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Reexamination of the effective fine structure constant of graphene as measured in graphite
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We present a refined and improved study of the influence of screening on the effective fine structure constant
of graphene, α∗, as measured in graphite using inelastic x-ray scattering. This followup to our previous study
[J. P. Reed et al., Science 330, 805 (2010)] was carried out with two times better energy resolution, five times
better momentum resolution, and an improved experimental setup with lower background. We compare our
results to random-phase approximation (RPA) calculations and evaluate the relative importance of interlayer
hopping, excitonic corrections, and screening from high energy excitations involving the σ bands. We find that
the static, limiting value of α∗ falls in the range 0.25–0.35, which is higher than our previous result of 0.14, but
still below the value expected from RPA. We show the reduced value is not a consequence of interlayer hopping
effects, which were ignored in our previous analysis, but of a combination of excitonic effects in the π → π∗

particle-hole continuum, and background screening from the σ -bonded electrons. We find that σ -band screening
is extremely strong at distances of less than a few nanometers, and should be highly effective at screening out
short-distance, Hubbard-like interactions in graphene as well as other carbon allotropes.
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I. INTRODUCTION

Since its synthesis a decade ago, graphene has been the
subject of intense research [1,2]. In the long-wavelength
limit, graphene satisfies the massless Dirac equation, where
its electrons follow a linear band dispersion given by E =
±�vf q, where the ± refers to the conduction/valence bands,
vf ∼ 108 cm/s ≈ c/300 is the Fermi velocity, and q is
the electron momentum [in two dimensions (2D)] [3,4].
As a result of this dispersion, the bare electron-electron
interaction strength—as defined by the fine structure constant,
α = U/K ≈ 2.2/ε, where ε is the dielectric constant of
the substrate on which the graphene is mounted (α ≈ 2.2
for suspended graphene)—is of order unity, in contrast to
the interaction strength in QED, where α = 1/137; thus,
many-body effects should, in principle, play a significant
role in graphene [5]. In particular, the screened value of α,
which one could call a renormalized or effective fine structure
constant, α∗, is a subject of great theoretical interest [5–9],
and is relevant to all Dirac systems including topological
insulator surface states [10,11], some classes of transition-
metal dichalcogenides [12], three-dimensional Dirac and Weyl
semimetals [13,14], etc.

Experiment and theory, however, give conflicting views
on the value of α∗. Using inelastic x-ray scattering (IXS)
experiments performed on graphite [16], we previously found
that, for freestanding graphene, α∗ ≈ 0.15 as q → 0 and
ω → 0, and cited excitonic shifts in the π → π∗, particle-
hole continuum as the origin of the reduced value of α∗.
Interpretation of this experiment was based on the assumption
that the interaction between graphene sheets in graphite
is primarily Coulombic, with interlayer hopping playing a
secondary role [16]. The experiment, however, had an energy
resolution of only 0.3 eV, when the features of primary interest
range from 1 to 15 eV. Additionally, the lowest momenta
measured were at 0.238 and 0.476 Å −1 so the extrapolation of

q → 0 relied on only a few points. Subsequent calculations in
the random-phase approximation [15] (RPA) using the full π

bands and including the interlayer hopping parameters γ3 and
γ1 in graphite [see Fig. 2(a)] suggested that this discrepancy
was due to graphitic effects, i.e., the presence of interlayer
hopping effects ignored in our analysis.

In this paper, we present a refined measurement of α∗
in graphene as measured in graphite, using an improved
version of the previous method [16], with higher energy and
momentum resolution, as well as reduced elastic background.
We evaluate the importance of interlayer hopping, excitonic
corrections, and the higher energy σ bands to the effective
fine structure constant. We compare to theoretical results

obtained within the RPA, and show that for q ∼ 0.212 Å
−1

(length scale ∼30 Å), α∗ falls in the range 0.25–0.35, which
is well below the RPA value for graphene. We show the
origin of this anomalously low value is not graphitic (i.e.,
interlayer hopping) effects, but a combination of screening
from the σ -bonded electrons, which contribute significantly at
finite momentum, and excitonic effects in the π bands, which
comprise a beyond-RPA correction to the screening. While
the effect of σ -band screening decreases with decreasing q,
we argue such effects remain relevant to length scales up to
∼30 Å.

II. EXPERIMENT

IXS measurements were carried out in Sector 9 at the
Advanced Photon Source. Energy analysis was done with a
diced, Si-444, spherical backscattering analyzer operating at
7.81 keV, which imaged scattered photons onto a MYTHEN
microstrip detector. The total energy resolution of the instru-
ment was 175 meV, which is a factor of 2 better than our
previous study [16].
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For these measurements, we constructed a new sample
chamber equipped with a moving, in-vacuum beam stop,
providing access to scattering angles as low as 1◦. The mo-
mentum resolution was set to 0.15–0.3 Å −1, depending upon
the scan region. The chamber was designed for windowless
operation with the synchrotron beam pipes, reducing scattering
from upstream vacuum windows. The final setup exhibited
greatly reduced background in the 1–5 eV range, particularly
from the quasielastic line, a key source of error as described
in Appendix A.

