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Bridging coupled wires and lattice Hamiltonian for two-component bosonic quantum Hall states
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We investigate a model of hard-core bosons with correlated hopping on the honeycomb lattice in an external
magnetic field by means of a coupled-wire approach. It has been numerically shown that this model exhibits at half
filling the bosonic integer quantum Hall (BIQH) state, which is a symmetry-protected topological phase protected
by the U (1) particle conservation [Y.-C. He et al., Phys. Rev. Lett. 115, 116803 (2015)]. By combining the
bosonization approach and a coupled-wire construction, we analytically confirm this finding and show that it even
holds in the strongly anisotropic (quasi-one-dimensional) limit. We discuss the stability of the BIQH phase against
tunnelings that break the separate particle conservations on different sublattices down to a global particle conser-
vation. We further argue that a phase transition between two different BIQH phases is in a deconfined quantum
critical point described by two copies of the (2 + 1)-dimensional O(4) nonlinear sigma model with the topological
θ term at θ = π . Finally, we predict a possible fractional quantum Hall state, the Halperin (221) state, at 1/6 filling.
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I. INTRODUCTION

In the past couple of decades, our understanding of
gapped quantum phases of condensed matter has significantly
advanced, especially with respect to topological phases
that cannot be satisfactorily characterized by spontaneous
symmetry breaking. These include two different classes
of phases [1]: (i) topologically ordered phases, e.g.,
fractional quantum Hall phases, and (ii) symmetry-protected
topological (SPT) phases, e.g., the Haldane phase in spin
chains and topological band insulators. The former class
is characterized by long-range-quantum-entangled ground
states that can support “anyonic” excitations with nontrivial
braiding statistics (in two spatial dimensions) and associated
topological degeneracy depending on the topology of the
systems. Such phases remain well-defined as phases distinct
from the trivial ones even in the absence of any symmetry.
SPT phases, on the other hand, have short-range-quantum-
entangled ground states that remain well-defined only in the
presence of certain symmetries. For example, the Haldane
phase is protected by the dihedral group of π rotations
about two orthogonal spin axes, time-reversal symmetry, or
bond-centered inversion symmetry [2]. While the SPT phases
do not host any nontrivial bulk excitations, they typically
possess nontrivial surface physics. A variety of mathematical
frameworks have been proposed to characterize and classify
both the topologically ordered and SPT phases [1–12]. While
free-fermion systems have by now been completely classified,
the understanding of SPT phases in interacting fermionic and
bosonic systems is an ongoing central topic of research.

A particularly interesting question in this regard is about
how to stabilize exotic topological phases in systems of inter-
acting bosons. Note that unlike fermions, which can host
topological phases even in noninteracting systems [13–15],
noninteracting bosons usually condense and hence the inter-
action is essential to realize topological phases of bosons.
This raises important questions regarding the nature of
interactions in microscopic lattice models that can lead to
such bosonic topological phases. However, the progress in
controllably understanding these phases starting from lattice
models is often hindered by the overarching problem of

limitations in the present analytical approaches to deal with
strongly interacting many-body systems, although the physics
of strongly interacting bosonic models can in principle be
very rich. Under these circumstances, numerical approaches
are of great help in understanding the fate of such systems.
On the analytical side, a successful approach has been to
construct nontrivial exactly solvable models, which then
serve as “parent Hamiltonians” to understand such correlated
phases [3,16–27]. An alternative way is the so-called projective
construction [28–37]. In this approach, the physical particles
(microscopic degrees of freedom) of a model are broken up
into a product of “partons,” which are bosons or fermions. Then
the ground state is obtained by projecting a mean-field ground
state of those partons back onto the original Hilbert space.

A complimentary approach, which can give a more con-
trolled way to access the physics of microscopic models than
parton methods and is more general than parent Hamiltonian
methods, is the coupled-wire construction [4,38–52]. The
general idea of this approach is as follows: We start from
an array of wires (i.e., one-dimensional systems), each of
which can be described by using powerful techniques such as
bosonization to yield an effective low-energy description. The
hoppings and interactions between wires are then incorporated
to couple the low-energy modes of neighboring wires, yielding
a description for the two-dimensional (2D) system. This
prescription has been successfully implemented for integer
and fractional quantum Hall states for which it was originally
proposed [38–40]. In that context, at the single-wire level one
obtains Luttinger liquids in a magnetic field with left- and
right-moving gapless modes. Interwire couplings mix these
modes from different wires and open a gap successively from
wire to wire, leading to a bulk gap and unpaired gapless
modes—chiral edge states of the quantum Hall state—at the
end wires. The above idea has recently been generalized to de-
scribe several other 2D topological phases [4,41–49], includ-
ing the Kalmeyer-Laughlin chiral spin liquid on lattice spin
systems [49,53], as well as several three-dimensional topolog-
ical phases [50–52]. An obvious limitation of this approach is
that quantitative prediction is restricted to highly anisotropic
systems, that is weakly coupled wires. Nevertheless,
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this approach enables us to strictly keep track of the effects
of interactions with the help of renormalization group and to
study qualitative properties of the ground state beyond the
perturbative regime unless some phase transition occurs by
increasing the couplings between the wires. For example, the
stability of a topologically ordered phase that supports the
non-Abelian Fibonacci anyon, which is originally proposed
by the coupled-wire construction in the quasi-one-dimensional
limit [41], is justified even in isotropic 2D lattice systems by
numerical simulations [54].

In this paper, utilizing bosonization techniques and the
coupled-wire construction, we study two-component bosonic
quantum Hall states realized on a lattice model. We focus on a
model of hard-core bosons interacting via correlated hoppings
under background gauge fields on the honeycomb lattice,
which was recently proposed in Ref. [55] and shown to exhibit
a bosonic integer quantum Hall (BIQH) state. The BIQH state
is a bosonic SPT phase protected by a U (1) symmetry related
to the conservation of the total boson number [4,56–58].
Although this state has been found in two-component Bose
gases [59–61], its lattice realizations have only been proposed
and numerically studied quite recently [55,62]. Here, we
show that a spatially anisotropic limit of the model proposed
in Ref. [55] also exhibits the BIQH phase at half filling,
which is possibly adiabatically connected to the one found
by numerics [55]. Our calculations provide useful insights to
the connection between the physics of the correlated hoppings
in the model and the mutual flux attachment picture for the
bosons as suggested in Ref. [58] for realizing the BIQH state;
due to this flux attachment, the condensation of the resulting
composite bosons turns out to be not a superfluid but the BIQH
phase with the Hall conductance σxy = ±2. We then discuss
the effect of tunnelings that break the U (1) × U (1) symmetry
of charge conservation on two sublattices down to a simple
U (1) symmetry related to total charge conservation. We also
find indications that a possible continuous phase transition
between different BIQH phases is described by two copies of
the (2 + 1)-dimensional O(4) nonlinear sigma model with the
θ term at θ = π . Further we extend our calculations to the case
of 1/6 filling for which we propose that the system stabilizes a
bosonic fractional quantum Hall state—the so-called Halperin
(221) state [63].

The outline of this paper is as follows. In Sec. II, we
introduce the model and its anisotropic deformation. We
employ the standard bosonization procedure in Sec. III and
derive the low-energy effective theory of the model. In Sec. IV,
utilizing the idea of coupled-wire construction, we find that the
ground state corresponds to the BIQH phase for half filling
and the Halperin (221) state for 1/6 filling. The effect of
intersublattice tunnelings and a possible effective description
of the transition between the BIQH phases are also discussed.
In Sec. V we conclude with a short summary and discussion.
Two appendices are devoted to various technical details.

II. MODEL

We start by describing the system of hard-core bosons
on the honeycomb lattice (or a bilayer triangular lattice) in
the presence of a background magnetic flux, which has been

FIG. 1. The model defined on the honeycomb lattice. The A and
B sublattices are denoted by the filled and open circles, respectively.
The red (blue) solid lines represent the correlated hoppings in the
sublattice A (B). On the A sublattice, the upper triangles are pierced
by the flux α while the lower ones by π − α. On the B sublattice,
the lower triangles are pierced by the flux β while the upper ones by
π − β.

introduced in Ref. [55]. The Hamiltonian is given by

H =
∑

〈i,j ; k〉
(i,j ∈ A,k ∈ B)

[
eiAij a

†
i aj

(
2nb

k − 1
) + H.c.

]

+
∑

〈k,l; i〉
(k,l ∈ B,i ∈ A)

[
eiBkl b

†
kbl

(
2na

i − 1
) + H.c.

