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We present a first-principles-based (second-principles) scheme that permits large-scale materials simulations
including both atomic and electronic degrees of freedom on the same footing. The method is based on a predictive
quantum-mechanical theory—e.g., density functional theory—and its accuracy can be systematically improved
at a very modest computational cost. Our approach is based on dividing the electron density of the system
into a reference part—typically corresponding to the system’s neutral, geometry-dependent ground state—and a
deformation part—defined as the difference between the actual and reference densities. We then take advantage
of the fact that the bulk part of the system’s energy depends on the reference density alone; this part can be
efficiently and accurately described by a force field, thus avoiding explicit consideration of the electrons. Then,
the effects associated to the difference density can be treated perturbatively with good precision by working in a
suitably chosen Wannier function basis. Further, the electronic model can be restricted to the bands of interest.
All these features combined yield a very flexible and computationally very efficient scheme. Here we present
the basic formulation of this approach, as well as a practical strategy to compute model parameters for realistic
materials. We illustrate the accuracy and scope of the proposed method with two case studies, namely, the relative
stability of various spin arrangements in NiO (featuring complex magnetic interactions in a strongly-correlated
oxide) and the formation of a two-dimensional electron gas at the interface between band insulators LaAlO3 and
SrTiO3 (featuring subtle electron-lattice couplings and screening effects). We conclude by discussing ways to
overcome the limitations of the present approach (most notably, the assumption of a fixed bonding topology), as
well as its many envisioned possibilities and future extensions.
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I. INTRODUCTION

Over the past two decades first-principles methods, in par-
ticular those based on efficient schemes like density functional
theory (DFT) [1–5], have become an indispensable tool in
applied and fundamental studies of molecules, nanostructures,
and solids. Modern DFT implementations make it possible
to compute the energy and properties (vibrational, electronic,
magnetic) of a compound from elementary information about
its structure and composition. Hence, in DFT investigations
the experimental input can usually be reduced to a minimum
(the number of atoms of the different chemical species, and
a first guess for the atomic positions and unit cell lattice
vectors). Further, the behavior of hypothetical materials can
be readily investigated, which turns the methods into the
ultimate predictive tool for application, e.g., in materials
design problems.

However, interpreting or predicting the results of experi-
ments requires, in many cases, to go beyond the time and length
scales that the most efficient DFT methods can reach today.
This becomes a very stringent limitation when, as it frequently
happens, the experiments are performed in conditions that are
out of the comfort zone of DFT calculations, i.e., at ambient
temperature, under applied time-dependent external fields, out
of equilibrium, under the presence of (charged) defects, etc.

The development of efficient schemes to tackle such
challenging situations, which are of critical importance in
areas ranging from biophysics to condensed matter physics

and materials science, constitutes a very active research field.
Especially promising are QM/MM multiscale approaches in
which different parts of the system are treated at different levels
of description: The most computationally intensive methods
[based on quantum mechanics (QM), as for example DFT
itself] are applied to a region involving a relatively small
number of atoms and electrons, while a large embedding region
is treated in a less accurate molecular mechanics (MM) way
(e.g., by using one of many available semiempirical schemes).

Today’s multiscale implementations tend to rely on
semiempirical methods—like tight-binding [6,7] and force-
field [8,9] schemes—that were first introduced decades ago.
In some cases, such schemes are designed to retain DFT-
like accuracy and flexibility as much as possible. One rele-
vant example are the self-consistent-charge density-functional
tight-binding (DFTB) techniques [10–12], and related ap-
proaches [13–15], which retain the electronic description and
permit an essentially complete treatment of the compounds.
Another relevant example are the effective Hamiltonians
developed to describe ferroelectric phase transitions and other
functional effects [16–18]; these are purely lattice models
(i.e., without an explicit treatment of the electrons) based
on a physically-motivated coarse-grained representation of
the material, and have been shown to be very useful even
in nontrivial situations involving chemical disorder [19] and
magnetoelectric effects [20], among others. Such methods
have demonstrated their ability to tackle many important
problems (see, e.g., Refs. [15,21–23] for the DFTB approach),
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and constitute very powerful tools. Nevertheless, they are
limited when it comes to treating situations in which the
key interactions involve minute energy differences (of the
order of meV’s per atom) and a great accuracy is needed,
or where a complete atomistic description of the material is
required.

