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Topological number of edge states
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We show that the edge states of the four-dimensional class A system can have topological charges, which are
characterized by Abelian/non-Abelian monopoles. The edge topological charges are a new feature of relations
among theories with different dimensions. From this novel viewpoint, we provide a non-Abelian analog of the
TKNN number as an edge topological charge, which is defined by an SU(2) ’t Hooft–Polyakov BPS monopole
through an equivalence to Nahm construction. Furthermore, putting a constant magnetic field yields an edge
monopole in a noncommutative momentum space, where D-brane methods in string theory facilitate study of
edge fermions.
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I. INTRODUCTION

In recent developments in the study of topological insula-
tors [1,2], the classification of the topological charges of the
bulk states by discrete symmetries and spatial dimensions [3,4]
is widely used and provides a common ground for analysis of
all continuum Hamiltonians. Among the Hamiltonians, a par-
ticularly important procedure is dimensional reduction [5,6].
One component of the momentum pi in the Hamiltonian
is replaced by a constant mass m, and then the spatial
dimensions reduce by one. The topological properties may
change along this procedure but exhibit a universal reduction
pattern. For example, a class A topological insulator in four
spatial dimensions, which is our main interest in this paper, can
be dimensionally reduced to a class AIII topological insulator
in three dimensions.

The bulk-edge correspondence [7–9] is the essential view-
point for topological insulators both theoretically and experi-
mentally. When the bulk wave functions of fermions possess a
nontrivial topological number, there appears a corresponding
gapless edge state. In view of the bulk-edge correspondence,
it is natural to consider an alternative of the dimensional
reduction: introduction of a boundary. Generically, when
a boundary is introduced to a topological material with a
nontrivial topological number in the gapped bulk, there appear
gapless edge states. At low energy, only the edge states can
propagate and they exist only at the boundary; therefore the
spatial dimensions are reduced by one. This would serve as
another way to realize a dimensional reduction.

An interesting feature of this alternative dimensional
reduction is that we have more freedom for possible reductions.
For example, the open boundary condition is typically applied
to study the edge state. However, the boundary condition
satisfied by the fermions at the boundary is not unique:
there appear a continuous family of boundary conditions.
Furthermore, one can introduce more than a single boundary,
say, two parallel boundaries, each of which one can choose for
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boundary conditions in principle. Depending on these details,
the resultant edge states are different: they may have varieties
of dispersions and numbers of modes.

We would like to explore this alternative possibility for
relating Hamiltonians in different dimensions. Combining it
with the bulk-edge correspondence, we are naturally led to the
idea of topological charges carried by edge states. Normally
the topological charges of the topological insulators are defined
by the bulk states. However, upon the dimensional reduction as
giving the edge states, it would be natural to expect that some
topological charges may show up also from the edge states.

In this paper, we analyze a class A topological insulator in
four spatial dimensions, as one of the simplest examples. We
discuss a generic boundary condition à la Witten [10], which is
a different point of view from [11,12], and choose a particular
boundary condition which satisfies the generic criteria for any
consistent boundary condition of the system.

Our boundary condition is related to the mass term of
the Hamiltonian. With that choice, in this paper we find the
following:

(1) For a single boundary, the Berry connection of the
edge state provides a Dirac monopole. The edge state is
a gapless Weyl fermion in three dimensions, so, upon a
normal dimensional reduction to two dimensions (a massive
two-dimensional fermion), the edge topological charge is the
same as that of the quantum Hall effect, that is, the TKNN
number [13].

(2) For two boundaries which are parallel to each other,
the Berry connection of the two edge states is found to give a
Berry curvature of a non-Abelian monopole. The monopole is
the renowned ’t Hooft–Polyakov monopole [14,15] in the BPS
limit [16,17]. It would serve as a non-Abelian generalization
of the TKNN number.

The emergence of the monopoles from the edge states is
observed through our exact identification of the Hamiltonian
system with the Nahm construction of BPS monopoles [18].
The (non-)Abelian monopole charge of the edge states would
be a new path for a characterization of topological insulators.
The parallelism to the Nahm construction, which is a method
to exhaust all possible solutions to the BPS monopole equation
for any gauge group and any monopole number, is expected
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to provide fertile applications for more examples and also a
bridge to mathematical sciences.

The introduction of two boundaries in four spatial dimen-
sions resembles the domain-wall fermion formalism [19,20],
which is quite popular in lattice QCD. See [21] for more
explicit connection between this formalism and topological
systems. A difference from ours is just the boundary condition
at the boundaries, and we shall clarify this point. Other choices
of the boundary conditions would lead to more exploration of
the topological structure of the edge states.

We also find that, once the whole system is put in a
magnetic field, the (non-)Abelian monopoles are replaced by
BPS monopoles in a noncommutative space [22–25]. The
noncommutative monopoles have been studied in string theory
as their natural realization is made by D-brane configurations.
We show that the effect of the magnetic field, interpreted by
the slanted angle of the D-brane, is reflected in the location of
the fermions in the edge states.

The organization of this paper is as follows. In Sec. II, we
give a review of a two-dimensional (2D) class A topological
insulator, and see that the edge states do not possess any
topological number. Then in Sec. III, we consider a four-
dimensional class A topological insulator, and find that a
single boundary provides an edge state with a topological
structure of a Dirac monopole, giving a TKNN number. In
Sec. IV, we introduce two parallel boundaries to the system
and find that two associated edge states form a topological
charge of an SU(2) ’t Hooft–Polyakov monopole. We explain
the difference from the domain-wall fermion formalism in
lattice QCD. In Sec. V, we introduce a magnetic field and
show an equivalence to monopoles in noncommutative space,
via a D-brane picture in string theory. Section VI is for our
conclusion and discussion.