]
, (1)

where ai is the bosonic annihilation operator on site i in
the sublattice A, bi is that in the sublattice B, na

i = a
†
i ai ,

and nb
i = b

†
i bi . These bosonic operators satisfy the hard-core

constraint (ai)2 = (bi)2 = 0. The correlated hoppings involve
three sites denoted by 〈i,j ; k〉, as shown in Fig. 1, where i and
j are next-nearest-neighboring sites belonging to the same
sublattice while k represents the site between i and j that
belongs to the other sublattice. The fluxesA andB are assigned
as follows: ∑

i,j∈�(i,j∈A)

Aij = α,

∑
i,j∈�(i,j∈A)

Aij = π − α,

∑
k,l∈�(k,l∈B)

Bkl = π − β,

∑
k,l∈�(k,l∈B)

Bkl = β, (2)

where all the pairs of site indices run in the clockwise around
each triangle as shown in Fig. 1. Also Aij = −Aji and Bkl =
−Blk . Thus, each hexagon is pierced by a uniform flux π

and each triangle on the sublattice is further threaded by a
staggered flux: α for the up triangles while π − α for the
down ones that are associated with the A sublattice, and β

for the down triangles while π − β for the up ones associated
with the B sublattice. The hopping between sites i and j on
the A sublattice changes its sign, depending on whether the
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intermediate site k on the B sublattice is occupied or not, and
similarly for the hopping on the B sublattice. This extra sign
can be interpreted as an additional mutual flux seen by one
species of bosons due to the other species. This resembles a
mutual flux attachment proposed by Senthil and Levin [58]
to realize a BIQH phase; one species of boson binds one flux
quantum of the other species by a mutual Chern-Simons term.
As we will see below through the coupled-wire construction,
our model indeed favors those “mutual composite bosons”
as fundamental degrees of freedom rather than the standard
bosons. These naturally raise the BIQH and Halperin (221)
states as candidates of ground state for given fillings.

Apart from the various lattice symmetries, in the above
model, the two flavors of bosons associated with the two
sublattices are independently conserved; i.e., there is a
U (1)a × U (1)b symmetry where a and b are the two boson
flavors introduced earlier. Alternatively, we may state that the
above symmetry can be cast as separate conservation of the
total number of bosons (both a and b) and the difference
between the two sublattices. The conservation of the total
boson charge (we use number and charge interchangeably)
is represented by U (1)c, while the conservation of their
difference, which we denote as pseudospin, by U (1)s . In terms
of charge and pseudospin, the symmetry of the model is thus
U (1)c × U (1)s .

This model [Eq. (1)] was introduced in Ref. [55] and studied
numerically by three of the present authors. The hopping
between nearest-neighboring sites, which is omitted from
Eq. (1), destroys the conservation of the pseudospin U (1)s
symmetry such that the remaining symmetry is only U (1)c
(apart from the lattice symmetries). The numerical results
confirmed that the BIQH phase is robust to such perturbations,
as the SPT phase can be protected by the U (1)c symmetry
alone. We will introduce these terms and discuss their effect
in Sec. IV B.

A. Mapping to the array of chains

In order to treat the Hamiltonian in Eq. (1) within the
coupled-wire approach, we need to write it as a quasi-one-
dimensional system. To this end, it is convenient to rewrite the
Hamiltonian in the following form,

H = H0 + H1, (3)

H0 = t

N∑
j=1

L∑
�=1

[
eiA(j,�)

(j,�+1)a
†
j,�aj,�+1

(
2nb

j,� − 1
)

+ eiB(j,�)
(j,�+1)b

†
j,�bj,�+1

(
2na

j,�+1 − 1
) + H.c.

]
, (4)

H1 = t ′
N∑

j=1

L∑
�=1

[
eiA(j,�)

(j+1,�−1)a
†
j,�aj+1,�−1

(
2nb

j,�−1 − 1
)

+ eiA(j,�)
(j+1,�)a

†
j,�aj+1,�

(
2nb

j,� − 1
)

+ eiB(j,�)
(j+1,�−1)b

†
j,�bj+1,�−1

(
2na

j+1,� − 1
)

+ eiB(j,�)
(j+1,�)b

†
j,�bj+1,�

(
2na

j+1,� − 1
) + H.c.

]
, (5)

FIG. 2. Redefinition of the site index for the honeycomb lattice
to be viewed as coupled chains. The red (blue) dashed line represents
the path of the string operator for ãj,� (b̃j,�).

where the “chain” index j and “site” index � are assigned as
in Fig. 2. This mapping to the array of chains and the “Jordan-
Wigner-like” transformation defined below are somewhat
similar to those introduced to solve the Kitaev-honeycomb
model [18,64]. Here we put the model on a cylinder with the
length N and the circumference L, such that the respective
sites in each chain � = 1 and � = L + 1 are identified. Here,
we have explicitly introduced the hopping amplitudes t and
t ′. At t = t ′ = 1, the model is spatially isotropic and we
recover Eq. (1). Throughout this paper, we assume that t ′ is
perturbatively smaller than the chain hopping t .

B. Jordan-Wigner-like transformation

Although the chain Hamiltonian Eq. (4) is not in the
quadratic form, it can be transformed into a simple hopping
Hamiltonian by the following Jordan-Wigner-like transfor-
mation. To implement the transformation, we introduce new
operators ãj,� and b̃j,� on the A and B sublattice, respectively,
such that

ãj,� = Kb
j,�aj,�,

b̃j,� = Ka
j,�bj,�, (6)

where Ks
j,�, s = a,b are the string operators defined by

Ka
j,� = exp

⎛
⎝iπ

∑
j ′<j

L∑
�′=1

na
j ′,�′ + iπ

∑
�′��

na
j,�′

⎞
⎠,

Kb
j,� = exp

⎛
⎝iπ

∑
j ′>j

L∑
�′=1

nb
j ′,�′ + iπ

∑
�′��

nb
j,�′

⎞
⎠. (7)

The paths of the string operators are depicted in Fig. 2. As
shown in the figure, the string attached to the operator aj,�

comes from the upper end of the cylinder, sweeps sites on
the sublattice B with winding the cylinder, and ends up at the
site (j,�). On the other hand, the string attached to bj,� comes
from the lower end and sweeps all the sites on the sublattice A

before reaching the site (j,�). Thus, the two strings wind the
cylinder in opposite directions with respect to each other when
we look down from either end of the cylinder. At this stage
we introduce a more symmetric form of the string operators
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[Eq. (7)] for later convenience (see also Ref. [65]), as

Ka
j,� = cos

⎛
⎝π

∑
j ′<j

L∑
�′=1

na
j ′,�′ + π

∑
�′��

na
j,�′

⎞
⎠,

Kb
j,� = cos

⎛
⎝π

∑
j ′>j

L∑
�′=1

nb
j ′,�′ + π

∑
�′��

nb
j,�′

⎞
⎠. (8)

It is easy to check that the two formulas Eqs. (7) and (8) are
equivalent, since ns

j,� only takes integer values 0 or 1.
The new operators ã and b̃ still obey the bosonic statistics

by the above choice of the strings. If the sting operator Ka
j,�

involves na
j ′,�′ , it produces a minus sign when Ka

j,� goes over
the operator aj ′,�′ . Similarly, the string operator Kb

j,� produces a
minus sign when it involves nb

j ′,�′ and goes over bj ′,�′ . However,
when ãj,� goes over b̃j ′,�′ , this process always produces a minus
sign zero or two times; thus, they obey the bosonic statistics.
At this point it is interesting to note that different choices of
the string operators give the particle operators obeying mutual
or genuine fermionic statistics; the latter is achieved by the
standard 2D Jordan-Winer transformation [66]. However, we
also note that no matter how we choose the Jordon-Wigner
string, we end up with the same conclusion as long as
one carefully keeps track of the particle statistics in the
bosonization procedure.

Using the transformation Eq. (6), the chain Hamiltonian is
simply written as

H0 = −t

N∑
j=1

L∑
�=1

[eiA‖ ã
†
j,�ãj,�+1 + eiB‖ b̃

†
j,�b̃j,�+1 + H.c.],

(9)

where we have parametrized the gauge fields to be homoge-
neous along the chain:

A(j,�)
(j,�+1) ≡ A‖, B(j,�)

(j,�+1) ≡ B‖. (10)

This choice allows us to take a simple continuum limit along
the chains as we perform below. In Eq. (9), the density
operators in the correlated hoppings are canceled with the
string operators due to the relation,

2ns
j,� − 1 = −eiπns

j,� . (11)

Expressing the original bosonic operators in terms of ã and
b̃, the interchain coupling Hamiltonian H1 [in Eq. (3)] can be
written as

H1 = − t ′
N∑

j=1

L∑
�=1

[
eiA(j,�)

(j+1,�−1) ã
†
j,�ãj+1,�−1K̃

b
j,�−1K̃

b
j+1,�−1

+ eiA(j,�)
(j+1,�) ã

†
j,�ãj+1,�K̃

b
j,�+1K̃

b
j+1,�

+ eiB(j,�)
(j+1,�−1) b̃

†
j,�b̃j+1,�−1K̃

a
j,�K̃

a
j+1,�

+ eiB(j,�)
(j+1,�) b̃

†
j,�b̃j+1,�K̃

a
j,�K̃

a
j+1,�−1 + H.c.