Another aspect in which many approximate approaches
fail is in the simultaneous treatment, at a similar level of
accuracy and completeness, of electronic and lattice degrees
of freedom. Most methods in the literature are strongly biased
towards either the electronic [24–26] or the lattice [8,9,16–18]
properties. Further, the few schemes that attempt a realistic,
simultaneous treatment of both types of variables usually
involve very coarse-grained representations [27–29].

Here we introduce a new scheme to tackle the problem
of simulating both atomic and electronic degrees of freedom
on the same footing, with arbitrarily high accuracy, and at a
modest computational cost. In essence, we will combine (i)
an accurate model potential to describe the lattice-dynamical
properties of the system with (ii) a tight-binding-like approach
to describe the relevant electronic degrees of freedom and
electron-phonon interactions. Our scheme will be limited to
problems in which it is possible to identify an underlying
lattice or bonding topology that is not broken during the
course of the simulation. As we will show below, such a
fixed-topology hypothesis permits drastic simplifications in the
description of the system, yielding a computationally efficient
scheme whose accuracy can be systematically improved to
match that of a DFT calculation, if needed. Note that, while
our assumption of an underlying lattice may seem very
restrictive at first, in fact it is not. There are myriads of
problems of great current interest—ranging from electronic
and thermal transport phenomena to functional (dielectric,
ferroelectric, piezoelectric, magnetoelectric) effects and most
optical properties—that are perfectly compatible with it.
Further, this restriction can be greatly alleviated by combining
our potentials with DFT calculations in a multiscale scheme,
a task for which our models are ideally suited.

At its core, our new scheme relies on the usage of
a force field to treat interatomic interactions, capable of
providing a very accurate description of the lattice-dynamical
properties of the material of interest. In particular, the scheme
recently introduced by some of us in Ref. [30] constitutes an
excellent choice for our purposes, as it takes advantage of the
aforementioned fixed-topology condition to yield physically
transparent models whose ability to match DFT results can be
systematically improved.

Then, a critical feature of our approach is to identify such a
lattice-dynamical model with the description of the material in
the Born-Oppenheimer surface, i.e., with the DFT solution
of the neutral system in its electronic ground state. Since
the force fields of Ref. [30] do not treat electrons explicitly,
this identification implies that our models will not tackle the
description of electronic bonding, as DFTB schemes do. In
other words, we will not be concerned with modeling the
interactions responsible for the cohesive energy of the material,
or for the occurrence of a certain basic lattice topology and
structural features. Within our scheme, all such properties are
simply taken for granted, and constitute the starting point of
our models.

Instead, our models focus on the description of electronic
states that differ from the ground state. These are the
truly relevant configurations for the analysis of excitations,
transport, competing magnetic orders, etc. By focusing on
them, and by adopting a description based on material- (and
topology-)specific electronic wave functions, we can afford a
very accurate treatment of the electronic part while keeping
the models relatively simple and computationally light.

As we will see, while it bears similarities with DFTB
schemes, the present approach is ultimately more closely
related to Hubbard-like methods. Yet, at variance with the
usual semiempirical Hubbard Hamiltonians, our models are
firmly based on a higher-level first-principles theory, treating
all lattice degrees of freedom, and the relevant electronic ones,
with similarly high (full DFT at the asymptotic limit) accuracy.
The term “second-principles,” used in the title of this paper, is
meant to emphasize such a solid first-principles foundation.

II. OVERVIEW OF THE METHOD

In this paper we introduce the formal framework of our new
computational scheme to perform large-scale simulations. The
approach is methodologically based on DFT and obtains all
the necessary information to simulate a material from this
technique, so we have named it second-principles density-
functional-theory (SP-DFT). Hence, the paper contains two
main sections that describe (i) the development of the theory
our models are based on as a systematic approximation to
DFT (Sec. III) and (ii) the approach to calculate the model
parameters from DFT (Sec. IV).