II. REVIEW OF EDGE STATES OF 2D CLASS
A TOPOLOGICAL INSULATOR

In this section, we show that the edge states of the class A
topological insulator in two dimensions have a trivial Berry
connection. Since the bulk states are in two dimensions, the
edge state is on a line and has a wave function ψ(p1). The
Berry connection of this edge state ψ(p1) is merely a single
component A1(p1) which is always gauged away; thus it is
obvious that there exists no nontrivial Berry curvature for edge
states of any 2D system. Nevertheless here we review the 2D
case since the example is instructive in view of our main case
of the four dimensions in the next section.

The Hamiltonian of the class A topological insulator in two
dimensions is

H = p1σ1 + p2σ2 + mσ3, (1)

where the σi’s are the Pauli matrices. The bulk dispersion
relation is that of a relativistic particle with mass m,

ε = ±
√

(p1)2 + (p2)2 + m2. (2)

The bulk system possesses a nontrivial topological charge
which is the renowned TKNN number [13]. However we are
interested in possible topological charges of the edge states.

For construction of generic edge states of this system, we
follow Witten’s argument [10]. Let us introduce a boundary

at x2 = 0, and consider a material in the region x2 � 0 only.
Then we may generically impose a boundary condition there,

Mψ = −ψ (x2 = 0). (3)

Here M is a generic Hermitian 2 × 2 matrix [26]. Since at
the boundary the Hamiltonian needs to be self-conjugate,
〈ψ1|Hψ2〉 = 〈Hψ1|ψ2〉, a partial integration over x2 space
provides a constraint:

{M,σ2} = 0. (4)

Such a matrix generically can be written as

M = a1σ1 + a3σ3, (5)

where a1 and a3 are real numbers. Any fermionic boundary
condition kills half of the total components of the spinor, so
M needs to have a single +1 eigenvalue and a single −1
eigenvalue, which means trM = 0 and det M = −1, resulting
in a2

1 + a2
3 = 1. So we may put a1 = cos θ and a3 = sin θ

for some θ ∈ [0,2π ). Since our p1 and m appears SO(2)-
symmetrically in the Hamiltonian (1), we are allowed to choose

M = σ3; (6)

then the boundary condition is

σ3ψ + ψ = 0 (x2 = 0). (7)

Let us derive an edge state. The Hamiltonian eigenequation
is

Hψ = εψ, (8)

which can be explicitly written with the two-component
expression ψ = (ξ,η)T as

(m − ε)ξ + (p1 − ∂2)η = 0, (9)

(p1 + ∂2)ξ − (m + ε)η = 0. (10)

Here ∂2 ≡ d/dx2 is used instead of the momentum p2 since
we introduced the boundary x2 = 0 and break the translational
invariance. Using the second equation to eliminate η in the first
equation, we arrive at(

m2 − ε2 + p2
1 − ∂2

2

)
ξ = 0. (11)

Since we are interested in the edge states which should exist
between the bands (2), we have a relation ε2 < m2 + p2

1. Then
the generic solution of the differential equation (11) is

ξ = ξA exp
(
x2

√
m2 + p2

1 − ε2
)

+ ξB exp
(− x2

√
m2 + p2

1 − ε2
)
. (12)

The first term is non-normalizable in our region x2 � 0, thus
prohibited. The second term solely cannot satisfy the boundary
condition (7), so, as a result, we need ξ = 0 for all space.
Plugging this into (9) and (10), we can solve them and obtain
a dispersion for the state

ε = −m (13)

satisfied by

ψ = N (p1) exp[p1x
2]

(
0
1

)
. (14)
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This is the edge state. The state exists only for p1 < 0;
otherwise the state is non-normalizable. This is a kind of Fermi
arc which appears in the edge dispersion. The normalization
N (p1) can be fixed up to an arbitrary phase by

1 =
∫ ∞

0
dx2 ψ†ψ, (15)

which results in N = √−2p1. The existence of the edge state
is the consequence of the bulk-edge correspondence.

Now, let us consider a Berry connection of the edge
state (14). It turns out that the connection vanishes,

A1 ≡ i

∫ ∞

0
dx2 ψ† d

dp1
ψ = 0. (16)

So, the boundary edge state does not have any topological
structure [27].

It would be instructive to introduce two boundaries instead,
at x2 = ±L. We assume that at both the boundaries the
boundary conditions are the same and identical to (7). Then,
following the same steps, we reach a unique edge state

ψ =
√

p1

sinh 2p1L
exp[p1x

2]

(
0
1

)
, (17)

with the dispersion ε = −m. One may wonder why we have
only a single edge state while there are two boundaries. In fact,
we can find that the boundary degrees of freedom are doubled,
because the previous edge state (14) for a single boundary is
valid only for p1 < 0 while the present case (17) is fine for
any p1.

The Berry connection of this edge state (17) is calculated
to vanish again,

A1 ≡ i

∫ L

−L

dx2 ψ† d

dp1
ψ = 0. (18)

So, there is no topological structure carried by the edge state,
even if we introduce two boundaries to the system.

We worked with the 2D Hamiltonian (1), but it may
be regarded as a Hamiltonian of a three-dimensional (3D)
massless fermion such as Weyl semimetals,

H = p1σ1 + p2σ2 + p3σ3, (19)

related just by a dimensional reduction p3 = m [6]. Then
the edge states (14) and (17) propagate in the boundary two
dimensions, with a linear dispersion relation ε = −p3. We
can calculate another component of the Berry connection of
the edge state, A3, as well as the previous A1 (16) or (18).
However, it again turns out that they vanish,

A3 ≡ i

∫
dx2 ψ† d

dp3
ψ = 0. (20)

Therefore, also in this case of three dimensions, the edge states
do not carry any topological information.

From the next sections, we will find that the situation
is different in higher dimensions. In four-dimensional (4D)
topological insulators, the edge states are found to carry
nontrivial topological numbers.