Experiments were done on both ZYA-grade, highly ordered
pyrolitic graphite and high quality, commercially obtained
graphite single crystals. The spectra of the two were found to
be indistinguishable in the momentum range in this study. The

experimental data were placed in absolute units of (eV Å
3
)−1

by normalizing using the F sum rule, as described in Ref. [16]
and Appendix A.

III. CONVERSION OF EXPERIMENTAL DATA

In order to obtain information about α∗, we need to deter-
mine the two-dimensional, density-density response function
of graphene, χ2D(q,ω), which is the most general description
of the collective charge dynamics of the system [16]. IXS
measurements cannot be carried out on single-layer graphene,
however, so a means of determining the properties of graphene
from measurements on graphite is required.

The measured intensity in an IXS experiment at a given
momentum and energy is proportional to the dynamic structure
factor, S(q,ω), which is related to the density-density response
function of three-dimensional graphite, χ3D(q,ω), by the
quantum-mechanical version of the fluctuation-dissipation
theorem,

S(q,ω) = − 1

π

1

1 − e−β�ω
Im χ3D(q,ω). (1)

We note that χ3D is causal and satisfies the Kramers-Kronig
relation

Re χ3D(q,ω) = 2

π
P

∫ ∞

0
dω′ ω

′ Im χ3D(q,ω′)
(ω′)2 − ω2

. (2)

So, by extrapolating to ω → ∞, interpolating the discrete
points in ω, and integrating, it is possible to determine the
full, complex χ3D(q,ω) for graphite in absolute units of

(eV Å
3
)−1, as shown in Fig. 1(a). Note that the onset of

π → π∗ particle-hole excitations is visible in the spectra
near ω = vf q, indicating that we are probing the relevant,
low-energy valence excitations. The peak at ω ≈ 8 eV is the
well-known π plasmon, which is not a free carrier plasmon
but an effect of the Van Hove singularity at the top of the π

band [16].
Learning about graphene requires finding a relationship

between its density response, χ2D(q,ω), and the measured,
three-dimensional response of graphite, χ3D(q,ω). This can
be accomplished by making three assumptions: (1) that the
primary interaction between layers in graphite is electrostatic,
with interlayer hopping playing a negligible role, (2) that
the layers are arbitrarily thin, and (3) that the electrons are
distributed homogeneously within each layer. In this case, the

two response functions are related by [16]

χ2D(q,ω) = χ3D(q,ω)d

1 − V2D(q)[1 − F (q)]χ3D(q,ω)d
. (3)

Here, V2D(q) = 2πe2/q is the two-dimensional Coulomb
interaction, and F (q) = sinh(qd)/[cosh(qd) − cos(qzd)] is a
structure factor that describes the Coulomb interaction in a lay-
ered, three-dimensional system, i.e., V3D(q) = V2D(q)F (q)d,
where d = 3.35 Å is the interlayer spacing [5,16,17].

Equation (3) makes use of the fact that, if the above
three assumptions are valid, the polarization function of
graphene, 
2D(q,ω), is (apart from units) identical to that
for graphite [16], i.e.,


2D(q,ω) = 
3D(q,ω)d. (4)

These quantities are related to the respective susceptibilities
by χ3D = 
3D/ε3D and χ2D = 
2D/ε2D, where ε3D = 1 −
V3D
3D and ε2D = 1 − V2D
2D are the dielectric functions.
The spectra for Im χ2D obtained in this manner are shown in
Fig. 1(b), and the associated polarization functions in Fig. 3.
Crucially, the χ2D(q,ω) obtained from Eq. (3) exhibits the
correct asymptotic properties expected for two-dimensional
graphene [see Fig. 4(a) and Sec. VI].

Written in terms of the other quantities, the screened,
effective fine structure constant of graphene α∗ is

α∗(q,ω) = α

ε2D
= α · [1 + V2D(q)χ2D(q,ω)]. (5)

This quantity can be thought of as the value of the fine
structure constant incorporating screening corrections to all
orders in perturbation theory. Note that, although Eq. (5)
appears similar to an RPA expression, we have at no point
assumed that only RPA polarization bubbles contribute to
the susceptibility; indeed, the χ we recover from experiment
includes all screening processes including excitonic effects
and other corrections beyond the RPA.

IV. RPA CALCULATIONS

To aid interpretation of the experimental data, we performed
a π -electron tight-binding calculation of the susceptibilities of
graphite and graphene in the RPA, following the approach
of Yuan et al. [15]. In this approach, one calculates the
polarization functions for single-layer graphene (SLG), 
2D,
and multilayer graphite (MLG), 
3D, using the Lindhard
formula, as described in Appendix B. The polarization func-
tions are then used to determine the dielectric functions and
susceptibilities via the relationships discussed in Sec. III.

