which is the prototypical magnetoelectric material [23]. It
crystallizes in the corundum structure (space group R3̄c)
with a collinear antiferromagnetic structure consisting of
antiferromagnetic chains along the hexagonal c axis with the
moments aligned along c. This leads to the magnetic space
group R3̄′c′, which allows a macroscopic monopolization
but no spin canting. First, we fully relaxed the structure;
the resulting coordinates are given in Table II alongside
experimental values with which they compare favorably.

The collinear Berry phase calculation along z yields A =
5.488×10−3μB/Å

2
; using the Wannier-function formalism

with Cr t2g and O p orbitals as projections, we again obtain an

almost unchanged result (A = 5.469×10−3μB/Å
2
). Including

spin-orbit coupling, one obtains A = 5.496×10−3μB/Å
2
.

While this change is not huge, the effect that spin-orbit
coupling has on the monopolization is larger than in LiMnPO4.

In our first-principles calculations, we obtain a magnetic
moment of 2.27μB on the Cr sites, which gives a local moment

magnetoelectric monopolization of A = 5.173×10−3μB/Å
2
.

As in the case of LiMnPO4, this is an underestimate of the full
Berry phase value, but this time by only ∼6%. The correction

from the atomic site monopoles is 0.69×10−3μB/Å
2
; adding

this contribution to the local moment approximation leads to
an overestimation of the Berry phase value by ∼7%. Taking
the formal spin-only moment of 3μB for Cr3+, however,

one obtains A = 7.388×10−3μB/Å
2
, which is a substantial

overestimate of the Berry phase value. To recover the Berry
phase result in a local-moment picture, one has to take an
effective magnetic moment of 2.253μB on the Cr sites.

V. DISCUSSION

The origin of the differences between LiMnPO4 and Cr2O3,
in terms of the size of the local magnetic moment that must be
used to bring the monopolization calculated within the local
moment approximation into agreement with the full Berry
phase value, is unclear. In both cases, the local magnetic
moments differ substantially from the formal ionic values
(by 17% in the case of LiMnPO4 and by 24% for Cr2O3),
indicating significant hybridization between oxygen 2p and
transition-metal 3d electrons, and consequent deviation from
the ionic limit. It is therefore particularly surprising that in
LiMnPO4, the local moment approximation is almost exact
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for the formal spin-only Mn moment of 5μB. In both cases,
the contribution from the local monopolizations within the
spheres around the atomic sites is small compared to the
local moment monopolization. In LiMnPO4, it is negligible

(Aas = 0.03×10−3μB/Å
2
), due largely to a cancellation of

the contributions from different oxygen sites [7]. It is larger in

Cr2O3 (Aas = 0.69×10−3μB/Å
2
), since while the magnitudes

of the atomic site oxygen contribution (9.3×10−3μB Å) and Cr
contribution (2.6×10−3μB Å) are comparable to the analogous
values in LiMnPO4, all contributions have the same sign and
therefore do not cancel each other.

Definition of the local magnetic moment associated with an
ion is of course ambiguous in a covalently bonded solid, and the
differences likely reflect as much the details of the projection
of the Bloch states into the atomic sphere as real physics. We
suggest that the value of the local magnetic moment that brings
the local-moment approximation to the magnetoelectric mo-
nopolization into equality with the full Berry phase value can
be used as a way of unambiguously defining the local magnetic
moment in magnetoelectric antiferromagnets containing only
one kind of magnetic ion, and it is certainly a relevant definition
in the discussion of magnetoelectric monopolizations. Note
that the local magnetic moment defined in this way is distinct
from the magnetic charge of Ref. [24], which gives the change
in magnetization with atomic displacement.

Next, we turn our attention to the relation between the
magnetoelectric coefficients and the magnetoelectric monop-
olization. In Ref. [7], a relation between these two quantities
was derived from the following free-energy expression:

U = 1

2ε
P 2 − P · E + μ0

2χ
M2 − μ0 M · H

+ 1

2
βA2 + 1

4
γA4 + cAP · M, (22)

where ε and χ are the electric and magnetic susceptibilities, β
and γ are temperature-dependent coupling coefficients, and c

determines the strength of the magnetoelectric coupling. Mini-
mizing this expression leads to a relationship between the mag-
netoelectric coefficient and the monopolization with the elec-
tric and magnetic susceptibilities as proportionality constants:

α = cεχA. (23)

The coupling strength c, however, is unknown. Indeed it was
argued in Ref. [1] that c is not of physical relevance, since the
magnetoelectric tensor describes the second-order correction
to the free energy in external electric and magnetic fields,
while magnetic multipoles are generated by the expansion
of the first-order correction to the free energy in powers of
magnetic-field gradients.