]
, (12)

where

aj,� = K̃b
j,�ãj,�,

bj,� = K̃a
j,�b̃j,�, (13)

and

K̃a
j,� = cos

⎛
⎝π

∑
j ′<j

L∑
�′=1

ña
j ′,�′ + π

∑
�′��

ña
j,�′

⎞
⎠,

K̃b
j,� = cos

⎛
⎝π

∑
j ′>j

L∑
�′=1

ñb
j ′,�′ + π

∑
�′��

ñb
j,�′

⎞
⎠. (14)

In the above expression, we have used ñs
j,� = ns

j,� and the
density operators have been absorbed into the string operators
by using Eq. (11). A price to pay of the Jordan-Wigner-like
transformation is that we need to treat the nonlocal interchain
interactions involving the strings. However, those interactions
can be converted to local interactions after the bosonization
procedure, as we will see in the next section.

We note that one can proceed to the bosonization analysis
without incorporating the density operators into the strings.
This will lead to a slightly different continuum expression for
the interaction Hamiltonian. However, the resulting physics is
not changed whichever we choose, as shown in Appendix A.
In the following, we consider the interaction Hamiltonian of
the form Eq. (12).

III. BOSONIZATION

Following the standard bosonization techniques [65,67], we
here derive the effective low-energy theory for the Hamiltonian
given by Eq. (3). We take the continuum limit with respect
to the site index �, while the chain index j is kept discrete.
Thus, we introduce a continuous variable x = �a0 with a0

being the lattice spacing on the sublattices. Since the chain
Hamiltonian Eq. (9) is nothing but the hopping Hamiltonian
of hard-core bosons, or equivalently the spin-1/2 XX chain,
it can be described by an array of two-component Luttinger
liquids,

H0 ∼
N∑

j=1

∑
s=a,b

v

2π

∫
dx

[(
∂xϕ

s
j

)2 + (
∂xθ

s
j

)2]
, (15)

where v = 2ta0 sin(πρ̄a0) and ρ̄ is the mean density of
the boson. Here and hereafter, we assume that there is no
modulation of boson density among chains, leading to the same
mean density ρ̄ on both the A and B sublattices. The bosonic
fields θs

j (x) and ϕs
j (x) obey the commutation relations,[

θs
j (x),ϕs ′

j ′ (x ′)
] = iπδss ′δjj ′�(x − x ′), (16)

where �(x) is a step function such that �(x) = 1 for x >

0 while �(x) = 0 for x < 0. The particle operators are
bosonized as

ãj,� ∼ e−iϕa
j (x)−iA‖x/a0

{
c1 + c2 cos

[
2πρ̄x + 2θa

j (x)
]}

,

b̃j,� ∼ e−iϕb
j (x)−iB‖x/a0

{
c1 + c2 cos

[
2πρ̄x + 2θb

j (x)
]}

, (17)

where c1,2 are nonuniversal constants. The density operators
are bosonized as

ñs
j,� ∼ ρ̄a0 + a0

π
∂xθ

s
j (x) + 1

π
cos

[
2πρ̄x + 2θs

j (x)
]
. (18)

We note that in Eqs. (17) and (18), we only kept the most
relevant terms. In general, they contain less relevant terms,
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which are the vertex operators of 2qθs
j (x) with integers q > 1,

but those operators do not enter the following analysis.
We then consider the bosonized expressions of the string

operators Eq. (14). For the arguments of the cosine terms of
the string operators, by replacing the sum over � by the integral
over x, we may have

∑
j ′<j

L∑
�′=1

ña
j ′,�′ +

∑
�′��

ña
j,�′ ∼

∑
j ′<j

∫ La0

0
dy

(
ρ̄ + 1

π
∂yθ

a
j ′

)

+
∫ x

0
dy

(
ρ̄ + 1

π
∂yθ

a
j

)
, (19)

for K̃a
j,�, and

∑
j ′>j

L∑
�′=1

ñb
j ′,�′ +

∑
�′��

ñb
j,�′ ∼

∑
j ′>j

∫ La0

0
dy

(
ρ̄ + 1

π
∂yθ

b
j ′

)

+
∫ La0

x

dy

(
ρ̄ + 1

π
∂yθ

b
j

)
, (20)

for K̃b
j,�. In the above expressions, terms proportional to ρ̄

yield an extra overall phase factor of ρ̄L. Such factors can be
safely neglected by taking L such that ρ̄La0 = 2n (where n is
an integer). Thus, we can write

K̃a
j,� ∼ cos

⎛
⎝πρ̄x + θa

j (x) + π
∑
j ′<j

Na
j ′

⎞
⎠,

K̃b
j,� ∼ cos

⎛
⎝πρ̄x + θb

j (x) + π
∑
j ′�j

Nb
j ′

⎞
⎠, (21)

where the coordinate-free operator Ns
j is defined as [40]

Ns
j = 1

π

∫ La0

0
dx ∂xθ

s
j (x), (22)

which is nothing but the spatially uniform twist in θs
j (x), that is

the zero-mode part of the mode expansion of θs
j (x). Ns

j obeys

the commutation relation[
Ns

j ,ϕ
s ′
j ′ (x)

] = iδss ′δjj ′ . (23)

Hence, its eigenvalues are integers. Thus, this operator pro-
duces a minus sign whenever K̃a

j,� goes over ãj ′,� with j ′ < j ,
since

eiπNa
j e−iϕa

j = e−iϕa
j eiπNa

j eπ[Na
j ,ϕa

j ]

= −e−iϕa
j eiπNa

j . (24)

A similar anticommuting property also holds between K̃b
j,�

and b̃j ′,� for j ′ � j . In combination with the commutation
relation Eq. (16), this relation ensures that the original bosonic
operators a and b commute with each other.

To be precise, for the bosonization formulas of the string
operators Eq. (21), one should take a sum over any vertex
operators einθs

j with odd n, as the lattice string operators Eq. (7)
do not change under the replacement of iπ by inπ with odd
n. However, as we will see in Sec. IV, interactions involving
the vertex operators with large n are generally irrelevant in
low energy and at a commensurate filling not too far from half
filling. In the following analysis, such higher harmonics do not
have any crucial role. Therefore, we only keep einθs

j with the
smallest odd integers n = ±1 as in Eq. (21).

In the following analysis, we assign the phases of the
correlated hoppings as

A‖ = π − α,

B‖ = β, (25)

for the hoppings inside the chains [for the definitions of A‖
and B‖, see Eq. (10)], and

A(j,�)
(j+1,�−1) = A(j,�)

(j+1,�) = π�,

B(j,�)
(j+1,�−1) = B(j,�)

(j+1,�) = π�, (26)

for the hoppings between neighboring chains. This assignment
of the phases is shown in Fig. 3.

FIG. 3. A choice of the phases for the correlated hopping terms, which gives Eqs. (25) and (26). The red (blue) arrows or lines indicate the
phases of the correlated hoppings on the A (B) sublattice.
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The continuum limit is then obtained by

a0A(j,�)
(j+1,�−1) = a0A(j,�)

(j+1,�) → πx,

a0B(j,�)
(j+1,�−1) = a0B(j,�)

(j+1,�) → πx. (27)

IV. QUANTUM HALL PHASES

We are now ready to analyze Hamiltonian Eq. (3) expressed
in terms of the bosonic fields. The details can be found
in Appendix A. On extracting the vertex operators that
govern the low-energy physics, we find that, as expected, the
background gauge fluxes play an important role. Because of
the uniform flux π for each hexagonal plaquette (as shown in
Fig. 1), the exponential factor eiπx/a0 appears in the interaction
Hamiltonian Eq. (12); terms involving this factor rapidly
oscillate in x and will vanish after the spatial integration.
In order to have nonvanishing terms in Eq. (12), this factor
must be canceled by another exponential factor ei2nπρ̄x with
n ∈ Z. Thus we require certain commensurate conditions on
the mean density ρ̄ under which quantum Hall states can arise.
Furthermore, the staggered flux α or β for each triangle, with
the help of the frustrated structure of the triangular plaquettes
in our model, selects the chirality of those quantum Hall states.

We now state the central results of this work. In the
following, we consider the two cases with the filling factors
ρ̄a0 = 1/2 and 1/6. At ρ̄a0 = 1/2, we obtain the BIQH phase
with the electric Hall conductance |σxy | = 2 as numerically
found in Ref. [55]. We also consider the effect of a pertur-
bation that reduces the U (1)c × U (1)s symmetry to the U (1)c
symmetry. Then we argue that the transition between the BIQH
phases is described by two copies of the O(4) nonlinear sigma
model with θ = π when the Hamiltonian has time-reversal
symmetry. At ρ̄a0 = 1/6, we expect a fractional quantum Hall
state called the Halperin (221) state with |σxy | = 2/3.