The RPA approach neglects excitonic effects, which have
been argued to be crucial for interpreting the particle-hole ex-
citation spectrum of graphene [16,18]. However, RPA has the
advantage of allowing one to switch on and off the interlayer
hopping parameters, γ1 and γ3 defined in Fig. 2(a), allowing
one to evaluate the consequences of both interlayer hopping
and excitonic effects by comparing to the experimental IXS
data.

Like Yuan [15], our calculations are based on a tight-
binding theory that includes only the electrons in the π bands
(see Appendix B). The effects of the deeper σ bands are
incorporated phenomenologically as a frequency-independent,
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FIG. 1. The imaginary part of the experimental density response of graphite and graphene compared to results from RPA calculations.
(a) − Im χ3D(q,ω) from IXS measurements (blue points), RPA calculations including interlayer hopping (green line), and omitting interlayer
hopping (red line), plotted against energy for selected in-plane momenta, q. The RPA curves had to be multiplied by an arbitrary scale factor
to allow visual comparison to the experiment. The black, vertical lines indicate the energy, �vF q, at which the onset of the particle-hole
continuum is expected in RPA. (b) − Im χ2D(q,ω) determined from IXS measurements from Eq. (3) (blue points), and RPA calculations
including interlayer hopping (red line) and omitting interlayer hopping (orange line), plotted against energy for selected in-plane momenta, q.
The black line, again, indicates the onset energy of the continuum expected from RPA. Experimental error bars are derived from both Poisson
statistics and our fitting parameters (see Appendix A).

background dielectric constant [19,20],

κN (q) = κ0 + 1 − (κ0 − 1)e−qLN

κ0 + 1 + (κ0 − 1)e−qLN
κ0, (6)

where κ0 = 2.4 is the background dielectric constant of
graphite [21], LN = dm + (N − 1)d is the height of a mul-
tilayer graphite system with N layers, and dm = 2.8 Å is the
thickness of a single graphene sheet [15]. Equation (6) exhibits
the proper scaling with the number of layers at low momenta,
and was argued to correctly describe screening by excitations
involving the σ bands [15]. Note that for infinite MLG, this
expression reduces to κ∞(q) = κ0 for any nonzero momentum.

We differ from Yuan [15], however, in our use of κN (q). In
Ref. [15], κN (q) was used only to reduce the strength of the
Coulomb interaction, by using a screened W (q) = V (q)/κ(q).
As shown in Appendix C, this usage neglects interference
between screening by π and σ electrons. The correct use

of κN (q) is in the relationship between the polarization and
dielectric functions,

ε(q,ω) = κN (q) − V (q)
(q,ω), (7)

where N is chosen to match the dimensionality of the system.
Having determined the polarization functions for MLG,


3D(q,ω), and SLG, 
2D(q,ω), we calculated four different
susceptibilities for comparison to experiment. The first,

χRPA
3D (q,ω) = 
3D(q,ω)

κ∞(q) − V2D(q)F (q)d 
3D(q,ω)
, (8)

is the three-dimensional susceptibility for MLG in the RPA,
including the effects of both interlayer hopping and electro-
static coupling between the layers. The imaginary part of this
quantity could be compared directly to the experimental data
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FIG. 2. (a) Crystal structure of ABA-stacked graphite defining
the hopping parameters t , γ1, and γ3. (b) Brillouin zone of graphene
defining the in-plane azimuthal angle of the basal plane. The spectra
were found to be independent of this angle in the range of momenta
measured in this study.

to assess the importance of excitonic effects. The second,

χRPA
2D (q,ω) = 
2D(q,ω)

κ1(q) − V2D(q)
2D(q,ω)
(9)

is the two-dimensional susceptibility for SLG. This quantity
could be compared to the converted experimental data resulting
from the application of Eq. (3) to assess the combined
importance of excitonic and interlayer hopping effects. The
third quantity

χ̃RPA
2D (q,ω) = 
3D(q,ω)d

κ1(q) − V2D(q)
3D(q,ω)d
(10)

is a two-dimensional propagator describing, in RPA, how the
physics of graphene would be modified if γ1,3 	= 0, i.e., if
it were subjected to the same interlayer hopping effects as
graphite. Finally,

χ̃RPA
3D (q,ω) = 
2D(q,ω)/d

κ∞(q) − V2D(q)F (q)
2D(q,ω)
, (11)

is a three-dimensional propagator for graphite in which the
interlayer hopping is switched off, i.e., γ1,3 = 0, but the layers
are still coupled by electrostatic effects. By comparing these
quantities to one another, to the experimental data, and to the
converted data determined from Eq. (3), it should be possible
to disentangle the contribution of excitonic effects, interlayer
hopping, and σ -band screening on the effective fine structure
constant of graphene.