III. DIRAC MONOPOLE FROM EDGE STATE IN 4D CLASS
A TOPOLOGICAL INSULATOR

A. 4D class A system and a consistent boundary surface

We start with a free class A system in four spatial
dimensions, whose Hamiltonian is provided by

H = γμpμ + γ5m, (21)

where μ = 1,2,3,4 is for the four spatial directions, and m is
the mass of the fermion. Upon a dimensional reduction by one
dimension, in other words, by replacing one of the momenta
p3 by another mass m3, the system reduces to a 3D class AIII
topological insulator. This replacement is just a renaming of
the variable, so the following study will be applied also to the
3D class AIII topological insulators.

We work with a familiar choice of the Clifford algebra
{γM,γN } = 2δMN14 (M,N = 1,2,3,4,5),

γμ ≡
(

0 ēμ

eμ 0

)
, γ5 ≡ −γ1γ2γ3γ4 =

(
12 0
0 −12

)
, (22)

with eμ ≡ (iσi,12) and ēμ ≡ (−iσi,12), for i = 1,2,3. Using
the Clifford algebra, it is easy to see that the Hamiltonian
eigenvalue problem in four dimensions

Hψ = εψ (23)

is solved by ε = ±
√

p2
μ + m2, which is a relativistic dispersion

relation of a particle in four spatial dimensions with the mass
m. Upon the replacement p3 by m3, one can get a relativistic
dispersion relation of a particle in three spatial dimensions with
a mass

√
m2 + m2

3 [6]. The system enjoys the existence of a
nontrivial second Chern class, and thus supports a topological
phase.

Let us introduce a boundary to this system. Suppose that
at x4 = 0 there exists a boundary at which the system is
terminated, and the material has support only at x4 > 0.
According to the bulk-edge correspondence, we expect a
massless edge state localized on the boundary surface x4 = 0.
In the subsequent sections, we shall see how the edge state
provides a topological charge given by a Dirac monopole.

First we seek for a consistent boundary condition put
at x4 = 0, by following a general argument described for
example in Ref. [10]. A possible boundary condition put at
the boundary is expected to be of the form

Mψ = −ψ, (24)

where M is a Hermitian matrix [28]. We impose a self-
conjugacy condition 〈ψ1|Hψ2〉 = 〈Hψ1|ψ2〉 for an arbitrary
set of wave functions ψ1 and ψ2. This Hermiticity condition
is satisfied if the following property is met,

{M,γ4} = 0, (25)

since the partial integration over dx4 involves γ4 in the
Hamiltonian. If we require that the boundary condition (24) be
independent of the momentum of the fermion and demand the
SO(3) rotation invariance in the momentum space (p1,p2,p3),
we may choose a boundary condition [29]

M = γ5. (26)
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Hence the boundary condition is

(γ5 + 14)ψ |x4=0 = 0. (27)

In this paper, we consider this boundary condition, and will see
the emergence of the monopole charge from the edge states.

B. Spectrum and a unique edge state

Now we solve the Hamiltonian eigenequation (23) explic-
itly and find the edge state. Once the wave function ψ is
decomposed to (ξ,η)T where ξ and η are two component
spinors, the eigenequation is

(m − ε)ξ − i

(
�σ · �p + d

dx4

)
η = 0, (28)

i

(
�σ · �p − d

dx4

)
ξ − (m + ε)η = 0. (29)

Note that p4 is converted to a coordinate space −id/dx4 so that
we can treat the boundary properly. The energy spectrum ε will
be determined by the existence condition of the Hamiltonian
eigenvectors. Multiplying (m + ε) on the first equation (28),
we can use the second equation (29) to eliminate η, to obtain[

| �p|2 −
(

d

dx4

)2

− ε2 + m2

]
ξ = 0. (30)

A generic solution reads

ξ = ξA exp[iαx4] + ξB exp[−iαx4]. (31)

Here ξA and ξB are two-component spinors which are inde-
pendent of x4, and α ≡

√
ε2 − m2 − p2

i . The solution is with
a real α for |ε| �

√
| �p|2 + m2.

Let us impose the boundary condition (27). We obtain ξ = 0
at x4 = 0, which amounts to the following constraint on ξ ,

ξA + ξB = 0. (32)

Therefore a generic solution is

ξ = 2iξA sin(αx4), (33)

with an arbitrary two-component spinor ξA(pi). The other
component η can be calculated from (29) as

η = − 2

m + ε
[�σ · �p sin(αx4) − α cos(αx4)]ξA. (34)

So, we find a family of solutions parametrized by a two-
component constant spinor ξA and a real positive number α

which is related to the energy as

ε = ±
√

| �p|2 + α2 + m2. (35)

This α is a momentum along x4. The dispersion is exactly
the same as that of the bulk state without the boundary. The
positive energy is bounded from below as ε � m, and the
system is gapped.

On the other hand, for the other region of the energy, |ε| <√
| �p|2 + m2, we find a generic solution of (31) as

ξ = ξ̃A exp[α̃x4] + ξ̃B exp[−α̃x4]. (36)

Here α̃ ≡
√

−ε2 + m2 + | �p|2 is a positive real constant. Since
the material is defined in a half space x4 > 0, the mode

associated with η̃A is non-normalizable and thus should not
exist. So we need to consider only the mode

ξ = ξ̃ exp[−
√

−ε2 + m2 + | �p|2 x4]. (37)

We impose the boundary condition (27); then this mode needs
to satisfy ξ = 0 at x4 = 0, which means

ξ = 0 (38)

for all space. Using (29), we find that this mode exists only at

ε = −m. (39)

This flat band structure is similar to the Weyl semimetal surface
state [30,31], but the current one is totally extended within the
three-dimensional momentum space. The remaining equation
is (28)

−i

(
�σ · �p + d

dx4

)
η = 0. (40)

Acting i(�σ · �p − d/dx4) on this equation leads to[
| �p|2 −

(
d

dx4

)2
]
η = 0. (41)

