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Unconventional electromagnetic mode in neutral Weyl semimetals
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We study light propagation in a neutral Weyl semimetal with the Fermi level lying at the Weyl nodes in the weak
self-interacting regime. The nontrivial topology induces a screening effect in one of the two transverse gauge
fields, for which we find two branches of attenuated collective excitations. In addition to the known topologically
gapped photon mode, a different massless and slightly damped excitation appears. Strikingly, at low energies,
this excitation has a linear dispersion and it propagates with the same velocity as the electrons, while at energies
well above the electron-hole continuum threshold it behaves as a massive attenuated photon with velocity similar
to the speed of light in the material. There is a crossover at a certain momentum in the direction perpendicular to
the separation of the Weyl nodes above which this gapless mode enters into an overdamped regime. Regarding
the unscreened gauge field, we show that it is also attenuated, which is a nontopological property shared by Dirac
semimetals as well.
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I. INTRODUCTION

Weyl semimetals (WSMs) are three-dimensional topolog-
ical electronic systems whose low-energy band structure is
described by pairs of Weyl fermions separated in momentum
space. They were first proposed to occur in a class of
iridate materials [1], but it was only recently that they were
experimentally realized [2–6]. The topological properties of
WSMs are encoded in a Chern-Simons (CS) term that stems
from the axial anomaly. The anomaly is responsible for a
plethora of phenomena such as the axial magnetic effect [7–9],
chiral separation effect [10], chiral magnetic waves [11],
and, more recently, a new mechanism for the phonon Hall
viscosity [12].

The experimental evidence of the WSM phase is based
on angle-resolved photoemission spectroscopy (ARPES) and
transport experiments [2,3], and on optical conductivity
experiments [6] (optical measurements have been done in
Dirac semimetals as well [13,14]). The CS term induces
birefringence [15,16] and circular dichroism [17]. It has been
also proposed that chiral electromagnetic waves exist and
propagate along domain walls in magnetic WSMs [18]. The
interaction of light with magnons in WSMs has been addressed
in Ref. [19], while plasmons in Weyl metals have also been
studied [20–22]. More recently, a new type of helicon mode
under applied magnetic fields has been proposed [23] at finite
doping. Here, we address the problem of light propagation
in a WSM at the neutrality point (i.e., the Fermi level
lies at the Weyl nodes) by computing the poles of the full
photon propagator. A similar approach was done for quantum
electrodynamics (QED) under an external magnetic field [24].
For the case of the solid-state-realized WSM there are two
key aspects that are central: (1) Nontrivial topology is present
even in the absence of an external magnetic field and (2)
contrary to QED, there are two velocity scales in WSMs:
the Fermi velocity of the electrons and the velocity of light in
the material. We will see how these two features combine so
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that different collective excitation behavior is realized. We will
resort to a random phase approximation (RPA) treatment of the
problem. This implies that we will effectively consider non-
self-interacting Weyl fermions interacting with an external
electromagnetic field. The validity of a RPA treatment has
been extensively studied in the literature for two-dimensional
(2D) Dirac materials [25] and more recently in the general case
of interacting three-dimensional (3D) Dirac systems [26,27].
Following these references, some of the results presented here
might be extended to the self-interacting case under particular
conditions (1/N expansions and so on).

The rest of the paper is structured as follows. In Sec. II we
describe the model for WSM that we use and set notations. In
Sec. III, we give the necessary details for the computation of
the polarization function and explain it. In Sec. IV, we compute
the spectrum of the electromagnetic collective modes through
the spectral function, and describe the most salient features
observed. In Sec. V, we discuss the results and mention some
future lines to follow from this work.