V. RESULTS

We are now in a position to evaluate the source of the
anomalous screening observed in our original study [16]. In
particular, we wish to know whether this screening is due to
the graphitic effects discussed recently [15], i.e., the interlayer
hopping parameters γ1 and γ3, background screening from the
σ bands, or excitonic effects as we claimed previously [16].

In Fig. 1(a) we compare the experimental data to the
imaginary part of χ3D computed from RPA both with and
without interlayer hopping [Eqs. (8) and (11), respectively].

The first thing to note is that RPA does a poor job at reproducing
the energy of the so-called “π plasmon” at ∼8 eV. Note
that this excitation is not a free carrier plasmon, but a result
of the Van Hove singularity at the top of the π band [16].
We attempted to improve the agreement by adjusting the
parameters t , γ1,3, and κ0, but any parameters that produced the
correct plasmon dispersion were dramatically different from
the commonly accepted values [5,22] of t = 3 eV, γ1 = 0.4 eV,
γ3 = 0.3 eV, and κ0 = 2.4. Changes to these parameters also
drastically distorted the qualitative shape of the π → π∗
continuum. The discrepancy is most likely due to excitonic
effects not captured by RPA [16,18]. We therefore show only
the spectra calculated using the commonly accepted values for
the hopping parameters and κ0. Note that, in agreement with
Ref. [15], the effect of a nonzero γ1,3 is not to qualitatively
change the spectra, but to smear some of the features near
threshold. Such effects are subtle and not easily distinguished
from broadening due to experimental resolution.

In addition, a significant discrepancy is observed between
the size of the experimental response and that computed with
RPA [Fig. 1(a)]. The latter is significantly larger in magnitude
and had to be multiplied by an arbitrary scale factor, ranging
from 0.15 to unity, to allow visual comparison with the
experiment. This magnitude discrepancy is fundamental, and
arises from the significant spectral weight in the σ bands in the
experimental data that is absent from the RPA result. Despite
residing at ∼25 eV, the σ bands are quite polarizable and
have significant influence on the value of χ at low energy,
because χ is a nonlinear function of 
 [22,23]. In other words,
our RPA approach treats the system as if all the screening is
accomplished by the π electrons, while in reality some of the
work is done instead by the σ -bonded electrons. RPA therefore
predicts that the response from the π electrons is anomalously
large, since the added σ screening channel is absent. The
influence of the σ bands increases with increasing q, reaching

a maximum at around 2 Å
−1

. Note that this problem is not
corrected by including a background κN (q), which does not
replace spectral weight that is missing from the F sum rule
[note that using κN (q) inside a screened W (q), as was done in
Ref. [15], does not improve the situation].

Still looking at Fig. 1(a) another key observation is that
the onset of the π → π∗ continuum in the experiment is
consistently lower in energy than in the RPA calculation.
These shifts are even better visible in the imaginary part of
the polarization function (Fig. 3), which is better reflective
of single-particle excitations than the susceptibility, which
emphasizes the collective modes [24]. For momenta q >

0.35 Å
−1

, these shifts are as much as 1 eV compared to RPA,
which is too large to be explained by graphitic effects, and must
be attributed to excitonic interaction between the valence hole
and photoexcited electron, as discussed previously [16,18]. At
lower momenta, the shifts are smaller and similar in magnitude
to what is expected from interlayer hopping effects, though
excitonic effects surely still play some role.

We turn now to the two-dimensional response,
Im χ2D(q,ω), shown in Fig. 1(b), which compares the exper-
imental data converted using Eq. (3) to the two-dimensional
RPA response calculated with and without interlayer hopping
[Eqs. (9) and (10)]. The discrepancy in the π plasmon energy
observed in Fig. 1(a), as well as the excitonic shifts in the
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FIG. 3. Imaginary part of the polarization function of graphite,
− Im 
3D(q,ω), from experiment (blue points), compared to the
results of RPA calculations both with (green line) and without (red
line) interlayer hopping, γ1,3. Within the assumptions described in
Sec. III, Im 
3D(q,ω) should be the same as Im 
2D(q,ω) apart
from an overall factor of the interlayer spacing, d . Note that the
magnitude discrepancy observed in Fig. 1 is not observed here,
because polarization functions from different excitations combine
additively [Eq. (7)].

π → π∗ continuum, are visible also in the two-dimensional
response. However, the magnitude discrepancy that is so
pronounced in three dimensions is much less significant in
two dimensions and fades as q decreases. At the lowest

momentum point, q = 0.212 Å
−1

, the magnitude discrepancy
is absent entirely. This means that in two dimensions, in
contrast to the three-dimensional case, the polarizability of
the high-energy σ bands ceases to be important in the limit of
low momentum. This confirms one’s intuition that screening
from high-energy excitations should be unimportant in two
dimensions as q → 0.