A. ρ̄a0 = 1/2: Bosonic integer quantum Hall state

At the filling ρ̄a0 = 1/2, the nonvanishing terms in the
interaction Hamiltonian are given by

H1 ∼ − t ′c2
1

2a0

N∑
j=1

∫
dx[(e−iα + eiπ/2)ei(ϕa

j +θb
j +πNb

j −ϕa
j+1+θb

j+1)

+ (e−iα + e−iπ/2)ei(ϕa
j −θb

j +πNb
j −ϕa

j+1−θb
j+1)

+ (eiβ + e−iπ/2)ei(ϕb
j +θa

j +πNa
j −ϕb

j+1+θa
j+1)

+ (eiβ + eiπ/2)ei(ϕb
j −θa

j +πNa
j −ϕb

j+1−θa
j+1) + H.c.]. (28)

Here we have dropped vertex operators involving einθs
j with

n � 2 since they will be irrelevant as we will discuss below.
For usual lattice bosons only with hopping terms, the vertex
operator takes the form ei(ϕs

j −ϕs
j+1) and leads to the Bose

condensation with 〈eiϕs
j 〉 �= 0. In our case, as a result of

the correlated hopping, those terms do not appear in the
theory. Instead, we have the vertex operators of ϕs

j ± θs ′
j

with s �= s ′, which appear to be the bound states of the
boson in one sublattice and the vortex in the other sublattice.
These particle-vortex-bound states, which naturally emerge in
our model, may play the role corresponding to the mutual
composite bosons [58].

In a similar manner to Ref. [4], we now introduce new
bosonic fields by

φ1
j (x) = ϕa

j (x) + θb
j (x) + πNb

j ′�j ,

φ2
j (x) = ϕb

j (x) + θa
j (x) + πNa

j ′<j ,

φ̃1
j (x) = ϕa

j (x) − θb
j (x) + πNb

j ′�j ,

φ̃2
j (x) = ϕb

j (x) − θa
j (x) + πNa

j ′<j , (29)

where we have used the shorthand notations Ns
j ′�j ≡∑

j ′�j Ns
j ′ and Ns

j ′<j ≡ ∑
j ′<j Ns

j ′ . These fields satisfy the
commutation relations,[

∂xφ
μ

j (x),φν
j ′(x ′)

] = 2iπδjj ′Kμνδ(x − x ′),[
∂xφ̃

μ

j (x),φ̃ν
j ′(x ′)

] = −2iπδjj ′Kμνδ(x − x ′),[
∂xφ

μ

j (x),φ̃ν
j ′(x ′)

] = 0,

(30)

where the matrix K is given by

K =
(

0 1
1 0

)
. (31)

This K matrix is nothing but the one appearing in the Chern-
Simons theory of the BIQH state [4]. The zero-mode operators
πNs

j are necessary to be added in Eq. (29) so that any pair of
the vertex operators commute with each other. This is not the
case when we start from the array of ordinary bosonic chains
as in Ref. [4]. Since any vertex operator contains einθs

j with
even n in that case, the vertex operators obey commutation
relations. In our case, because of the string operators, the vertex
operators can be built from einθs

j with odd n and therefore obey
anticommutation relations. This is compensated by the zero-
mode operators πNs

j , just like the Klein factors in fermionic
systems.

In terms of the new bosonic fields, the chain Hamiltonian
Eq. (15) becomes

H0 ∼
N∑

j=1

∑
μ=1,2

v

4π

∫
dx

[(
∂xφ

μ

j

)2 + (
∂xφ̃

μ

j

)2]
. (32)

Equation (28) can be rewritten as

H1 ∼ − t ′c2
1

2a0

N∑
j=1

∫
dx

{
g(α) cos

[
φ1

j − φ̃1
j+1 + γ (α)

]
+ g(−α) cos

[
φ̃1

j − φ1
j+1 − γ (−α)

]
+ g(β) cos

[
φ2

j − φ̃2
j+1 − γ (β)

]
+ g(−β) cos

[
φ̃2

j − φ2
j+1 + γ (−β)

]}
, (33)

where g and γ are functions of the staggered fields given by

g(α) = √
2 − 2 sin α, (34a)

γ (α) = tan−1

[
1 − sin α

cos α

]
. (34b)

As we can see from that the field φ1
j − φ̃1

j+1 does not
commute with φ̃2

j−1 − φ2
j and φ̃2

j+1 − φ2
j+2, the two sets of

the fields {φ1
j − φ̃1

j+1} and {φ̃2
j − φ2

j+1} cannot be localized
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simultaneously in minima of the cosine potentials. Similarly,
{φ2

j − φ̃2
j+1} and {φ̃1

j − φ1
j+1} cannot be localized simultane-

ously. On the other hand, any pair of fields commute with each
other within each of the two sets {φμ

j − φ̃
μ

j+1} and {φ̃μ

j − φ
μ

j+1},
so that any pair of fields from each of the two sets can
be localized simultaneously and produce a gap in the bulk
excitation spectrum.

Since all the vertex operators have the same scaling
dimension 1 at the Gaussian fixed point Eq. (32), which
corresponds to free fermions, only the relative strength of
the coupling constants determines which term reaches the
strong-coupling limit faster under the renormalization group
transformation. The coupling constants obey∣∣∣∣ g(α)

g(−α)

∣∣∣∣ > 1 for 0 < α < π. (35)

To be more specific, let us consider the case for α = β. If
0 < α < π , g(α) goes the strong-coupling limit and all the
fields in the bulk, {φμ

j − φ̃
μ

j+1}, acquire a gap. However, the
unpaired edge modes φ̃

μ

1 and φ
μ

N remain gapless at the leftmost
and rightmost chains. Similarly, for −π < α < 0, g(−α) goes
the strong-coupling limit, and the edge modes φ

μ

1 and φ̃
μ

N

remain gapless. The two BIQH phases are then characterized
by the edge modes {φ̃μ

1 ,φ
μ

N } and {φμ

1 ,φ̃
μ

N }; we denote them as
the BIQH+ and BIQH− phases, respectively.

In order to demonstrate that the two BIQH phases have
opposite Hall conductances, let us consider how the bosonic
fields transform under the U (1) symmetries. As discussed
earlier, Hamiltonian Eq. (1) is invariant under the U (1)c ×
U (1)s symmetry, that is the symmetry under

aj,� → e−i(�ωc+�ωs )aj,�,

bj,� → e−i(�ωc−�ωs )bj,�, (36)

for arbitrary angles �ωc,�ωs ∈ [0,2π ). In the language of the
bosonic fields, these transformations can be expressed as

ϕa
j (x) → ϕa

j (x) + �ωc + �ωs,

θa
j (x) → θa

j (x),

ϕb
j (x) → ϕb

j (x) + �ωc − �ωs,

θb
j (x) → θb

j (x). (37)

Thus, we have

φ1
j (x) → φ1

j (x) + �ωc + �ωs,

φ2
j (x) → φ2

j (x) + �ωc − �ωs,

φ̃1
j (x) → φ̃1

j (x) + �ωc + �ωs,

φ̃2
j (x) → φ̃2

j (x) + �ωc − �ωs. (38)

For φ
μ

j , the basis diagonalizing the K matrix in Eq. (30) is
introduced by φ1

j + φ2
j and φ1

j − φ2
j . From the above transfor-

mations, the former is the electric mode that carries only the
charge +2, while the latter is the pseudospin mode that carries
only the pseudospin +2. Since their corresponding eigenvalues
of K have different signs, those electric and pseudospin modes
are counterpropagating at the edges j = 1 and N . Accordingly,
the electric and pseudospin Hall conductances are quantized to
σxy = 2 and σ s

xy = −2, respectively, resulting in a vanishing

FIG. 4. Phase diagram of the Hamiltonian Eq. (3) for general
values of α and β, obtained by the renormalization group analysis.
Two BIQH phases denoted by BIQH+ and BIQH− (see text) are
separated by phase transitions corresponding to black solid lines.

thermal Hall conductance [4]. A similar discussion applies
to φ̃

μ

j except for that the associated K matrix has an overall
minus sign. Hence, the edge currents of φ̃

μ

j flow in the opposite
direction to those of φ

μ

j ; the conductances become σxy = −2
and σ s

xy = 2. Therefore, the BIQH+ and BIQH− phases have
different signs in the Hall conductances. We note that a similar
quantization is also expected for a ratio of current imbalance
to chemical potential bias in a quantum point contact, which
might be relevant for cold-atom systems [68].