Given the generality of the approach and the many mag-
nitudes that need to be calculated, we devote this section to
(i) enumerate the most important foundations on which the
method is based, (ii) point to the corresponding sections of
this paper where the reader can find a full description of the
various approximations and the physical phenomena behind
them, (iii) present a comparison with previous methodologies
based on similar ideas, and (iv) describe how to improve on
the approximations made in a systematic way to achieve full
DFT accuracy as the asymptotic limit.

(1) As in DFTB approaches, the starting point of our
method is the expansion of the DFT total energy (Sec. III B)
with respect to charge density fluctuations around a reference
electron density (Sec. III A). Our first approximation involves
limiting the expansion to second order. We choose our
expansion so that the zeroth order term is the total DFT
energy for the reference electron density, which we represent
using an accurate and efficient force field. The first and
second order terms involve small corrections to this energy
and require explicit electronic structure calculations. The key
to the success of this approach is that, contrary to other
electronic structure calculation methods, the correction (and
the self-consistent equations, Sec. III H) only depends on the
difference density, and not on the total density. This magnitude
involves few electrons and does not require knowledge of all
the electronic states of the system, and can thus be handled
with relatively modest computational resources.

(2) The electronic wave functions are expanded in a minimal
basis set made of localized Wannier functions (Sec. III C). The
Hamiltonian matrix elements are represented in this basis set,
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and the resultant one- and two- electron integrals become
the main parameters of the calculation (Sec. III C). While
these parameters can, in principle, be computed from DFT
simulations, our approach here is to fit them so that the model
reproduces a training set of first-principles data. An extension
of the expressions to treat magnetic systems is developed
in Sec. III D, where we see that Hubbard- and Stoner-like
parameters appear in a natural way.

(3) Although our basis set is localized in space, and
therefore the relevant real space matrix elements are restricted
to only relatively close neighbors, their values can be affected
by the electrostatic interactions due to charges and electric
dipoles located at distant regions of the material. Thus, we split
our one- and two- electron integrals into near-field and far-field
contributions. The latter are computed using the multipole
expansion described in Sec. III E, while the former are obtained
from DFT using the recipe provided in Sec. IV.

(4) We introduce an explicit dependence of the electronic
Hamiltonian on atomic positions by expanding the one-
electron parameters as a function of distortions of a reference
structure. We thus account for electron-lattice couplings
(Sec. III F). At this level a new approximation is introduced to
neglect the dependence of the two-electron integrals with the
geometry.

After finishing with the foundations of the method and
gathering together all the previous ingredients, we find an
expression for the total energy of the system (Sec. III G).
Its minimization with respect to the coefficients of the wave
functions in a Wannier basis gives rise to a set of Kohn-
Sham-like equations that need to be solved self-consistently
(Sec. III H). After convergence, the forces on all the atoms
and the stresses on the unit cell lattice vectors are computed
(Sec. III I), allowing for structural-relaxation or molecular-
dynamics simulations over very large length and time scales.
To end the section on the method itself, we give in Sec. III J
a brief account of some practicalities concerning an efficient
implementation of our approach.

In Sec. IV we propose a tentative approach for a systematic
calculation of the model variables from first principles.
Note that the development of a systematic—and automatic—
strategy for the construction of models with predefined
accuracy is a technically challenging task that remains for
future work.

In Sec. V we provide the details about the SCALE-UP code
package developed in the course of this work, stressing the
computational efficiency of the simulations based on the new
methodology. This is followed by Sec. VI where we compare
and highlight the novelty of our approach to two closely related
techniques, the effective-Hamiltonian and the DFTB methods.

Then, we describe in Sec. VII a couple of nontrivial
applications that were selected to highlight the flexibility of
the models, the great physical insight that they provide, and
their ability to account for complex properties with DFT-like
accuracy. The two chosen systems present interactions of
very different origin: (i) the magnetic Mott-Hubbard insulator
NiO and (ii) the two-dimensional electron gas (2DEG) that
appears at the interface between band insulators LaAlO3 and
SrTiO3. Note that, while accuracy will be highlighted, in these
initial applications we have focused on testing the ability of
our scheme to tackle challenging situations from the physics

standpoint, and to produce reasonable predictions beyond the
information including in the training set. Finally we present
our conclusions and a brief panoramic overview of future
extensions of the method and possible fields of application
in Sec. VIII.