Here, we estimate the value of c for Cr2O3 using literature
values for the various quantities appearing in Eq. (23), and
then make a comparison to calculated values in the high-
and low-frequency limits. The results are summarized in
Table III. The dielectric susceptibility is around 10 at low
temperature, with only a small anisotropy between parallel and
perpendicular (to z) orientation [25,26]. The low-temperature
magnetic susceptibility in perpendicular orientation has the
value 1.5 × 10−3 (dimensionless SI) [27]. From Ref. [10],
we take the monopolar part of the magnetoelectric tensor as

α̃ = 1
3 Tr(α) = 0.7ps/m. Putting together these experimental

results and our calculated magnetoelectric monopolization,
we estimate the coupling strength as c = 1 × 10−5 s/(A m).

First-principles-based investigations are able to distinguish
between electronic and lattice contributions to the various
susceptibilities. In the following, we take the results from
Ref. [2] (note that a range of slightly different values for
the spin-only response has been obtained [2,28,29], with all
values overestimating the experimental values) and augment
them with new calculations of the static and high-frequency
dielectric susceptibility. By employing density-functional per-
turbation theory, we obtain the lattice contribution εlatt = 3.5
and the electronic contribution εel = 5.8. The two contribu-
tions agree reasonably well with the experimental values [26].
The lattice contribution to the spin magnetic susceptibility has
been previously shown to be negligible [24].

Since A is a thermodynamic quantity, that is, it is not
frequency-dependent and χ is almost frequency-independent,
we see immediately that the proportionality factor

c = α

εχA
(24)

is only constant if the frequency dependence of ε and α is
the same. The spin-electronic magnetoelectric response leads
to a high-frequency (electronic only) coupling strength of
c∞ = 4 × 10−6s/(A m), while the total spin magnetoelectric
response leads to a low-frequency (electronic plus lattice)
coupling strength ctot = 1 × 10−5s/(A m). The latter value is
consistent with the estimates extracted from the experimental
range of susceptibilities, and the difference between ctot and
c∞ confirms the assertion of Ref. [1] that the proportionality
constant does not represent a fundamental, physically universal
parameter. Indeed, we expect the behavior of c to be especially
interesting close to magnetoelectric phase transitions, where it
is known that ε, χ , and α can all diverge [30,31].

VI. SUMMARY

In summary, we have derived the Berry phase theory for
macroscopic magnetoelectric monopolization for insulating
collinear antiferromagnets, we proposed a generalization to
the noncollinear phase, and we implemented it in its Wannier
function form within the density-functional formalism. We
applied the method to two prototypical magnetoelectric mate-
rials, LiMnPO4 and Cr2O3. Our results highlight two different
behaviors: In LiMnPO4, the bulk monopolization is close to

TABLE III. Summary of the calculated coupling strengths c.
Here, α̃ = 1

3 Tr(α), and ε and χ are the electronic and magnetic
susceptibility. Experimental values are taken from Refs. [10,25–27],
and the DFT results for α̃ and χ are taken from Ref. [2].

α̃ (ps/m) ε χ c [s/(A m)]

Experimental 0.7 10 1.5 × 10−3 1 × 10−5

DFT electronic 0.23 5.8 1.9 × 10−3 4 × 10−6

total 0.97 9.3 1.9 × 10−3 1 × 10−5
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the value obtained by a simple local moment formalism using
the formal ionic magnetic moment. In contrast, in Cr2O3,
use of the projected atomic-site local moment yields
a better agreement. We proposed a comparison of the
local-moment approximation and full Berry phase values of
the monopolization as an unambiguous way to define the
local magnetic moment in magnetoelectric antiferromagnets.
Finally, we discussed the quantitative connection between
the magnetoelectric response and the monopolization via the
dielectric and magnetic susceptibilities.
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