At α = −β, the vertex operators with {φμ

j − φ̃
μ

j+1} and
{φ̃ν

j − φν
j+1} for μ �= ν have the same magnitude in the

coupling constants. However, those fields are not commuting
and thus cannot be simultaneously localized. We expect that
this point describes the phase transition between the BIQH+

and BIQH− phases.
For general values of α and β, we obtain the phase diagram

by using the renormalization group analysis (see Appendix B),
as shown in Fig. 4. The phase transition is determined by the
fixed points at which all the coupling constants flow to the
same value; this occurs at the initial coupling g(α) = g(−β).
Of course, the above phase diagram is valid only for the
quasi-one-dimensional limit so that it is not clear whether
this is applicable for the truly 2D model. Nevertheless, this
phase diagram perfectly coincides with the one numerically
obtained by infinite density-matrix renormalization group for
the original Hamiltonian Eq. (1). The nature of this transition
is discussed in Sec. IV C.

We note that in Eq. (33) we can in general add other vertex
operators involving einθs

j with n � 2. These can potentially
drive the system into (fractional) quantum Hall phases de-
scribed by the K matrix,

K(p,q) =
(

2p 2q + 1
2q + 1 2p

)
, (39)

where p and q are integers. However, the corresponding vertex
operator has the scaling dimension

x(p,q) = 4p2 + (2q + 1)2 + 1

2
. (40)
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Therefore, the BIQH phase is most promising at the
Gaussian fixed point since the corresponding vertex operators
(p = q = 0) are strictly relevant. In fact, other vertex
operators that drive the system to conventional ordered phases
are at most marginal. Thus, the BIQH phase is robust against
any other competing order. This can be contrasted to the
situation in Ref. [49], where the operators leading to the chiral
spin liquid are marginal.

B. Effect of tunneling between two sublattices

In the Hamiltonian given by Eq. (1), both the species of
bosons are separately conserved. This gives rise to the U (1)a ×
U (1)b symmetry. However, upon introducing nearest-neighbor
hoppings, which allow interspecies tunneling, only the global
U (1) charge corresponding to the conservation of the total
Boson number survives. The BIQH phase described above is
stable to such interspecies tunnelings (see Ref. [55]), as we
shall show now. To this end, we consider the following form
of the tunnelings defined on the honeycomb lattice [55],

Hλ = λ

N∑
j=1

L∑
�=1

[
eiC(j,�)

(j,�) a
†
j,�bj,� + e−iC(j,�+1)

(j,�) b
†
j,�aj,�+1

+ e−iC(j+1,�)
(j,�) b

†
j,�aj+1,� + H.c.

]
. (41)

These tunnelings are schematically shown in Fig. 5.
In the continuum limit, these tunnelings give rise to

oscillating factors depending on the background fluxes. These
oscillating factors must be canceled by certain commensura-
bility conditions with the fluxes C of the tunnelings. In general,
this gives rise to the following intrachain coupling terms:

H
‖
λ ∼ λc2

1

2a0

N∑
j=1

∫
dx

× [
h

‖
1 cos

(
φ1

j − φ2
j + ξ

‖
1

) + h
‖
2 cos

(
φ̃1

j − φ̃2
j + ξ

‖
2

)
+h

‖
3 cos

(
φ1

j − φ̃2
j + ξ

‖
3

) + h
‖
4 cos

(
φ̃1

j − φ2
j + ξ

‖
4

)]
.

(42)

FIG. 5. Tunnelings between the two sublattices are represented
by green arrows on the links of the honeycomb lattice. We also show
the background fluxes assigned in Ref. [55], where the fluxes α/3
or β/3 thread obtuse triangles whose two vertices are in the A or B

sublattice.

Here, h
‖
n and ξ

‖
n are some functions of α, β, and C. At ρa0 =

1/2 and under the background fluxes assigned in Ref. [55]
(see Fig. 5), the first two terms appear when (α + β)/3 = 0
mod 2π is satisfied, while the latter two terms appear when
(α + β)/3 = π mod 2π is satisfied. If λ is sufficiently smaller
than the interchain coupling t ′, those interactions may be
neglected in the bulk. However, at the edges j = 1 and j = N ,
the first two terms couple with the pseudospin modes φ1

j − φ2
j

and φ̃1
j − φ̃2

j . Although at first sight they appear to open gaps
for the pseudospin modes at the edges, those tunnelings cannot
localize the pseudospin modes since they do not satisfy the
Haldane’s null-vector criterion [69]; indeed, each of them
does not commute with itself since they are chiral. Thus,
the pseudospin edge modes still remain gapless even after
introducing the tunneling between the two sublattices.

From the point of view of the symmetry, this can be easily
understood as follows: Without the tunneling Eq. (41), the
system maintains the U (1)a × U (1)b symmetry, or equiv-
alently the U (1)c × U (1)s symmetry defined in Eq. (36).
From Eq. (38), this symmetry forbids any perturbation of
the form cos(nφ

μ

j ) or cos(nφ̃
μ

j ) with integer n, which gaps
out the edge modes. Thus, we have quantized electric and
pseudospin Hall conductances in the absence of the tunneling
Eq. (41). However, once the tunneling is turned on, the
U (1)c × U (1)s symmetry reduces to the U (1)c symmetry
associated with the global particle conservation. Therefore, the
perturbations of the form cos[n(φ1

j − φ2
j )] and cos[n(φ̃1

j − φ̃2
j )]

are allowed. However, those interactions must carry nonzero
conformal spins and cannot satisfy the Haldane’s null-vector
criterion [69,70]. Thus, the counterpropagating gapless edge
modes cannot be gapped as far as we keep the global particle
conservation. This can also be understood that the U (1)c
symmetry “chirally” acts on the edge theory [57]; the U (1)c
symmetry acts on the left- and right-moving modes in different
ways and therefore forbids the backscattering gapping out the
edge modes.

Aside from the intrachain couplings, there are also inter-
chain couplings given by

H⊥
λ ∼ λc2

1

2a0

N∑
j=1

∫
dx

[
h⊥

1 cos
(
φ2

j − φ̃1
j+1 + ξ⊥

1

)
+ h⊥

2 cos
(
φ̃2

j − φ1
j+1 + ξ⊥

2

)]
+ λ′

a0

N∑
j=1

∫
dx

[
h⊥

3 cos
(
φ1

j − φ̃2
j+1 + ξ⊥

3

)
+ h⊥

4 cos
(
φ̃1

j − φ2
j+1 + ξ⊥

4

)]
, (43)

where h⊥
n and ξ⊥

n are some functions of α, β, and C. Although
the λ′ terms are not included in the bare Hamiltonian, they can
be generated by higher-order perturbations. Since all the fields
appearing in the cosine potentials do not commute with any of
those in Eq. (33), the tunneling does not modify the qualitative
nature of the BIQH phases as long as λ is sufficiently smaller
than t ′. Although the tunnelings do not alter the physics deeply
inside the BIQH phase, their effect may be crucial in the
vicinity of the transition between the BIQH phases as we
discuss below.
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C. Transition between BIQH phases

We here discuss the nature of the phase transition between
the two BIQH phases with the Hall conductances σxy = ±2.
Indeed, if a direct continuous transition is possible, it falls
beyond traditional Landau-Ginzburg-Wilson paradigm since
none of the two phases break any symmetry spontaneously and
therefore are not described in terms of local order parameter
fields. We discuss that this transition can be described by two
copies of the O(4) nonlinear sigma model (NLSM) with the
topological θ term and thus is possibly in a deconfined quantum
criticality [71,72].

We below proceed in the following steps: We first show
that the chain Hamiltonian Eq. (32) is equivalent to the SU (2)1

Wess-Zumino-Witten (WZW) models and then the interaction
Eq. (33) can be expressed in terms of SU (2)-matrix fields.
It reveals that the Hamiltonian possesses an SO(4) × SO(4)
symmetry for special values of α and β. Following the argu-
ment by Senthil and Fisher [73], we show that the Hamiltonian
is equivalent to two copies of the (2 + 1)-dimensional O(4)
NLSM with θ = π , which are presumably equivalent to two
copies of the two-flavor massless QED3.

Let us introduce chiral bosonic fields corresponding to
charge and pseudospin as

φ1
j (x) = φR

c,j (x) − φL
s,j (x),

φ2
j (x) = φR

c,j (x) + φL
s,j (x),

φ̃1
j (x) = −φR

s,j (x) + φL
c,j (x),

φ̃2
j (x) = φR

s,j (x) + φL
c,j (x). (44)

These fields satisfy the commutation relations,[
∂xφ

R
ρ,j (x),φR

ρ ′,j ′ (x ′)
] = iπδρρ ′δjj ′δ(x − x ′),[

∂xφ
L
ρ,j (x),φL

ρ ′,j ′ (x ′)
] = −iπδρρ ′δjj ′δ(x − x ′), (45)

with ρ = c,s. At the boundary j = 1 or N , those fields
represent nothing but the counterpropagating gapless edge
modes discussed before.