VI. DISCUSSION

We now turn to the fundamental question of how the effects
of interlayer hopping, excitonic shifts in the spectra, and

the polarizability of the σ bands influence the value of the
screened, effective fine structure constant, α∗(q,ω) = α0[1 +
V2D(q)χ2D(q,ω)]. The quantity α∗(q,ω) is a strong function
of both energy and momentum, and its value differs greatly
depending upon the relative size of the energy, ω, and the
momentum, qvF . For transport experiments in a micron-sized
device at low temperature, ω/vF q ∼ kBT L/2π�vF ∼ 10−3.
So the quantity of primary interest is the zero-frequency
quantity α∗(q,0) in the limit of small momentum. We note
that this quantity is purely real, and could be either larger or
smaller than the bare value, α0 = e2/ε0�vF .

In Fig. 4(a), we plot the momentum dependence of the
ratios χ2D(q,0)/qd and χ3D(q,0)/q for both the experimental
data as well as the RPA calculations both with (γ1,3 	= 0)
and without (γ1,3 = 0) interlayer hopping. Note that both of

these quantities are real and have units (eV Å
2
)−1, allowing

them to be compared on a single scatter plot. As expected,
the quantity χ3D(q,0)/q tends toward 0 as q → 0, since the
susceptibility in three dimensions is expected to scale like
q2 at small q. All three χ2D(q,0)/qd curves, on the other
hand, converge to a constant as q → 0, indicating that the
quantity χ2D(q,0) scales linearly in q at low momenta, which
is expected in two dimensions. This scaling is crucially
important for two reasons. First, it demonstrates that our
conversion expression, Eq. (3), gives the proper asymptotic
behavior of the susceptibility in two dimensions, which is a
powerful validation of our method. The second is that the
product V2D(q) · χ2D(q,0) converges to a constant at low q

for all momenta, indicating that graphene exhibits a finite
screening strength, ε(q,0) = [1 + V2D(q)χ2D(q,0)]−1, in the
long-wavelength limit.

An important conclusion about interlayer hopping can
immediately be reached from Fig. 4(a) by comparing the
RPA calculations of χ2D(q,0)/qd with and without interlayer
hopping. Notice that the curves are only distinguishable for

momenta less than about 0.2 Å
−1

, which is below the lowest
momentum measured in our experiment. What this implies is
that, while graphitic effects can in principle influence the value
of α∗ at low momenta, such effects are likely irrelevant in the
regime of our experiment, and that excitonic corrections are
in part responsible for deviations compared to RPA visible in

Figs. 1(a) and 1(b) at momenta q < 0.35 Å
−1

.
Figure 4(a) also reveals a major discrepancy between the

experiment and theoretical curves at large momenta. For

q > 0.6 Å
−1

, the RPA curves drop off gradually, while the
experimental points increase dramatically. This increase is a
consequence of screening from the σ bands, which exhibits

a broad maximum at q ∼ 2 Å
−1

, which is of the order of the
carbon-carbon bond length [16]. This discrepancy is, again, a
consequence of the absence of σ band electrons in the RPA
calculation. Hence, the quantity κ(q) taken from Ref. [15],
while argued to be a good description at small q, fails to
describe any of the major features of σ band screening at larger
momenta. Fortunately, the influence of these high-energy
excitations on χ2D fades at small momentum, suggesting that
we should still get useful information about the low-q value
of α∗ from our study.

Finally, in Fig. 4(b) we plot the magnitude of the static,
effective fine structure constant, α∗(q,0), as a function of
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FIG. 4. (a) Asymptotic screening and the effective fine structure constant of graphene. (a) Combined plot of the static ratios − Im χ3D(q,0)/q
and − Im χ2D(q,0)/qd from experiment and from RPA calculations both with (γ1,3 	= 0) and without (γ1,3 = 0) interlayer hopping. The results
from our previous study [16] are also plotted, for comparison. This plot shows that all quantities exhibit the proper asymptotic properties in the
regime of small q. (b) Momentum dependence of the magnitude of the static value of the fine structure constant of graphene. This plot suggests
a limiting value in the range 0.25–0.35.

momentum for the experiment [i.e., deduced from Eq. (3)],
and for RPA both with and without interlayer hopping. For
reference, the points from our previous study [16] are also
shown. The difference between the two experiments can be
attributed to better resolution, better statistics, and lower
experimental background in the current study. For momenta

q > 0.5 Å
−1

the value of α∗ is dominated by screening from
the σ bands. Unfortunately, the error bars on the lowest
momentum point, at which σ -band effects are negligible, are
extremely large due to extrapolation of the F sum rule (see
Appendix A). The remaining points are converging toward
a value in the range of 0.25–0.35. This quantity is larger
than given in our previous study, but still smaller than the
value expected from RPA, and implies an asymptotic dielectric
constant in the range 6.2–8.8. Because interlayer hopping
effects are irrelevant in this regime, we conclude that the
anomalously low value of α∗ is a combined consequence of σ

band screening and excitonic shifts in the π → π∗ continuum.