A generic solution is exp(±| �p|x4), whose sign is determined
to be negative so that the mode is normalizable in the region
x4 � 0. Thus we find a generic solution

η = η̃ exp[−| �p|x4], ( �p · �σ − | �p|)η̃(pi) = 0. (42)

Using a unitary matrix U (pi) which diagonalizes the matrix
�p · �σ as

| �p|σ3 = U †( �p · �σ )U, (43)

the spinor η̃ can be solved as

η̃ = U (pi)

(
1
0

)
. (44)

Thus we are led to the following unique normalized solution,

η = η0(pi) ≡
√

2| �p| exp[−| �p|x4]U (pi)

(
1
0

)
. (45)

This mode is nothing but the edge state. The normalization is
fixed by ∫ ∞

0
dx4 η

†
0η0 = 1. (46)

So, in summary, we have obtained a bulk state and an edge
state whose dispersion relations are, respectively, given by (35)
and (39):

ε = ±
√

| �p|2 + α2 + m2 (bulk), (47)

ε = −m (edge). (48)

The dispersion relations are illustrated in Fig. 1. Note that
our surface state has a specific dispersion relation (39), which
does not depend on the momentum pi , although the wave
function itself depends on pi . It is a generalization of a Fermi
arc. In fact, if we take a limit m → 0, the energy of the edge
state (39) is ε = 0 while the bulk dispersion (35) becomes
ε = ±

√
| �p|2 + α2. So the tip of the momentum cone of the
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p
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p

FIG. 1. The obtained dispersions (47) and (48). Left panel is for
m 
= 0, while right panel is for m = 0. The red lines are for the
edge state (48) which is a flat band, and touches the tip of the bulk
dispersion cone.

bulk dispersion coincides with the energy of the edge state.
In Weyl semimetals, generic Fermi arcs have a property that
the arc is a flat dispersion and ends at the Weyl points, and
our case resembles that. Topological aspects of flat bands are
discussed, for example, in Refs. [32,33].

Next, we derive the topological charge of the edge state.

C. Dirac monopole at the edge providing TKNN

We shall see that a Berry connection associated with the
boundary edge state η0(pi) is identical to the Maxwell gauge
field of a Dirac monopole. The Berry connection is

Ai =
∫ ∞

0
dx4 iη

†
0

d

dpi

η0. (49)

Note that we need the integration over x4 to define the
Berry connection, since only under the integration the self-
adjointness of the operator id/dpi follows, as can be easily
shown with the normalization condition (46) [34]. One can
think of this integration as an integrated effect of the Berry
connection, since the edge state is in any case almost localized
at the boundary. Explicitly, we find

A1 + iA2 = i(p1 + ip2)

2| �p|(| �p| − p3)
, A3 = 0. (50)

The field strength (the “magnetic field”) calculated from this
is

Bi ≡ 1

2
εijkFjk = pi

2| �p|3 , (51)

which provides a Dirac monopole configuration of a magnetic
charge

1

2π

∫
S2

| �p|2d�s · �B = 1, (52)

where d�s is the volume element of the unit S2.

It is instructive to evaluate the average location of the
fermion perpendicular to the boundary surface,

(pi) ≡
∫ ∞

0
dx4 η

†
0 x4η0. (53)

This measures the “depth” of the fermion for a given
momentum. In our case, an explicit calculation with the edge
state (45) leads to

 = 1

2| �p| . (54)

This means that the fermion with a momentum pi is located
nearly around x4 ∼ 1/2| �p|. The smaller the momentum is,
the deeper the fermion lives from the boundary surface. The
importance of this operator  is that it will be identified with
a Higgs field for a symmetry breaking of a U (2) connection
for the case of two boundaries, in the next section.

Let us point out a relation to the TKNN number [13], which
will be important in the next section for defining a non-Abelian
analog of the TKNN number. Suppose we tune the chemical
potential around ε ∼ −m and take a low-energy limit. Then
the bulk states disappear, and we end up with only the edge
state (45). Let us consider a standard dimensional reduction
by replacing p3 with a constant mass term m3. Then the first
Chern class (51) is given by

ν = 1

2π

∫
dp1dp2 F12 = 1

2
sgn(m3). (55)

This is the TKNN number of the quantum Hall system
computed for the 2D Dirac Hamiltonian. This implies that
the flat band is now half filled, which is analogous to the
zero-energy Landau level state of the 2D Dirac system.

Here, to realize the 2D quantum Hall system, we look at
only the edge states at x4 = 0 of the 4D topological insulator
with the dimensional reduction p3 = m3. This method pro-
vides us with a non-Abelian analog of the TKNN number in
the next section. The essence of the realization is that the state
is provided by an edge state, rather than a bulk state.

Note that our energy dispersion ε = −m is different from
that of the standard argument for the TKNN number, because
we have started from four dimensions (21) and considered
the edge states, while the popular way to get the TKNN
number uses a bulk state, and thus the Hamiltonians and spatial
dimensions are different [35].

IV. ’T HOOFT–POLYAKOV MONOPOLE
FROM EDGE STATES

In this section, we shall show that the 4D topological
insulator of class A with two parallel boundaries has a
novel topological charge: a non-Abelian ’t Hooft–Polyakov
monopole as its Berry connection of edge states.

A. 4D topological insulator with two parallel boundaries

We introduce two boundary surfaces which are parallel to
each other. The surfaces of the four-dimensional topological
insulator are three-dimensional, and defined by x4 = ±L.
The material exists between the two parallel surfaces,
−L � x4 � L.
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As has been studied, a consistent boundary condition for
the fermion is (γ5 ± 14)ψ = 0. We choose the same boundary
conditions for both of the two boundary surfaces,

(γ5 + 14)ψ |x4=±L = 0. (56)

The choice is made just for getting the non-Abelian monopole
for our purpose. We shall later discuss other boundary
conditions.