II. THE MODEL

Our starting point is the low-energy action of a WSM
coupled to an electromagnetic field,

S =
∫

d4x�

[
iγ 0(∂0 + ieA0)

− ivγ i

(
∂i + ie

c
Ai

)
+ biγ

iγ 5

]
�, (1)

where v is the Fermi velocity and c is the speed of light in
the corresponding material. This action describes two Weyl
fermions separated in momentum space by a vector 2b/v

so that time-reversal symmetry is broken. Without loss of
generality, we will fix b = bx̂3. Quantum corrections to (1) are
well known to generate a nonzero odd part of the polarization
function of the photon in the form of a CS term [28–32].
The coefficient accompanying the CS term is ill defined,
as it depends on the routing of internal momenta in the
loop integrals as well as on the regularization method. In a
solid-state realization of a WSM this coefficient can be fixed
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by means of the bulk-boundary correspondence relating the
theory in the bulk with the Fermi arcs at the edges [33,34].
Another way is by considering the 3D band structure of a
WSM as a set of independent 2D band structures, each of
them with a well-defined Chern number [16,35,36].

In addition to the action for the fermionic sector (1), the
action for the electromagnetic field is

S =
∫

d4x
1

2

(
ε|E|2 − |B|2

μ

)
, (2)

where ε = ε0εr and μ = μ0μr are the dielectric permittivity
and magnetic permeability of the material, respectively. The
electric and magnetic fields are related to the gauge field Aμ

as

Ei = 1

c
∂0Ai − ∂iA0, Bi = 1

c
εijk∂

jAk. (3)

III. POLARIZATION FUNCTION

In what follows, we will obtain the 1-loop order polarization
function in terms of Aμ. The computation has been performed
and deeply examined by several authors, both the parity-
even [37–40] and parity-odd [28–32] parts of the polarization
function. We can write it as

�μν = �
μν

0 + �
μν

b , (4)

where �
μν

0 is the contribution at zero order in b, and �
μν

b

is the first-order correction. In Ref. [37] it was shown that
the polarization function is analytic in b, and the correction
to the even part is second order in b, which breaks gauge
invariance and gives a mass to the photon. Imposing gauge
invariance by using a regularization which preserves it, as
dimensional or Pauli-Villars regularizations, one obtains a zero
correction [37,40]. Regarding the odd part, it is known to be
linear in b [29,32] and no corrections appear beyond the first
order. Hence, Eq. (4) is exact, i.e., there are no higher-order
corrections in b.

The computation of �
μν

0 is standard. Using dimensional
regularization and in the minimal subtraction renormalization
scheme,

�
μν

0 = e2

4πv3

(
v

c

)2−δμ0−δν0

�
(
p2/μ2

0

)
(p2ημν − pμpν), (5)

�
(
p2/μ2

0

) = 1

9π

[
3 log

(−p2/μ2
0

) − 5
]
, (6)

where the four-momentum is pμ = (ω,v p), and where the
space components of �

μν

0 have a relative weight v/c with
respect to the time components, as can be read from Eq. (1).
From now on we will redefine p as v p → p so that
p2 = ω2 − | p|2. The parameter μ0 is an energy scale that
appears in the process of dimensional regularization (see,
for example, Ref. [41]). The appearance of this parameter
reflects the formal absence of any characteristic scale in the
linear electronic spectrum. It could be fixed by either the
experiment or by invoking a standard renormalization program
(here we are dealing with a modification of standard quantum
electrodynamics that is well known to be renormalizable) or
related to the lattice cutoff of the underlying band structure by
considering a full lattice model of the Weyl semimetal, keeping

in mind that there are several materials with very different
lattice structures proposed to be Weyl semimetals. For typical
values of lattice spacings of the order of angstroms, μ0 can be
estimated to be μ0 ∼ 10 eV, however, the reader should keep
in mind that the low-energy/long-wavelength aspects of the
results presented here do not depend on the particular value
of μ0 as long as all the frequencies and momenta involved in
the problem are presented in a dimensionless fashion (that is,
divided by μ0) no matter which regularization scheme is used.