Each chain Hamiltonian is composed of the two hard-core
bosonic chains. As it can be mapped onto the tight-binding
Hamiltonian of spinful electrons, it possesses a charge SU (2)
symmetry as well as a pseudospin SU (2) symmetry at half
filling. Thus, the chain Hamiltonian Eq. (32) is described by
2N copies of the SU (2)1 WZW theory [74,75],

H0 ∼ v

6π

N∑
j=1

∑
ρ=c,s

∫
dx

[
:JR

ρ,j · JR
ρ,j : + :JL

ρ,j · JL
ρ,j :

]
, (46)

where JR/L

ρ,j are the SU (2)1 currents related to the bosonic
fields as (

JR/L

ρ,j

)z = a0∂xφ
R/L

ρ,j ,
(
JR/L

ρ,j

)± = e±i2φ
R/L

ρ,j , (47)

and :X: means the normal-ordered product of X. Then we
introduce the SU (2)-matrix fields [76],

(gj )σσ ′ = eiπ/4

√
2

(
zL
s,j

)
σ

(
zR†
c,j

)
σ ′ ,

(g̃j )σσ ′ = eiπ/4

√
2

(
zL†
c,j

)
σ

(
zR
s,j

)
σ ′ , (48)

through the spinor fields,

zR/L

ρ,j =
(

eiφ
R/L

ρ,j

e−iφ
R/L

ρ,j

)
. (49)

Those spinor fields correspond to two primary fields of the
SU (2)1 WZW theory in each chiral sector. Specifically, these
matrix fields are given by

gj = 1√
2

(
e−iφ1

j ieiφ2
j

ie−iφ2
j eiφ1

j

)
,

g̃j = 1√
2

(
e−iφ̃1

j ieiφ̃2
j

ie−iφ̃2
j eiφ̃1

j

)
. (50)

From Eq. (46), it is now transparent that in each of
charge and pseudospin sectors, the chain Hamiltonian has
an SU (2)R × SU (2)L symmetry. To be more precise, the
SU (2)c,R × SU (2)s,L symmetry is endowed by the fields φ

μ

j ,
while the SU (2)s,R × SU (2)c,L symmetry is endowed by the
fields φ̃

μ

j . These give two different realizations of the SO(4) ∼
SU (2)R × SU (2)L symmetry in each chain. We below mention
how these SU (2) symmetries act on the SU (2)-matrix fields.
For the charge sector, the SU (2)c,R symmetry acts on the
field gj as a left multiplication of U ∈ SU (2), gj → gj U,
while the SU (2)c,L symmetry acts on g̃j as g̃j → g̃j V with
V ∈ SU (2). For the pseudospin sector, the SU (2)s,R and
SU (2)s,L symmetries, respectively, act on g̃j and gj as the right
multiplications of elements of SU (2). This can be easily seen
from the fact that the charge U (1) symmetry given by Eq. (37)
acts as gj → gj e

−i�ωcσ
z

and g̃j → g̃j e
−i�ωcσ

z

, where σx,y,z

is the Pauli matrices. The pseudospin U (1) symmetry acts as
gj → e−i�ωsσ

z

gj and g̃j → e−i�ωsσ
z

g̃j .
We can now rewrite the interaction Hamiltonian Eq. (33)

in terms of the matrix fields. For example, the first and third
terms of Eq. (33) are expressed as

g(α) cos
[
φ1

j − φ̃1
j+1 + γ (α)

]
= g(α) cos γ (α)

4
Tr(g†j g̃j+1 + g†j σ

zg̃j+1σ
z)

+ ig(α) sin γ (α)

4
Tr(g†j g̃j+1σ

z + g†j σ
zg̃j+1) + H.c.,

(51a)

g(β) cos
[
φ2

j − φ̃2
j+1 − γ (β)

]
= g(β) cos γ (β)

4
Tr(g†j g̃j+1 − g†j σ

zg̃j+1σ
z)

− ig(β) sin γ (β)

4
Tr(g†j g̃j+1σ

z − g†j σ
zg̃j+1) + H.c.

(51b)

Thus, we may write

H1 ∼ HSO(4) + HU (1)×U (1), (52)

where the first term is the SO(4) symmetric part,

HSO(4) = −
N∑

j=1

∫
dx Tr(t1g†j g̃j+1 + t2g̃†j gj+1) + H.c., (53)
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and the second term represents anisotropies that reduce the
SO(4) symmetry to the U (1) × U (1) symmetry, which is the
genuine microscopic symmetry in the absence of inter-species
tunneling. As seen from Eq. (51), for general values of α and β,
there exist the U (1) × U (1) anisotropies. However, at the time-
reversal-symmetric points where α and β take 0 or π , the effec-
tive low-energy theory has the SO(4) symmetry. In those cases,
Eq. (33) is invariant under the time-reversal symmetry φ

μ

j ↔
−φ̃

μ

j since g(α) = g(−α) and γ (α) = γ (−α) (the same rela-
tions hold for β). We further have g(α) = g(β) at those points,
because of lattice symmetries that interchange the two sublat-
tices. Then we can eliminate the phase shifts γ by the redefini-
tion of the fields, e.g., φ1

j → φ1
j − γ (α) and φ2

j → φ2
j + γ (β).

Thus, when the time-reversal symmetry exists, the phase
transition between the BIQH+ and BIQH− phases may be
governed by the SO(4) symmetric Hamiltonian H0 + HSO(4)

with t1 = t2. This Hamiltonian is similar to the network model
studied for the phase transition between the BIQH and trivial
Mott-insulating phases in Refs. [5,77]. The latter network
model has an SO(4) symmetry and is depicted in Fig. 6(a).
However, our model takes a bilayer structure as shown in
Fig. 6(b) and has an SO(4) × SO(4) symmetry. With n being
integer, one SO(4) symmetry acts only on g2n and g̃2n+1, while
the other acts only on g2n+1 and g̃2n. As discussed in Ref. [73]
(see also Ref. [5]), after taking the continuum limit in the
direction perpendicular to the chains, each layer of the network
model gives the (2 + 1)-dimensional O(4) NLSM with the
topological θ terms at θ = π . The action corresponding to our
model is given by

S = 1

g0

∫
d3x[Tr(∂μG†

1∂μG1) + Tr(∂μG†
2∂μG2)]

+ iπSθ [G1] − iπSθ [G2], (54)

(a)

(b)

FIG. 6. Network models describing the phase transitions between
two BIQH phases. Red (blue) circles correspond to charge (pseu-
dospin) modes, and cross (dotted) symbols represent right-moving
(left-moving) modes. Four modes enclosed by the dashed line
represent the degrees of freedom in a physical bosonic chain. t1 and
t2 are two different tunnelings between the two counter-propagating
modes. (a) The model studied in Refs. [5,77]: One may find the
trivial phase when t1 � t2 while the BIQH+ phase when t1 � t2.
(b) Our model: One may find the BIQH− phase when t1 � t2 while
the BIQH+ phase when t1 � t2. In both cases, the phase transitions
between the two phases are expected at t1 = t2.

where G1,2 are the SU (2)-matrix field defined on the three-
dimensional sphere S3 and the θ term is given by

Sθ [G] = i

24π

∫
d3x εμνρTr(G†∂μGG†∂νGG†∂ρG). (55)

Different signs in the θ terms for G1,2 originate from the
fact that one layer of the network model has the opposite
current structure to another layer [see Fig. 6(b)]. Since the
(2+1)-dimensional O(4) NLSM at θ = π has been suggested
to be equivalent to the two-flavor massless QED3 [73,78], we
have two copies of the two-flavor massless QED3 at the time-
reversal-symmetric transition point between the two BIQH
phases; two flavors of the Dirac fermion transform to another
two under the time-reversal symmetry. Possible transitions
described by QED3 between BIQH phases have also been
argued by the parton construction of the BIQH phase [35,37].

The BIQH phases can be obtained from the above NLSM
as follows. Away from the critical point t1 = t2, a staggered
structure of the tunneling may modify the coefficients of the θ

terms as [79]

iπ (1 − δ)Sθ [G1] − iπ (1 + δ)Sθ [G2], (56)

where we have set t1 = t(1 + δ) and t2 = t(1 − δ). For t1 � t2,
the low-energy physics may be governed by the O(4) NLSM
with θ = 2π for G1 and that with θ = 0 for G2. For a large
value of g0, the O(4) NLSM is disordered in the bulk but
has the critical (1+1)-dimensional SU (2)1 WZW theories at
the boundaries when θ = 2π [58,80]. For t1 � t2, the physics
may be governed by the O(4) NLSM with θ = 0 for G1 and
that with θ = −2π for G2. The O(4) NLSM with θ = −2π

also gives the boundary WZW theories but with the charge
and pseudospin currents flowing in the opposite directions to
those at θ = 2π .