III. THEORY

A. Basic definitions

As customarily done in most first-principles schemes, we
assume the Born-Oppenheimer approximation to separate the
dynamics of nuclei and electrons. Hence, we consider the
positions of the nuclei as fixed parameters of the electronic
Hamiltonian. Our approach will give us access to the potential
energy surface (PES), i.e., for each configuration of the nuclei,
the total energy of the system will be computed.

Our goal is to describe the electrons in the system, and
the relevant electronic interactions, in the simplest possible
way. Hence, we will typically focus on valence and con-
duction states, and will thus work with a lattice of ionic
cores comprised by the nuclei and the corresponding core
electrons, which will not be modeled explicitly. Here we use
indistinctively the terms atoms, ions, and nuclei to refer to such
ionic cores.

Our method relies on the following key concepts: the
reference atomic geometry (RAG henceforth) and the reference
electronic density (RED in the following). As in the recent
development of model potentials for lattice-dynamical stud-
ies [30], the first step towards the construction of our model
is the choice of a RAG, that is, one particular configuration
of the nuclei that we will use as a reference to describe any
other configuration. In principle, no restrictions are imposed
on the choice of RAG. However, it is usually convenient to
employ the ground state structure or, alternatively, a suitably
chosen high-symmetry configuration. Note that these choices
correspond to extrema of the PES, so that the corresponding
forces on the atoms and stresses on the cell are zero. Further,
the higher the symmetry of the RAG, the fewer the coupling
terms needed to describe the system and, in turn, the number
of parameters to be determined from first principles.

To describe the atomic configuration of the system we shall
adopt a notation similar to that of Ref. [30]. In what follows,
all the magnitudes related with the atomic structure will be
labeled using Greek subindices. For the sake of simplicity, we
shall assume a periodic three dimensional infinite crystal, with
the lattice cells denoted by uppercase letters (�, �, . . .) and
the atoms in the cell by lowercase letters (λ, δ, . . .). In this
manner, the lattice vector of cell � is �R�, and the reference
position of atom λ is �τλ. In order to allow for a more compact
notation, a cell/atom pair will sometimes be represented by a
lowercase bold subindex, so that �R�λ ↔ λ.

Any possible crystal configuration can be specified by
expressing the atomic positions, �rλ, as a distortion of the RAG,
as

�rλ = (1 + ←→η )( �R� + �τλ) + �uλ, (1)

where 1 is the identity matrix, ←→η is the homogeneous strain
tensor, and �uλ is the absolute displacement of atom λ in cell �

with respect to the strained reference structure.
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The second step is the definition of a RED, n0(�r), for each
possible atomic configuration. Our method relies on the fact
that, in most cases, the self-consistent electron density, n(�r),
will be very close to the RED, so that changes in physical
properties can be described by the small [with respect to n0(�r)]
deformation density, δn(�r), defined as

n(�r) = n0(�r) + δn(�r). (2)

Several remarks are in order about Eq. (2).
First, with n(�r) we denote the electron density that inte-

grates to the number of electrons (i.e., it is positive). It is
trivially related with the charge density (in atomic units it just
requires making it negative due to the sign of the electronic
charge).

Second, this separation of the charge density into reference
and deformation contributions is similar to what is commonly
found in DFTB schemes, and even in first-principles meth-
ods [31]. However, this parallelism may be misleading. Indeed,
it is important to note that we make no assumption on the form
of the RED. In most cases, e.g., nonmagnetic insulators, it
will be most sensible to identify the RED with the ground
state density of the neutral system. Nevertheless, as will be
illustrated in Sec. VI B for Mott insulator NiO, other choices
are also possible and very convenient in some situations.

Third, our RED will typically be an actual solution of the
electronic problem, as opposed to some approximate density,
e.g., a sum of spherical atomic-like densities, possibly taken
from the isolated-atom solution, as used in some DFTB
schemes [15,32]. Fourth, the concepts of RAG and RED are
completely independent: In our formalism, we define a RED
for every atomic structure accessible by the system, and not
only for the reference atomic geometry. Finally, let us remark,
in advance to Sec. III J, that our method does not require an
explicit calculation of n0(�r) (or any other function in real
space, for that matter), a feature that allows us to reduce the
computational cost significantly.