Note that the function �(p2/μ2
0) in Eq. (6) has a constant

imaginary part for p2 > 0 which defines the electron-hole
continuum threshold. A normal procedure would be to take the
local limit ω/| p| � 1 in �

μν

0 . As we know for graphene, at the
neutrality point and zero temperature no well-defined plasmon
mode exists within the random phase approximation (RPA).
However, it was shown that a plasmon pole appears beyond
RPA when the momentum dependence in the polarization
tensor is maintained [42], which highlights the importance of
not considering the local limit in some circumstances. Here,
we will limit ourselves to the RPA approximation but we will
keep the momentum dependence, and we will see that staying
away from the local limit is crucial for capturing the physics
near the electron-hole continuum threshold.

�
μν

b is precisely the CS term. We invoke the boundary-bulk
correspondence to fix its value [33,34]. On the A0 = 0 gauge,
�

μν

b has only one independent component:

�12
b = −�21

b = i
e2b

2π2c2v
ω. (7)

The presence of this nondiagonal term in the polarization
tensor induces gyrotropy in the WSM, so that left- and right-
handed polarized light propagates at different speeds [15–17].

Since we are working under the free electron approxima-
tion, Eq. (7) is exact. In an interacting theory, �12

b acquires
dynamically generated corrections (see Ref. [43] for an explicit
discussion when interactions at constant external magnetic
field and finite densities are considered, or Ref. [44] for
corrections in the strong coupling regime).

IV. COLLECTIVE MODES

The inverse full photon propagator can be written as

(�μν)−1 = (
�

μν

free

)−1 − �
μν

0 − �
μν

b , (8)

where the inverse free propagator can be obtained from Eqs. (2)
and (3). To obtain the collective excitations we look for the
poles of the full propagator. The equation det[(�μν)−1] = 0
on the A0 = 0 gauge reads[

1 − g�
(
p2/μ2

0

)]
ω2

[
1 − g�

(
p2/μ2

0

)]
× [

ω2 − β�
(
p2/μ2

0

)| p|2][[
1 − g�

(
p2/μ2

0

)]

× [
ω2 − β�

(
p2/μ2

0

)| p|2] − J

(
ω2

μ2
0

,
| p⊥|2
μ2

0

,
p2

3

μ2
0

)]
= 0,

(9)

where | p⊥|2 = p2
1 + p2

2 represents the momentum in the plane
perpendicular to b, g = e2/(4πvε0εr ) is the fine structure
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constant, β = c2/v2 gives the squared ratio between the speed
of light and the Fermi velocity, and

�
(
p2/μ2

0

) =
1 − g

β
�

(
p2/μ2

0

)
1 − g�

(
p2/μ2

0

) , (10)

J (x,y,z) = 4g2

π2

b2

1 − g�(x − y − z)

× x − β�(x − y − z)y

x − β�(x − y − z)(y + z)
. (11)

We will take the Fermi velocity of the WSM similar to that
of graphene (v = 106 m/s) and assume a coupling constant
g = 1, which is reached with a relative permittivity of the
material of εr ≈ 2.3. The speed of light of the WSM is given
by c = cvacuum/

√
εr (assuming a relative permeability μr = 1)

and the value of the squared ratio between the speed of light
and the Fermi velocity is β ≈ 3.9 × 104. Since we are not
taking into account interactions between Weyl electrons, a
value of the effective coupling g = 1 is not problematic, and
this precise value has been chosen for convenience. In realistic
solid-state WSM, however, it is not expected to have these
values for vF and/or larger values of εr , resulting effectively
in a smaller value of g.

There is a zero mode ω2 = 0 corresponding to the unphys-
ical longitudinal gauge field, arising from the residual gauge
freedom, as A0 = 0 does not completely fix the gauge. For the
remaining part, there are two physical transverse gauge fields.
The dispersion relation of the unscreened field can be obtained
from[

1 − g�
(
p2/μ2

0

)][
ω2 − β�

(
p2/μ2

0

)| p|2] = 0. (12)

Instead of directly solving the equation, we will define a
spectral function for this field:

ρ = −2 Im

[
μ2

0[
1 − g�

(
p2/μ2

0

)][
ω2 − β�

(
p2/μ2

0

)| p|2]
]
.