When the mass m of the Hamiltonian H = γμpμ + γ5m is
smaller than the scale coming from the width of the insulator
2L, the insulator is a “thin” insulator. Note that the thin limit
is different from the dimensional reduction studied generally
in Ref. [6].

As in the previous section, we calculate the spectra of the
fermion with the boundary condition (56). The fermion is
decomposed again as (ξ,η)T; then the boundary condition (56)
is equivalent to, say, ξ = 0 at x4 = ±L. The generic solution at
the continuum (31) now needs to obey the boundary condition

ξA exp[±iαL] + ξB exp[∓iαL] = 0. (57)

This equation has a nontrivial solution only for special values
of α,

α = π

2L
n, n ∈ Z. (58)

For these values of α, arbitrary constant spinors ξA and ξB

satisfying

ξA + ξB(−1)n = 0 (59)

are a solution. The other component η can be constructed by
solving (29). So we arrive at a mode with a dispersion relation

ε = ±
√

| �p|2 + π2n2

4L2
+ m2. (60)

We find that the continuous states (35) are now discretized to
Kaluza-Klein states labeled by the integer n.

Next, let us look at the case (36). Imposing the boundary
condition, we obtain

ξ̃A exp[±α̃L] + ξ̃B exp[∓α̃L] = 0 (61)

with, again, α̃ ≡
√

−ε2 + m2 + | �p|2 � 0. The unique solution
of this equation for a generic pi is ξA = ξB = 0. Therefore,
we conclude ξ = 0 for all space. Using (29), we find the flat
dispersion relation

ε = −m. (62)

Using (28) multiplied by i(�σ · �p − d/dx4) with ξ = 0, we find
a generic solution

η = η̃A exp[| �p|x4] + η̃B exp[−| �p|x4]. (63)

Again using (28) itself, we find that the mode needs to satisfy

−i(�σ · �p + p)η̃A exp[| �p|x4]

−i(�σ · �p − p)η̃B exp[−| �p|x4] = 0. (64)

For this to be satisfied at arbitrary x4,

(�σ · �p + | �p|)η̃A = (�σ · �p − | �p|)η̃B = 0. (65)

Then we obtain a generic solution with the dispersion (62),

η = c+(pi)η
+ + c−(pi)η

−, (66)

ξ = 0, (67)

where c±(pi) are arbitrary complex functions of pi , and

η+ ≡
√

| �p|
sinh 2| �p|L exp[| �p|x4] U (pi)

(
0
1

)
, (68)

η− ≡
√

| �p|
sinh 2| �p|L exp[−| �p|x4] U (pi)

(
1
0

)
. (69)

These modes satisfy the eigenequation and the orthonormal-
ization condition (

∂

∂x4
+ �p · �σ

)
η± = 0, (70)∫ L

−L

dx4 (ηa)†ηb = δab (a,b = ±). (71)

U (pi) is the unitary matrix defined in (43), and explicitly given
by

U (pi) = 1√
2| �p|(| �p| − p3)

(
p1 − ip2 p3 − | �p|
| �p| − p3 p1 + ip2

)
. (72)

The states (68) and (69) are edge states. They are localized
mostly at different boundary surfaces: η± is localized at
x4 = ±L.

We have two edge states sharing exactly the same dispersion
relation, as we have introduced two boundaries of the same
boundary condition. The number of degrees of freedom is
doubled, compared to the case of the single boundary: the
situation is similar to that of the 2D case in the previous section.

In summary, we have obtained the full spectra

ε = ±
√

| �p|2 + π2n2

4L2
+ m2 (bulk), (73)

ε = −m (two edge states). (74)

We are interested in the edge states. Tuning the chemical
potential around ε ∼ −m and taking a low-energy limit, the
edge states play a dominant role. Two edge states satisfy (70)
which can be thought of as a doubled pair of the edge state
considered in the previous section. Using these two edge states,
we construct a non-Abelian charge and analyze an analog of
the TKNN number, in the next subsection.

B. ’t Hooft–Polyakov monopole from edge states

Using the edge states (68) and (69), we define a 2 × 2
matrix-valued non-Abelian Berry connection [36]

Aab
i ≡ i

∫ L

−L

dx4 (ηa)†
d

dpi

ηb. (75)

Here a,b = ± labels the two edge states. In addition, we define
a matrix-valued scalar operator 

ab
i ≡

∫ L

−L

dx4 (ηa)†x4ηb. (76)
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This  measures the location of the fermion in the x4 direction
for a given momentum pi , for each η+ and η− boundary
edge state. Note that the “location” has off-diagonal values,
in other words, transition components between the “plus” and
the “minus” edge states.

For the matrix representation of the Berry connection, it is
convenient to align the edge states to form a 2 × 2 matrix,

M ≡ (η+,η−). (77)

Then the 2 × 2 Berry connection matrix (75) is given by

Ai = i

∫ L

−L

dx4M† d

dpi

M. (78)

If we change the basis of the edge states in such a way that the
orthonormalization condition (71) is preserved,

ηa → ηbV (pi)
a
b , (79)

then the matrix V needs to be a unitary matrix, V ∈ U(2). In
terms of M , the gauge transformation acts as M → MV . The
non-Abelian Berry connection (75) is transformed as a gauge
field, while the scalar operator  transforms as an adjoint
representation scalar field,

Ai → iV † d

dpi

V + V †AiV,  → V †V. (80)

Since this gauge transformation is merely a change of the basis
of the edge states, only the eigenvalues of the scalar field are
gauge-invariant quantities independent of the edge-state basis.

Using the explicit edge states (68) and (69), we can calculate
the Berry connection Ai and the scalar . It turns out that
choosing V = U † provides a symmetric expression for the
result. Using that basis [37], we obtain

Ai =
(

2| �p|L
sinh(2| �p|L)

− 1

)
εijkpk

2| �p|2 σj , (81)

 =
(

2| �p|L
tanh(2| �p|L)

− 1

)
pi

2| �p|2 σi. (82)

This Berry connection together with the matrix field  is iden-
tical to the well-known ’t Hooft–Polyakov monopole [14,15]
in the BPS limit [16,17].