However, the BIQH phases break the time-reversal symme-
try so that there always exist U (1) × U (1) anisotropies. Thus,
the SO(4) symmetry must be reduced to the U (1) × U (1)
symmetry. This is also the case for the phase transition
between the BIQH phases when the time-reversal symmetry is
broken. The resulting effective theory at the transition may be
described by two copies of the easy-plane noncompact CP 1

model [73]. The tunneling between the two sublattices further
reduces the symmetry to a U (1) × Z2 symmetry. The fate of
the transition may become (i) the first-order transition or (ii)
some intermediate phase.

D. ρ̄a0 = 1/6: Halperin (221) state

At the commensurate density ρ̄a0 = 1/6, the vertex op-
erators in Eq. (33) vanish due to rapidly oscillating factors.
Instead, the vertex operators corresponding to p = 1 and
q = 0 in Eq. (39) are allowed. Then we have the interaction
Hamiltonian,

H1 ∼ − t ′c2
2

8a0

N∑
j=1

∫
dx

{
f (α) cos

[
χ1

j − χ̃1
j+1 + η(α)

]
+ f (−α) cos

[
χ̃1

j − χ1
j+1 − η(−α)

]
+ f (β) cos

[
χ2

j − χ̃2
j+1 − η(β)

]
+ f (−β) cos

[
χ̃2

j − χ2
j+1 + η(−β)

]}
, (57)
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where we have defined the new bosonic fields,

χ1
j (x) = ϕa

j (x) + 2θa
j (x) + θb

j (x) + πNb
j ′�j ,

χ2
j (x) = ϕb

j (x) + 2θb
j (x) + θa

j (x) + πNa
j ′<j ,

χ̃1
j (x) = ϕa

j (x) − 2θa
j (x) − θb

j (x) + πNb
j ′�j ,

χ̃2
j (x) = ϕb

j (x) − 2θb
j (x) − θa

j (x) + πNa
j ′<j , (58)

and the functions f and η are given by

f (α) =
√

2 + 2 cos(α − π/6), (59a)

η(α) = tan−1

[
cos(α + π/3) + √

3/2

sin(α + π/3) + 1/2

]
+π [�(−α − π/2) + �(−α − 5π/6)]. (59b)

The new fields satisfy the commutation relations,[
∂xχ

μ

j (x),χν
j ′ (x ′)

] = 2iπδjj ′Kμνδ(x − x ′),[
∂xχ̃

μ

j (x),χ̃ ν
j ′ (x ′)

] = −2iπδjj ′Kμνδ(x − x ′),[
∂xχ

μ

j (x),χ̃ ν
j ′ (x ′)

] = 0,

(60)

with the K matrix,

K =
(

2 1
1 2

)
. (61)

The K matrix Eq. (61) indicates that the resulting gapped
phase is in the Halperin (221) state [63], which is a frac-
tional quantum Hall state with the fractional electric Hall
conductance σxy = ±2/3 and the integer pseudospin Hall
conductance σ s

xy = ±2. As opposed to the BIQH phase
at ρ̄a0 = 1/2, this phase supports chiral edge states, that
is, the electric and pseudospin currents flow in the same
direction. Moreover, the ground state on a torus is threefold
degenerate because of the anyonic statistics of the quasiparticle
excitations. Thus, we have the possibility of a topologically
ordered phase in the same model but just at the different filling
ρ̄a0 = 1/6.

As in the same manner of Sec. IV A, the relative strength
of the coupling constants f (α) and f (−α) determines the
chirality of currents. However, the corresponding vertex
operators now have the scaling dimension 3 and are thus
irrelevant at the Gaussian fixed point. This suggests that for
a perturbatively small t ′, the ground state is in a sliding-
Luttinger-liquid phase with forward scatterings generated by
higher-order perturbations [81] or some conventional ordered
phase. Nevertheless, it is natural to expect that the Halperin
(221) state is realized for a certain strong value of t ′ beyond
the perturbative regime unless some competing ordered phase
is found. This phase is also expected to be realized at the filling
ρ̄a0 = 5/6.

Since our model favors the mutual composite boson, which
is the bound state of a boson in one sublattice and a vortex in
the other sublattice, the Halperin (221) state is also a natural
candidate; it is obtained by further attaching two flux quanta
of itself to the mutual composite boson. Both the BIQH and
Halperin (221) states are in fact found in the two-component
Bose gas with two-body interactions [59,60,82]. We note that
both of them have also been proposed to be realized in a spin-1
lattice Hamiltonian [36]. In that case, which state actually

realizes depends on the Chern numbers of a free-fermion
Hamiltonian before the projection onto the spin-1 Hilbert
space. In our lattice model, both states can be potentially
realized solely by tuning the filling factor of the bosons in
the same Hamiltonian.

V. CONCLUSION

We studied hard-core bosons interacting via correlated
hoppings in an anisotropic deformation of the honeycomb
lattice. A variant of the Jordan-Wigner transformation is
introduced to resolve the correlated hopping in each chain,
while it leaves nonlocal interactions between chains. Apply-
ing bosonization techniques and using the the coupled-wire
construction, we found that the BIQH phase is realized at
half filling. Interestingly, in terms of the bosonic fields, the
nonlocal interaction between chains can be seen as a hopping
of the mutual composite bosons, which are bound states of the
boson in one sublattice and the vortex in the other sublattice;
by condensing them, one can obtain the BIQH phase [58].
Thus, it appears that the correlated hopping is a natural way to
implement a mutual flux attachment in lattice systems. We also
discussed the stability of the BIQH phase against the tunneling
between the two sublattices. Based on the effective O(4)
NLSM description, we argued that the transition between the
two BIQH phases is in a deconfined quantum criticality when
time-reversal symmetry is maintained. We further provided the
possibility to stabilize the Halperin (221) state at 1/6 and 5/6
fillings.

Compared to previous numerical results [55], this work
strongly suggests that the spatially anisotropic (quasi-one-
dimensional) limit and the isotropic honeycomb lattice are
smoothly connected for the BIQH state in the present model.
Furthermore, the BIQH phases are found even when the bosons
on the different sublattices feel different staggered fluxes.
On the other hand, a sliding Luttinger liquid will take the
place of the Halperin (221) state in the anisotropic limit
since the corresponding interactions are irrelevant. However,
as far as competing ordinarily ordered states are suppressed
by frustration, the Halperin (221) state is considered to be the
most promising candidate of possible phases on the isotropic
model. We leave the question about the actual realization of
this state in the isotropic model for future work.

In the present analysis, we obtained the effective description
of the transition between the two BIQH phases in a somewhat
intricate way; we first mapped our model to the O(4) NLSM
and then used the putative equivalence between the O(4)
NLSM with the θ term at θ = π and the two-flavor massless
QED3. On the other hand, Mross, Alicea, and Motrunich
recently demonstrated that the two-flavor QED3 can be
directly obtained within the coupled-wire approach without
passing through the NLSM [83]. This alternative approach
may provide more physical insights about the nature of the
transition, e.g., the transformation properties of Dirac fermions
under the symmetry. We also note that the model studied in this
paper is in fact related to an effective lattice-gauge-theoretical
description of the kagome antiferromagnet [84,85]. Therefore,
a more detailed study of the transition will be an important
task to understand the spin-liquid ground state of the kagome
antiferromagnet.
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Needless to say, the present coupled-wire approach is not
restricted to our specific example. The bosonization approach
combined with the idea of coupled-wire construction to an
anisotropic lattice will be applied to the broad class of
interacting lattice models and topological phases. To propose
experimentally relevant models for condensed matter or optical
lattice systems in this way will be a more challenging but very
interesting direction in the future.
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APPENDIX A: ALTERNATIVE REPRESENTATION OF THE HAMILTONIAN

We here show that we can obtain the qualitatively same result when we start from the interaction Hamiltonian Eq. (12) without
incorporating the density operators into the string operators. Let us first recall how Eq. (12) is bosonized, in which case the
density operators have already been absorbed, by using Eqs. (18) and (21). Focusing on the first two terms, in the continuum
limit, the hopping perts are bosonized as

eiA(j,�)
(j+1,�−1) ã

†
j,�ãj+1,�−1 ∼ eiϕa

j −iϕa
j+1+iπx/a0+i(π−α)

[
c2

1 + c2
2

4
(e2iπρ̄(2x−a0)+2i(θa

j +θa
j+1) + H.c.)

]
, (A1a)

eiA(j,�)
(j+1,�) ã

†
j,�ãj+1,� ∼ eiϕa

j −iϕa
j+1+iπx/a0

[
c2

1 + c2
2

4
(e4iπρ̄x+2i(θa

j +θa
j+1) + H.c.)