(13)

The spectral function is plotted in Fig. 1(a). We see that there
is a peak with finite width, which corresponds to a damped
mode, so that the delta function corresponding to a free photon
is replaced in a WSM by an attenuated excitation. Hence
our first finding is that light is attenuated when propagating
through a WSM. This behavior is rooted to the existence of
two different velocity scales: The value of the Fermi velocity
is much smaller than the speed of light. This mismatch is
encoded in the function � appearing in Eq. (12), which fulfills
limβ→1 � = 1. This means that in the limit where the value of
the Fermi velocity matches the value of the speed of light in
the material, we have a nonattenuated free photon traveling at
the speed of light with dispersion relation ω = | p|. Although
the gapless nature of WSMs means that there is no gap to
overcome for electron-hole pair creation, we just showed that
this is not enough for light attenuation, and that damping is
generated for a system of gapless electrons only when there
exist two nonequal competing velocity scales. This happens
also in Dirac semimetals since this property is not related to
the CS term.

FIG. 1. (a) Spectral function ρ for the unscreened gauge field as
a function of the frequency ω and momentum | p| in units of μ0. (b)
Spectral function ρ for the screened gauge field as a function of ω

and |p3| in units of μ0, for zero transverse momentum | p⊥| = 0. (c),
(d) Spectral function ρ for the screened gauge field as a function of
the frequency ω and the transverse momentum | p⊥| in units of μ0, for
(c) |p3| = 0 and (d) |p3|/μ0 = 3 × 10−3. All plots for the screened
gauge field are presented for b2/μ2

0 = 3.

The nontrivial topology of the WSM phase shows up
inducing a screening in the other transverse gauge field. The
dispersion relation can be obtained from the second line of
Eq. (9). Instead of solving the equation, we will again introduce
a spectral function for this field:

ρ = −2 Im

[
μ2

0

{[
1 − g�

(
p2/μ2

0

)][
ω2 − β�

(
p2/μ2

0

)| p|2]

− J

(
ω2

μ2
0

,
| p⊥|2
μ2

0

,
p2

3

μ2
0

)}−1]
. (14)

In the following analysis we will consider two separate cases:
p⊥ = 0 and p⊥ �= 0.

(i) p⊥ = 0. In Fig. 1(b) the spectral function is plotted as
a function of ω and the momentum |p3| in the direction of b.
Two branches of attenuated collective excitations coexist, one
of them clearly gapped. The gapped nature of the screened field
is expected in WSMs, as the CS term acts as a topological mass
for the photon [15]. However, we see that the second branch
corresponds to a different excitation which seems to be gapless
and considerably less attenuated than its gapped companion.
In fact, at a certain large momentum p3 there is a crossover
where the gapped excitation enters into an overdamped regime,
as can be seen from the absence of a well-defined peak in
Fig. 1(b). To highlight the behavior of this gapless excitation
at low frequencies near the electron-hole continuum threshold
ω = | p|, we plot in Fig. 2(a) the spectral function as a function
of the frequency in a logarithmic scale, for different values
of p3. We see that there is a low-energy crossover also
for the excitation from an underdamped to an overdamped
regime as the wavelength increases. Overdamping appears for
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FIG. 2. Both plots are presented for a value b2/μ2
0 = 3 and in a logarithmic scale for the horizontal axis. (a) Spectral function ρ for the

screened gauge field as a function of the frequency ω in units of μ0 for p⊥ = 0 and different values of |p3|. (b) Spectral function ρ for the
screened gauge field as a function of the frequency ω in units of μ0 for p3 = 0 and different values of | p⊥|.

frequencies near the electron-hole continuum threshold. This
suggests a gapless nature of this excitation with a dispersion
relation ω ∼ | p| at low energies. We see also that by increasing
the momentum p3, the gapless branch deviates from the linear
dispersion behavior and approaches the gapped one. From
Fig. 1(b) it is clear that the gapless branch starts to behave as
a massive excitation for large enough momentum p3.