We find that the Berry connection has a non-Abelian
monopole charge,

1 = 1

4π

∫
d3p

1

2
εijk tr[DiFjk]. (83)

Here we have defined the covariant derivative and the field
strength as usual,

Di ≡ ∂

∂pi

 − i[Ai,], (84)

Fij ≡ ∂

∂pi

Aj − ∂

∂pj

Ai − i[Ai,Aj ]. (85)

The monopole satisfies the famous BPS equation

Di = 1
2εijkFjk. (86)

The ’t Hooft–Polyakov monopole is a monopole solution of
SU(2) Yang-Mills theory coupled to a scalar field  in the
adjoint representation. We here have provided an explicit

example of the edge states whose topological property can
be characterized by the non-Abelian monopole.

The reason why we obtained the ’t Hooft–Polyakov
monopole is hidden in a parallelism to the Nahm construction
of monopoles. For a brief review of the Nahm construction, see
the Appendix. The Nahm construction uses a Dirac zero mode
of a certain Hamiltonian, and our edge states satisfy exactly
the same equation with exactly the same normalizability
condition, (70) and (71). So, as a result, it is required that
the Berry connection becomes that of the ’t Hooft–Polyakov
monopole. Because the Nahm construction applies to not just
the single monopole in SU(2) gauge theory but to broad species
of non-Abelian gauge theories with an arbitrary number
of monopoles, we expect that this will lead to a mine of
topological charges provided by edge states in general.

If we make a trivial dimensional reduction by replacing p3

by a mass m3 as before, then we can think of the edge states
as states in two dimensions. The TKNN number for this set of
edge states is provided by trF12 (see [38]). However, since the
non-Abelian monopole is that of SU(2) gauge theory, we find
that the non-Abelian Berry connection has a trivial first Chern
class: trF12 = 0.

Nevertheless, we have another field strength which is
invariant under the SU(2) gauge symmetry, tr[F12]. In fact,
this invariant is nothing but the one providing the non-Abelian
monopole charge. An explicit calculation gives

1

2
εijktr[Fjk] = −pi

| �p|4 (1−| �p|L coth | �p|L)

×
[

1−
( | �p|L

sinh | �p|L
)2

]
, (87)

which is integrated to provide (83) [39]. It would be instructive
to calculate an analog of the TKNN number (55). Using this
non-Abelian flux, one can compute an integral

ν̃ ≡ 1

4π

∫
dp1dp2 tr[F12]. (88)

Since the ’t Hooft–Polyakov monopole has a unit magnetic
charge, it is easy to observe

lim
m3→±∞ ν̃ = ± 1

2 . (89)

The difference from the TKNN number (55) is that the
non-Abelian monopole is not singular, and has a nonzero size
∼1/L. In fact, the functional form of ν̃(m3) is not a step
function [which is the case for (55)] but a smooth function
which interpolates ±1/2. For the explicit form, see Fig. 2. In
the limit L → ∞, the ’t Hooft–Polyakov monopole is reduced
to the Dirac monopole, which is singular, and thus ν̃ → ν.

The standard TKNN number is related to Hall conductivity,
and it would be interesting if our non-Abelian TKNN invariant
can have such an observable effect. The operator  measures
the typical depth of the fermion wave function for a given
momentum, and our invariant is interpreted as a TKNN number
weighted by . Basically, a larger momentum state is localized
closer to the boundary surfaces, according to our (82).
Therefore, the non-Abelian TKNN invariant (88) measures
the weighted Hall conductivity σw ≡ ∫ L

−L
σ (x4)f (x4), where
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FIG. 2. The TKNN number (55) (dashed line) and our non-
Abelian analog (88) (solid line). The TKNN number is a step function
of m3, while our non-Abelian analog is not singular. The asymptotic
behavior is shared. In the limit L → ∞, two lines coincide.

σ (x4) is the Hall conductivity at the depth x4 and f (x4) is a
function which changes its sign at x4 = 0.

C. Relation to domain-wall fermion in lattice QCD

Our starting point, the 4D class A theory (21), lives in
a space with an extra dimension x4. A similar technique is
quite popular in lattice QCD where chiral fermions in 1+3
dimensions are introduced via a domain wall in the extra
dimension, called the domain-wall fermion formalism [19,20].
See also [21]. Here let us discuss a difference between the
domain-wall fermion and our class A topological insulator
with boundaries.

Before getting to the lattice fermions, we here consider
what is a possible boundary condition. In the previous sections,
we adopted a choice M = γ5 (26). However, more generally,
the equation {M,γ4} = 0 (25) may have other solutions—for
example,

M = γ3, (90)

which breaks the SO(3) rotation symmetry. Let us show that
the choice is similar to a standard boundary condition in
a 3D Weyl semimetal [10]. The Hamiltonian of the Weyl
semimetal near the cone is given byH = σ1p1 + σ2p2 + σ3p3.
Let us introduce a boundary x1 = 0; then the self-conjugacy
condition {M,σ1} = 0 results in a solution such as M = σ3,
which breaks the momentum rotation symmetry SO(2) in the
(p2,p3) space. This resembles our choice (90) above. The
important difference between this 3D Weyl semimetal and our
4D class A topological insulator is that we have an alternative
choice M = γ5 (26) which does not spoil the momentum
rotation symmetry.