VII. CONCLUSIONS

We presented significantly improved measurements of the
momentum- and energy-dependent effective fine structure
constant of graphene, α∗(q,ω), using inelastic x-ray scattering
measurements of graphite. We deduce an asymptotic value of
α∗ in the range 0.25–0.35, which is larger than stated in our
previous study [16] but smaller than the RPA value of 0.49,
and implies an asymptotic value of ε in the range 6.6–8.8. We
also performed π -band RPA calculations with and without
interlayer hopping, and found that graphitic effects from
interlayer hopping have no significant effect on screening in the

range of momenta we studied. Screening by σ -band electrons,
on the other hand, contribute significantly at finite wave vector.
We therefore conclude that the anomalously low value of α∗
may be attributed to a combination of excitonic effects in
the π → π∗ continuum and σ -band effects. The latter are
very large at finite q, and should strongly screen short-ranged,
Hubbard-like interactions in graphene and carbon allotropes
more generally.

We close by commenting on the discrepancies between our
conclusions and the RPA calculation described in Ref. [15].
That study reported a calculated static dielectric constant at

q = 0.238 Å
−1

that was not far from our earlier result derived
from IXS experiments on graphite [16]. They attributed the
anomalously low value of α∗ to graphitic effects from the
interlayer hopping. Here we have shown that the interlayer
hopping parameters, γ1 and γ3, have no effect on the dielectric
response at the lowest momenta measured in our experiments.
The discrepancy between these two conclusions arises from the
way the Coulomb interaction was handled in the two studies,
which differ in two important ways. First, Ref. [15] ignores
the interaction between screening in the σ and π channels,
which must be accounted for as described in our Appendix C.
Second, in comparing to our result, they failed to eliminate
the Coulomb interaction between the layers, which we have
done through the use of Eq. (3). These differences result in
significantly larger values of ε(q,0) in Ref. [15], which they
atribute to interlayer hopping effects. What we have shown is
that, if the Coulomb effects are handled properly, the apparent
effects of interlayer hopping are in fact small, and the primary
causes of increased screening are excitonic effects and σ -band
screening.
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APPENDIX A: DATA PROCESSING

Three steps of data processing are required to extract
the response function, χ3D(q,ω), from the raw experimental
spectra. The first is subtraction of the quasielastic line, which
is very intense in the experiment. The second is scaling the
data using the F -sum rule, which provides the imaginary
part, Im χ3D(q,ω), in absolute units. The third is Kramers-
Kronig analysis, which is needed to determine the real part,
Re χ3D(q,ω).

To accomplish the first of the three, we used a
pseudo-Voigt function—a linear combination of a Gaus-
sian and a Lorentzian—to model the quasielastic line

shape:

y = b + A

×
{

ce−(x−x0)2/2σ 2 + (1 − c) l2

(x−x0)2+l2 , x < x0

ce−(x−x0)2/2(ση)2 + (1 − c) (lη)2

(x−x0)2+(lη)2 , x >= x0.

(A1)

Here, σ is the Gaussian width, l = √
2 ln 2σ is the Lorentzian

width, c is a relative amplitude of the Guassian and Lorentzian
components, x0 is the center of the line shape, and b and A are
overall background and amplitude factors, respectively. The
parameter η is an asymmetry factor that allows the positive-
and negative-energy sides of the line shape to be different,
which is a feature in the experiment due to energy-dependent
background scattering from the sample chamber. In particular,
the Lorentzian width l is defined this way to best approximate
a Voigt function, which is a convolution of a Gaussian and
Lorentzian. In our experiments, background measurements on
lithium fluoride, a large band gap material, showed b = 0 for
our setup, so this quantity was held fixed in our fits. Figures 5(a)
and 5(c) show subtractions for the two different momentum

transfers q = 0.212 Å
−1

and q = 0.282 Å
−1

, respectively.
To estimate the error introduced by subtracting the elastic

line, we repeated the procedure with different constraints and

FIG. 5. Illustration of data processing steps described in Appendix A. (a) Subtraction of the elastic scattering from the IXS spectra. Red

points: Raw IXS data for q = 0.212 Å
−1

. Blue line: Fit to the elastic peak using a pseudo-Voigt function. Black points: Resulting spectrum,
showing the onset of π → π∗ excitations at ∼1 eV. (b) Matching of this spectrum to wide-range data from our previous study [16], to aid in

evaluting the sum rule integral. (c) Same illustration as in (a) for momentum q = 0.282 Å
−1

. (d) Matching of the q = 0.282 Å
−1

spectrum to
data from Ref. [16], illustrating the mismatch present in a few of the spectra. This mismatch is incorporated into the determination of the error
bars on the quantity Im χ3D(q,ω).
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initial parameters and recorded the range of values achieved
in optimized fits.