(ii) p⊥ �= 0. Figures 1(c) and 1(d) show the spectral
function as a function of ω and | p⊥| for the values p3 = 0
and |p3|/μ0 = 3 × 10−3, respectively. It can be seen that
increasing the perpendicular momentum produces a merging
of the two branches into a single peak. This is a result of
a second, high-energy crossover for the gapless excitation
which again becomes overdamped, but now at big enough
p⊥. For energies near the electron-hole continuum threshold,
we can see in Fig. 2(b) that small fluctuations in p⊥ drive
the gapless excitation across the low-energy crossover from
the overdamped to the underdamped regime, so in a realistic
situation when the propagation is not perfectly aligned with
the b direction, the gapless branch behaves as a well-defined
attenuated excitation at low energies.

It is important to note that the behavior near the electron-
hole continuum would have not been captured in the local limit
ω/| p| � 1 of the polarization function. In particular, the low-
energy crossover into the overdamped regime of the massless
branch would have not been captured without considering the
full momentum dependence.

V. DISCUSSION AND CONCLUSIONS

We have studied light propagation in a neutral WSM where
the Fermi level lies at the Weyl nodes. In this situation there are
two degrees of freedom corresponding to two transverse gauge
fields, while the plasmon longitudinal mode that appears at the
finite chemical potential is absent. Besides the generation of a
plasmon mode, the presence of a plasma frequency would also
induce a gap to both transverse gauge fields, however, at the
neutrality point there is only one gapped mode, whose mass is
a consequence of the nontrivial topology.

Our first finding is that light is attenuated when propagating
through both Weyl and Dirac semimetals. In the case of WSMs,

nontrivial topology shows up as a screening effect in one of the
two transverse gauge fields, for which we find two branches
of attenuated collective excitations. In addition to the known
topologically gapped photon mode, a massless attenuated
excitation appears, which is our second and most important
finding. This splitting of a transverse field into two branches
was obtained before for QED in the presence of an external
magnetic field [24], where the cyclotron frequency defines the
mass threshold for the electron-hole continuum. In the case
of a WSM there is no mass threshold as nontrivial topology
is present in the absence of magnetic fields. Furthermore, for
the case of the solid-state-realized WSM, the Fermi velocity
of the electrons is much smaller than the speed of light, which
translates into a completely different collective behavior of the
two branches.

In particular, we find that in a realistic situation of light
collimated along the direction of b but with small deviations
in the perpendicular direction, the massless branch shows up
as a well-defined and damped peak in the spectral function. At
low energies its dispersion relation is given by ω 	 v| p|, which
defines an excitation traveling coherently with the electrons at
the Fermi velocity. At the other limit of the spectrum (ω �
v| p|) the gapless branch behaves as a massive damped photon
with velocity close to the speed of light. In the situation where
light propagation is not aligned with b and the momentum
in the transverse direction is large enough, a crossover exists
and the massless branch enters into an overdamped regime,
corresponding to a peak with divergent width in the spectral
function.

This optical excitation could provide a clean signature for
WSMs. It could be detected in experiments as an additional
resonance on the transmission coefficient of light. There are
also indirect proofs, such as electron energy-loss spectroscopy
(EELS) or subluminal Cherenkov radiation spectroscopy [45]
stemming from the small phase velocity of this excitation.
In addition, due to the matching of the propagation velocity
of this mode with the Fermi velocity of the electrons, a
counterintuitive enhancement of the effective dressed electron-
photon interaction is expected. This is qualitatively different
from the effect of the Coulomb interaction enhancement due
to the renormalization of the Fermi velocity that appears,
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for instance, in graphene [46]. It should be noted that,
although their effect is negligible on the bulk propagation
of light, the one-dimensional (1D) Fermi arc chiral states
at the edges of a WSM would give additional resonances
as surface electromagnetic modes. However, the polarization
tensor of 1D chiral electrons has already been computed in the
literature [47,48] and therefore the Fermi arc contribution can
be distinguished from bulk propagation.
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