Now we are ready for discussing the difference from the
lattice domain-wall fermions. For the domain-wall fermions,
one starts with a Dirac Hamiltonian

H =
∑

i=1,2,3

γ 0γipi + γ 0γ5p5 − imγ 0, (91)

which can be derived from a Dirac equation in 1+4 dimen-
sions. We remark that the Hamiltonian (21) is the same as the
Hermitian operator used in the domain-wall/overlap formal-

ism, which plays a role of the translation generator in the
extra dimension. But we are now dealing with the domain-wall
fermion in the Hamiltonian formalism. For the domain-wall
fermion one introduces a wall at x5 = 0, say. The domain-wall
fermion is made by a change of the sign of the mass when one
crosses the wall. For example, one chooses m > 0 for x5 > 0
while m < 0 for x5 < 0. This mass profile is understood as a
chiral rotation, since if one applies the chiral rotation for the
fermion ψ → γ5ψ then the Hamiltonian (91) changes as

H → γ5Hγ5 =
∑

i=1,2,3

γ 0γipi − γ 0γ5p5 + imγ 0, (92)

which is equivalent to the γ5 Hermiticity of the corresponding
Dirac operator. Note that the sign of the mass term changes, as
well as the sign of the p5 term. So, the chiral rotation means the
change of the sign of the mass at the same time as the parity
x5 → −x5, which is equivalent to having the change of the
sign of the mass when one crosses the wall. The consistency
of the fermion near the wall means γ5ψ = ψ , which is the
chiral fermion. The massless chiral mode localizes at the
wall.

Let us understand this domain-wall fermion in terms of
our generic argument of the boundary condition M̃ψ = −ψ

at x5 = 0. From the Hamiltonian (91), a consistent boundary
condition needs M̃ satisfying {M̃,γ 0γ5} = 0. The domain-
wall fermion formalism uses the choice M̃ = −γ5 for the
Hamiltonian (91), because the lattice QCD does not like to
break the 1+3-dimensional Lorentz invariance.

We can find a relation to our topological insulator. Noting
that iγ 0 and γ 0γi in (91) are Hermitian (γ 0 is anti-Hermitian
itself) and satisfy the Euclidean Clifford algebra, we can
actually relabel the indices of (91) and see the equivalence
to our 4D topological insulator (21):

γ 0γi → γi, γ 0γ5 → γ4, − iγ 0 → γ5. (93)

In our terminology, using (93), the domain-wall fermion
corresponds to M = iγ5γ4, while our boundary condition is
M = γ5. In other words, in the terminology of the lattice
domain-wall fermion, the domain-wall boundary condition
is M̃ = −γ5, while our boundary condition is M̃ = −iγ 0.
This signals an important difference between our boundary
condition and the domain-wall fermion: The domain-wall
fermion M̃ = −γ5 has the same index as the wall position
x5 = 0, while our choice M̃ = −iγ 0 does not. Generically,
in the domain-wall formulation of lattice QCD, when one has
two walls, they produce a pair of M̃ = −γ5 and M̃ = γ5 to
end up with vector-like fermions. However in our topological
insulator, this pairing does not apply, since our boundary
condition M̃ = −iγ 0 is not related to the coordinate x5. That
is why we can choose in fact the same boundary conditions at
the two boundaries.

For our topological insulators, we can choose freely
boundary conditions at each boundary respectively [40]. A
generic choice of the boundary conditions will reveal how
universal our topological charges of the edge states are. It
would be an interesting future work.
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V. MAGNETIC FIELD, NONCOMMUTATIVE
SPACE, AND D-BRANE

In this section we consider how the non-Abelian monopole
is deformed once we apply a magnetic field on the 4D class
A system. It turns out that the non-Abelian monopole still
persists, and it is identified as a monopole in a noncommutative
space [22–25,41]. Since the properties of such a monopole
in noncommutative space can be analyzed by a D-brane
construction in string theory, we use the D-brane interpretation
to explore the properties of edge states. We find that the
tilted D-brane configuration clarifies the shift of the fermion
momentum for the edge states.

We start with the 4D class A system (21), and consider the
following “magnetic” field in four dimensions,

F12 = F34 = B, (94)

while the other components are set to zero. B (>0) is a constant
field strength which is self-dual in the 4D space. This choice of
the field strength is a typical configuration for the 4D quantum
Hall effect [5,42], and the simplest for having a consistent BPS
equation satisfied by the monopole, as we will see.

Due to the magnetic field, the momenta are now noncom-
mutative to each other,

[p̂1,p̂2] = [p̂3,p̂4] = iB. (95)

The ’t Hooft–Polyakov monopole defined by the edge states
lives in the space spanned by (p1,p2,p3); thus we are now
looking for a monopole in a noncommutative momentum space
[p1,p2] = iB. Any function in the noncommutative space can
be expanded by a creation-annihilation operator

â ≡ 1√
2B

(p̂1 + ip̂2), â† ≡ 1√
2B

(p̂1 − ip̂2), (96)

satisfying [â,â†] = 1. The edge states need to satisfy, from (28)
with ξ = 0 at ε = −m,(

ē1p̂1 + ē2p̂2 + ē1(p3 + Bx4) − i
d

dx4

)
η = 0. (97)

Note here that we have defined p3 ≡ ∂3 (without the hat) such
that the explicit magnetic field dependence in the p̂3-p̂4 space
can be seen as the +Bx4 term.

According to the Nahm construction of monopoles in
noncommutative space [23–25], this equation is exactly the
one to solve for the construction of all solutions satisfying the
BPS monopole equation in the noncommutative space,

Di = 1
2εijkFjk, (98)

where the scalar field  and the gauge field Ai are functions
of the noncommutative coordinates (p̂1,p̂2,p3). Therefore, we
conclude that putting a self-dual magnetic field (95) in the
class A topological insulator in four dimensions with one/two
boundaries leads to a BPS Abelian/non-Abelian monopole in
a noncommutative (momentum) space.