To normalize our data, we applied the F -sum rule over the
entire momentum range. The results are shown in Fig. 1(a).
Energy-loss spectra from the current study were measured
only over the interval −4 < ω < 15 eV, so it was necessary to
supplement using data from Ref. [16] to achieve a sufficiently
wide range of energy to perform a Kramers-Kronig integration.
This was complicated by the fact that the q values in the current
study are not the same as those from Ref. [16]. To overcome
this mismatch, we linearly interpolated the data from Ref. [16]
to match our q values. To properly normalize and patch our
spectra to the previous spectra, we first note that in Ref. [16],
the proportionality between the measured spectra and S(q,ω)
[and, thus, χ (q,ω)] was determined by fitting the spectra to
the F -sum rule. In our new experiment, for each separate
experimental run, we took our spectra, with the exception

of the q = 0.212 Å
−1

, and fit to the spectra of Ref. [16],
finding a multiplicative factor for each momentum transfer.
We then used the average of these multiplicative factors
to scale the complete data set. This was done because the
multiplicative factor is determined predominantly by incident
beam features including intensity, angular divergence, and
longitudinal bandwidth, as well as sample thickness, which
are features that are constant or nearly constant within a single
experimental run, but may vary from one beam time to the

next. For q = 0.212 Å
−1

we took the average multiplicative

factor for the q = 0.352 Å
−1

and q = 0.563 Å
−1

spectra (the
other two momentum transfers from that run) and defined that
its multiplicative factor rather than directly fitting to the old
data; this is because the lowest momentum value from the old
data was q = 0.238 Å

−1
, and extrapolation to lower momenta

is not reliable. Figures 5(b) and 5(d) show our final, normalized

spectra for q = 0.212 Å
−1

and q = 0.282 Å
−1

, respectively, in
absolute units. After acquiring these spectra, Kramers-Kronig
analysis was straightforward using standard methods.

The main advantage of our data processing procedure is that
it fits the π -plasmon intensities well, which is ideal given that
π plasmon is the strongest contribution to the Kramers-Kronig
integral in the energy range we measure. Unfortunately, for a
few momentum values, our method introduced discontinuities
at the patch energy (≈15 eV), as illustrated in Fig. 5(d).
There being no objective way to correct for this, we simply
included the effect in our estimate of the error bars on the
value of χ (q,ω) [see Fig. 1(a)]. Indeed, the spectra in Fig. 1
represent the average values of χ after elastic line subtraction
and intensity normalization, and the error bars are a sum in
quadrature of the maximum positive or negative deviation from
the mean and a 5% estimate of the variance of the sum-rule
normalization.

APPENDIX B: RPA

As discussed in the main text, RPA calculations for graphite
and graphene are based on a tight-binding model of the π

electrons. The graphite calculations assumed ABA (Bernal)
stacking, illustrated in Fig. 2(a), including nearest-neighbor
interlayer hopping. The tight-binding Hamiltonian has the

explicit form

H = − t

Nlayer∑
l,〈i,j 〉

[a†
i,lbj,l + b

†
j,lai,l]

− γ1

⎡
⎣ ∑

leven,〈〈j,j ′〉〉
[a†

j,lbj ′,l+1 + b
†
j ′,l+1aj,l]

+
∑

lodd,〈〈j,j ′〉〉
[b†j,laj ′,l+1 + a

†
j ′,l+1bj,l]

⎤
⎦

− γ3

⎡
⎣ ∑

leven,〈〈〈j,j ′〉〉〉
[b†j,laj ′,l+1 + a

†
j ′,l+1bj,l]

+
∑

lodd,〈〈〈j,j ′〉〉〉
[a†

j,lbj ′,l+1 + b
†
j ′,l+1aj,l]

⎤
⎦, (B1)

where the sum is taken over nearest neighbors 〈i,j 〉 and
the layers, l, t = 3 eV is the in-plane hopping parameter,
γ1 = 0.4 eV is the vertical hopping between the A and B

sublattices (indicated by the double brackets), and γ3 = 0.3 eV
is the nearest A and B interlayer coupling (indicated by the
triple brackets) [see Fig. 2(a)]. Single-layer graphene can
be described by the first sum in Eq. (B1). For graphene, the
wave functions can be computed explicitly, and we can write
the overlap function as

fs·s ′ (k,q‖) =
∣∣∣∣ φ∗(k)

|φ(k)|
φ(k + q)

|φ(k + q)
+ s · s ′

∣∣∣∣
2

, (B2)

where

φ(k) = e−ikxa + 2e−ikxa/2 cos

(√
3

2
kya

)
, (B3)

and a = 1.42 Å is the in-plane carbon-carbon distance.
Once the tight-binding wave functions were obtained,

the polarization functions were obtained by numerically
evaluating the Lindhard formula,


(q‖,ω) = gs

(2π )d

∫
BZ

d2k
∑

s,s ′=±1

fs·s ′ (k,q‖)

× nF [Es(k)] − nF [Es ′
(k + q)]

Es(k) − Es ′ (k + q) + ω + iη
, (B4)

where the integral is over the Brillouin zone, d is the
dimensionality (either two or three for graphene or graphite,
respectively), gs is the spin degeneracy, Es/s ′