]
. (A1b)

Here and hereafter we only keep terms containing the vertex operators e±in(θs
j +θs

j+1), which attribute to the BIQH and Halperin
(221) phases. Then the string parts are bosonized as

K̃b
j,�−1K̃

b
j+1,�−1 ∼ 1

4e2iπρ̄(x−a0)+i(θb
j +θb

j+1)+iπNb
j + H.c., (A2a)

K̃b
j,�+1K̃

b
j+1,� ∼ 1

4eiπρ̄(2x+a0)+i(θb
j +θb

j+1)+iπNb
j + H.c. (A2b)

Combining these expressions yields the first two terms in Eq. (28) for ρ̄a0 = 1/2 and those in Eq. (57) for ρ̄a0 = 1/6. If we did
not incorporate the density operators into the string, the interaction Hamiltonian was equivalently written as

H1 = t ′
N∑

j=1

L∑
�=1

[
eiA(j,�)

(j+1,�−1) ã
†
j,�ãj+1,�−1K̃

b
j,�K̃

b
j+1,�−1

(
2ñb

j,�−1 − 1
) + eiA(j,�)

(j+1,�) ã
†
j,�ãj+1,�K̃

b
j,�K̃

b
j+1,�

(
2ñb

j,� − 1
)

+ eiB(j,�)
(j+1,�−1) b̃

†
j,�b̃j+1,�−1K̃

a
j,�K̃

a
j+1,�−1

(
2ña

j+1,� − 1
) + eiB(j,�)

(j+1,�) b̃
†
j,�b̃j+1,�K̃

a
j,�K̃

a
j+1,�

(
2ña

j+1,� − 1
) + H.c.

]
. (A3)

Let us consider only the string parts of the first two terms. Those are bosonized as

K̃b
j,�K̃

b
j+1,�−1

(
2ñb

j,�−1 − 1
) ∼ 1

4π

(
ei(θb

j +θb
j+1)+iπρ̄(2x−3a0)+iπNb

j + H.c.
) + 2ρ̄a0 − 1

4

(
ei(θb

j +θb
j+1)+iπρ̄(2x−a0)+iπNb

j + H.c.
)
, (A4a)

K̃b
j,�K̃

b
j+1,�

(
2ñb

j,� − 1
) ∼ 2ρ̄a0 − 1 + 1/π

4

(
ei(θb

j +θb
j+1)+2iπρ̄x+iπNb

j + H.c.
)
. (A4b)

Combined with Eq. (A1), for ρ̄a0 = 1/2, this gives the coupling constants just scaled by 1/π from those of Hamiltonian Eq. (33),
and the phase shifts of the cosine potentials are also modified. For ρ̄a0 = 1/6, we obtain the Hamiltonian of the form Eq. (57),
but the coupling constant f (α) is replaced by

f̃ (α) = 2

3π
[2(4π2 − 9π + 9) − 3

√
3(2π − 3) cos α + (8π2 − 18π + 9) sin α]1/2. (A5)

Correspondingly, the phase shifts also become more complicated functions in α and β. However, the relative strength between
f̃ (α) and f̃ (−α) still holds the same property as f (α), that is |f (α)/f (−α)| > 1 for 0 < α < π . Therefore, regardless of the
different continuum expressions of the Hamiltonian, we obtain the same low-energy physics in both cases.
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APPENDIX B: RENORMALIZATION GROUP ANALYSIS

To obtain the phase diagram for general values of the staggered fluxes α and β, we here analyze the renormalization group
(RG) equations of the coupling constants in Eq. (33). We consider the Hamiltonian,

H = v

2π

N∑
j=1

∑
s=a,b

∫
dx

[
1

Ks

(
∂xθ

s
j

)2 + Ks

(
∂xϕ

s
j

)2
]

+ 2

(2πa0)2

N∑
j=1

∫
dx

(
g̃1,j cos

(
φ1

j − φ̃1
j+1

) + g̃2,j cos
(
φ̃1

j − φ1
j+1

) + g̃3,j cos
(
φ2

j − φ̃2
j+1

) + g̃4,j cos
(
φ̃2

j − φ2
j+1

)

+ q̃1,j

{ ∑
ε=±1

cos
[
φ1

j−1 − φ̃1
j + ε

(
φ2

j − φ̃2
j+1

)] +
∑
ε=±1

cos
[
φ2

j−1 − φ̃2
j + ε

(
φ1

j − φ̃1
j+1

)]}

+ q̃2,j

{ ∑
ε=±1

cos
[
φ̃1

j−1 − φ1
j + ε

(
φ̃2

j − φ2
j+1

)] +
∑
ε=±1

cos
[
φ̃2

j−1 − φ2
j + ε

(
φ̃1

j − φ1
j+1

)]})
. (B1)

Here we have neglected the phase shifts in the cosine potentials since they do not affect the present analysis. We have also
explicitly introduced the stiffness (or the Luttinger parameter) Ks for each species of the original bosonic fields. A deviation from
Ks = 1 corresponds to the generation of marginal terms ∂xφ

1∂xφ
2 and ∂xφ̃

1∂xφ̃
2 in Eq. (32). The vertex operators proportional

to q̃n,j (n = 1,2) are not originally included in Hamiltonian Eq. (33), but those operators are generated by second-order
perturbations g̃1,j±1g̃3,j and g̃2,j±1g̃4,j under the RG transformation. While similar vertex operators can also be generated by
perturbations g̃1,j±1g̃4,j and g̃2,j±1g̃3,j , those have nonzero conformal spins ±1 and do not contribute to the RG equations of the
coupling constants g̃n,j (n = 1, . . . ,4) at the one-loop level. Using the standard RG method combined with the operator product
expansion [86] and setting g̃n,j ≡ g̃n and q̃n,j ≡ q̃n, we obtain the RG equations,

dKa

dl
= 1

8

(
G2

3 + G2
4

) − K2
a

8

(
G2

1 + G2
2

) + 1 − K2
a

2

(
Q2

1 + Q2
2

)
,

dKb

dl
= 1

8

(
G2

1 + G2
2

) − K2
b

8

(
G2

3 + G2
4

) + 1 − K2
b

2

(
Q2

1 + Q2
2

)
,

dG1

dl
=

(
2 − Ka + K−1

b

2

)
G1 − 2Q1G3,

dG2

dl
=

(
2 − Ka + K−1

b

2

)
G2 − 2Q2G4,

dG3

dl
=

(
2 − Kb + K−1

a

2

)
G3 − 2Q1G1,

dG4

dl
=

(
2 − Kb + K−1

a

2

)
G4 − 2Q2G2,

dQ1

dl
=

(
2 − Ka + K−1

a + Kb + K−1
b

2

)
Q1 − 1

2
G1G3,

dQ2

dl
=

(
2 − Ka + K−1

a + Kb + K−1
b

2

)
Q2 − 1

2
G2G4, (B2)

where Gn = g̃n/πv and Qn = q̃n/πv. Initial couplings are given by Ka(0) = Kb(0) = 1, g̃1(0) = −π2t ′c2
1a0g(α), g̃2(0) =

−π2t ′c2
1a0g(−α), g̃3(0) = −π2t ′c2

1a0g(β), g̃4(0) = −π2t ′c2
1a0g(−β), and q̃1(0) = q̃2(0) = 0 [see Eq. (34a) for the definition

of g(α)]. By inclusion of Qn, pairs of the coupling constants {G1,G2} and {G3,G4} cannot independently flow under the RG
transformation and are coupled via Qn. Thus, the symmetry of the equations under G1 ↔ G2 is broken by the asymmetry under
G3 ↔ G4, and vise versa. One can also add other vertex operators generated by second-order perturbations, but they maintain
this symmetry and have no essential contributions to the RG flows of g̃n.

By numerically integrating the RG equations, we find that there exists a nontrivial fixed point g̃n = g̃∗ → −∞ and Ks = 1
when the initial couplings satisfy g̃1(0) = g̃4(0) and g̃2(0) = g̃3(0). This initial condition corresponds to the transition lines in
the phase diagram of Fig. 4. Such a fixed point has also been found in the sliding Luttinger liquid perturbed by the vertex
operators of dual fields [87]. Our result can be seen as an extension of their result to a two-component sliding Luttinger liquid. A
deviation from the above initial condition immediately gives the BIQH phases described by the fixed points g̃∗

1 = g̃∗
3 , g̃∗

2 = g̃∗
4 ,

and g̃∗
1/g̃

∗
2 → ∞ or 0.
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We also remark that for arbitrary initial values of g̃n, we can also find other fixed points (g̃∗
1 ,g̃

∗
2 ,g̃

∗
3 ,g̃

∗
4 ) = (±∞, ± ∞,0,0) or

(0,0, ± ∞, ± ∞). These fixed points describe ordered phases where the bosons condense in one sublattice while the vortices
condense in the other sublattice. However, these phases are not realized in the parameter space of Hamiltonian Eq. (33).
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