The D-brane interpretation of the monopole [22] is provided
by a slanted D1-brane stuck to D3-brane(s). In particular,
when we have a single boundary surface, the monopole is
that of a U (1) gauge theory, which is a noncommutative
Dirac monopole. The explicit solution was given in [23] which

exhibits an interesting behavior

〈0||0〉 ∼ 1

B
p3 (99)

for p3 → +∞. Here |n〉 (n = 0,1,2, . . . ) is the Landau level,
that is, a basis of the Fock space spanned by the operator
â† where â|0〉 = 0, and any function in the noncommutative
space can be spanned by |n〉〈m|. In Eq. (99) we look at the
lowest Landau level for simplicity. Equation (99) means that
the location  of the fermion for a given p3 at the lowest
Landau level is linearly dependent for large positive p3. For
larger p3, the fermion wave function on the edge state goes
deeply inside the bulk away from the boundary, linearly. Since
the scalar field  is nothing but the D-brane shape in string
theory, the configuration (99) was interpreted as a slanted D1-
brane [43]. So the shape of the D1-D3-brane system provides
the information of the location of the edge state fermions.

VI. CONCLUSION AND DISCUSSION

In this paper, we find that the edge states of a four-
dimensional topological insulator of class A have topological
charges. For a single boundary with a certain boundary con-
dition, a Dirac monopole in momentum space emerges. Upon
a dimensional reduction, it is identical to the TKNN number.
When there are two parallel boundaries, the topological charge
is identified as that of a BPS ’t Hooft–Polyakov monopole in
an SU(2) gauge theory. It defines a non-Abelian analog of the
TKNN number.

The classification of topological insulators is deeply
concerned with dimensions, and the dimensional reduction
technique [5,6] is widely used for analyses. Here we propose
another way to change the dimensionality, via introducing
boundaries and considering the topological nature of the edge
states. We remark that this topological property of the edge
state might be related to the surface topological order, which
appears in the interacting topological insulators [44–48]. See
also a recent article [49]. It would be interesting to study more
explicit connections to such an argument.

In the study of topological systems, the open boundary
condition has been typically applied to observe the edge
state so far. Since varieties of the boundary conditions are
now allowed, it would be interesting to explore all possible
boundary conditions. As an example, we have explained
that the domain-wall fermions in lattice QCD corresponds
to a different boundary condition. Furthermore, once more
than two boundaries are introduced, more exotic non-Abelian
examples are expected to appear, such as SU(n) monopoles. In
that case, the added interior “boundaries” can be interpreted as
a surface junction of multilayer systems. Consistent boundary
conditions may be classified by K theory, as in the case of the
bulk topological properties because finding the boundary con-
dition matrix, e.g., (25), seems a matter of the Clifford algebra.
Exhausting all possible boundary conditions associated with
the edge topological numbers is an important future direction.

In the last section we demonstrated that the technology of
D-brane engineering in string theory is useful for extracting in-
formation of fermions. The location of the edge-state fermions
in the momentum space can be identified with the shape of
the D-brane. We have made in our previous paper [50] that the
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shape of the fermion dispersion of topological insulators can be
interpreted as the shape of a particular D-brane, so it would be
interesting to further explore the relation between topological
charges of edge states and D-branes in string theory.

In the end, let us discuss how to realize our proposal in
experiments. Our model is the class A system, showing the 4D
quantum Hall effect, which could be realized using ultracold
atoms [51]. Furthermore, as mentioned before, our analysis
is also applicable to the 3D chiral topological insulator (class
AIII) [52], which is connected with the 4D class A through the
standard dimensional reduction. Thus, imposing the boundary
condition studied in this paper for these systems, we could
observe the flat-band dispersion at the surface, as a signal of
the topological nature of the edge state. In order to discuss such
a realization in experiments, it will be required to construct
some lattice model exhibiting the fermion boundary conditions
which we adopted. In particular, a lattice model having the
non-Abelian TKNN number would be of importance. Together
with full classification of generic boundary conditions, we will
report them in our forthcoming paper [53].
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APPENDIX: REVIEW OF NAHM CONSTRUCTION
OF BPS MONOPOLES

The Nahm construction [18] of monopoles, or the Nahm
construction in short, is a way to obtain all solutions of the
BPS monopole equation

Di = 1
2εijkFjk (A1)

for a Yang-Mills-Higgs theory with a non-Abelian gauge group
in three spatial dimensions. (For a review, see [54–56].) Here

we briefly review the Nahm construction and its generalization
to the one in a noncommutative space [57].

The Nahm construction consists of the following three
steps:

(1) For k monopoles, solve the Nahm equation for k × k

Hermitian matrices Ti(i = 1,2,3) as a function of a parameter
ξ :

d

dξ
Ti = iεijkTjTk. (A2)

The ξ space is defined on a period −s < ξ < s for SU(2)
monopoles. Note that for a single monopole k = 1 the Nahm
equation can be solved trivially by Ti(ξ ) = 0.

(2) Solve a zero-mode equation

∇†v(ξ ) = 0 (A3)

for v(ξ ; xi), where ∇† is defined as

∇† ≡ i
d

dξ
+ iσi(x

i − Ti(ξ )). (A4)

Here σi (i = 1,2,3) is the Pauli matrix, and the solutions v(a)(ξ )
where a = 1,2 need to be normalized as∫ s

−s

dξ (v(a))†v(b) = δab. (A5)

(3) Calculate the gauge field and the scalar field by the
formulas

ab(x) ≡
∫ s

−s

dξ v(a)†ξv(b), (A6)

Aab
i (x) ≡

∫ s

−s

dξ v(a)†i
d

dxi
v(b). (A7)

Then the defined gauge field and the scalar field satisfy the
BPS monopole equation (A1).

In the noncommutative space [x1,x2] = iθ , the Nahm
construction is only modified at the Nahm equation [23]

d

dξ
Ti + θδi3 = iεijkTjTk. (A8)

Following the same procedures above with care on the operator
orderings, one arrives at BPS monopole solutions in the
noncommutative space.
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