(k) is the energy
dispersion for the conduction (s = 1) and valence (s = −1) π

bands, η is a convergence factor, and fs·s ′ (k,q‖) describes
the overlap between the electron and hole wave functions
[Eq. (B2)]. We use the full π -band wave functions (as opposed
to linearized bands [15]) to compute the responses of both
graphene and graphite. All of our calculations use θ = 0◦
[Fig. 2(b)], since the experimental data was found to be
insensitive to this angle at the low momentum values studied.
We performed calculations for both 30◦ and 60◦ directions as
well, and the differences were found to be within numerical
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uncertainty. The results, shown in Fig. 3 for a convergence
factor of η = 0.01 eV, agree closely with those of Ref. [15].

For graphite, there are four symmetry-inequivalent sublat-
tices, A and B, leading to four basis functions rather than the
two of graphene. There is no simple analytic expression for
these wave functions, so to perform the integral in Eq. (B4) we
simply find the eigenfunctions of the graphite Hamiltonian,
and use those to compute the corresponding energies and
overlap functions fs·s ′ . It is then straightforward to numerically
integrate Eq. (B4) over the 3D Brillouin zone of graphite to
obtain 
3D(q,ω).

APPENDIX C: DIELECTRIC FUNCTION

It is important in our analysis to properly describe the
interaction between screening processes involving π electrons
and σ electrons. To do so, we treat the electrons from the
π bands and σ bands as two separate fermionic species. In
general, we can write the Hamiltonian for such a system as

H = H0 + HI + HU, (C1)

where

H0 =
∑

kσ=↑↓
Ekc

†
kσ ckσ +

∑
kσ=↑↓

εkg
†
kσ gkσ (C2)

describes the noninteracting Hamiltonian for the fermionic op-
erators of the π and σ electrons, g(g†) and c(c†), respectively,
with εk and Ek their corresponding energy spectra.

HI = 1

2

∑
q

V (q)ρ̂π (−q)ρ̂π (q) +
∑

q

V (q)ρ̂π (−q)ρ̂σ (q)

+ 1

2

∑
q

V (q)ρ̂σ (−q)ρ̂σ (q) (C3)

is the Coulomb interaction energy, with ρ̂π and ρ̂σ the
corresponding particle density operators of the π and σ

electrons, V (q) is the Coulomb interaction (see main text),
and

HU =
∑

q

U (q)[ρ̂σ (q) + ρ̂π (q)] (C4)

is an external potential that couples to the density.
At the RPA level, the equations of motion for the density

of π and σ electrons

i
d〈ρ̂π (q)〉

dt
= 〈[H,ρ̂π (q)]〉, (C5)

i
d〈ρ̂σ (q)〉

dt
= 〈[H,ρ̂σ (q)]〉 (C6)

can be calculated in linear response theory [25] and written in
matrix form as(〈ρ̂σ (q,ω)〉

〈ρ̂π (q,ω)〉
)

= U (q)

ε(q,ω)
M

(

σ (q,ω)

π (q,ω)

)
, (C7)

where

M =
(

1 − V (q)
π (q,ω) V (q)
σ (q,ω)
V (q)
π (q,ω) 1 − V (q)
σ (q,ω)

)
(C8)

and

ε(q,ω) = det M

= 1 − V (q)
π (q,ω) − V (q)
σ (q,ω)

is the dielectric function of the system, where 
π and 
s

are the RPA polarization functions of the π and σ electrons,
respectively. Equation (C7) is completely general and is valid
for any two-band system. The dielectric function can be
equivalently written as

ε(q,ω) = κσ (q) − V (q)
π (q,ω),

where we have defined

κσ (q) = 1 − V (q)
σ (q,ω) (C9)

as the background dielectric constant due to the σ electrons.
In this way we recover Eq. (7) for the total dielectric function
of graphene and graphite.

Equation (C7) simplifies in two equations:

〈ρ̂σ (q,iω)〉 = U (q)

σ (q,ω)

ε(q,ω)
(C10)

and

〈ρ̂π (q,iω)〉 = U (q)

π (q,ω)

ε(q,ω)
. (C11)

The first equation defines the susceptibility of the σ electrons
in the presence of screening effects from both bands,

χσ (q,ω) = 
σ (q,ω)

ε(q,iω)
. (C12)

The second one gives the susceptibility of the π electrons in
the presence of the σ bands:

χπ (q,ω) = 
π (q,ω)

ε(q,ω)
. (C13)

The full susceptibility is defined by the response function
including both σ and π electron density fluctuations,

〈ρ̂π (q,iω)〉 + 〈ρ̂σ (q,iω)〉 = U (q)χ (q,ω), (C14)

where

χ (q,ω) = χπ (q,ω) + χσ (q,ω) = 
π (q,ω) + 
σ (q,ω)

ε(q,ω)
.

(C15)
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