In order to further clarify the concept of RED, let us
discuss the application of our method to the relevant case of a
doped semiconductor. As sketched in Fig. 1, our hypothetical
semiconductor is made of two different types of atoms
(represented by large green and small red balls, respectively)
in a square planar geometry with a three-atom repeated cell.
The RAG corresponds to the high-symmetry configuration in
which the large atom is located at the center of the square,
while the small atoms lie at the centers of the sides. In the
neutral (undoped) case, a self-consistent DFT calculation of
the RAG would yield an electronic configuration with all the
valence bands occupied and all the conduction bands empty, as
illustrated in Fig. 1(e). The associated electron density would
be our RED, n0(�r), represented by the green clouds in Fig. 1(b);
the associated energy would be E(0), using the notation that
will be introduced in Sec. III B.

Now, if we dope the neutral system by adding or removing
electrons, there will be a response of the electronic cloud,
which will tend to screen the field caused by the extra charge.
The doping electron (respectively, hole) will occupy the states
at the bottom of the conduction band (respectively, top of
the valence band). The doping-induced charge redistribution
can be viewed as resulting from an admixture of occupied
and unoccupied states of the reference neutral configuration.

FIG. 1. Schematic cartoon that represents the key physical
concepts for the development of the second-principles models: the
reference atomic structure and the reference and deformation electron
densities. Panels (a)–(c): the meaning of the balls (which represent the
position of the atoms in a hypothetical semiconductor), and the green
clouds (which represent charge densities) are explained in the main
text. Panels (d)–(f): the horizontal lines represent the one-electron
energy levels obtained at the corresponding atomic structures and
for the reference electronic configuration (neutral ground state). Full
green circles represent full occupation of a given state by electrons.
Half filled orange/green circles indicate partial occupation of a
particular level. The notations E(0), E(1), and E(2) for the energies
are introduced in Sec. III B. The parameters γ , U , and, I are defined
in Secs. III C and III D. Only the case of doping with electrons is
sketched. Doping with holes would lead to an equivalent picture.

The resulting state, described by the total charge density n(�r),
is sketched in Figs. 1(a) and 1(d). The difference between the
total electronic density and the RED is the deformation density
δn(�r). Such a deformation density, which is the key quantity
in our scheme, captures both the doping and the system’s
response to it, as sketched in Figs. 1(c) and 1(f).

Finally, let us further stress the independence between RAG
and RED. Note that all three quantities n(�r), n0(�r), and δn(�r)
are in fact parametric functions of the atomic positions. This is
illustrated in Fig. 2, which sketches a case in which one atom
is displaced from the RAG.

B. Approximate expression for the energy

Let us consider an atomic geometry characterized by the
homogeneous strain tensor ←→η and the individual atomic
displacements {�uλ} as described in Eq. (1). Our main objective
is to find a functional form that permits an accurate approxi-
mation of the DFT total energy at a low computational cost.
The DFT energy can be written as

EDFT =
∑
j �k

oj �k〈ψj �k|t̂ + vext|ψj �k〉

+ 1

2

∫∫
n(�r)n(�r ′)
|�r − �r ′| d3rd3r ′ + Exc[n] + Enn. (3)
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FIG. 2. Schematic cartoon emphasizing that the division of the
electron density into reference and deformation parts is carried out
for any geometrical configuration of the system, as defined by the
strain ←→η and atomic displacements {�uλ}. The distortion of the
reference atomic geometry is illustrated by the off-centering of one
atom (indicated with a black arrow). The atomic distortion results in
a modified n0(�r) [panel (b)], as well as in additional changes depicted
in panel (c), where the green and orange clouds denote positive and
negative variations in the electronic density. Symbols have the same
meaning as in Fig. 1.

In this expression, the first term on the right-hand side includes
the kinetic energy of a collection of noninteracting electrons as
computed through the one-particle kinetic energy operator, t̂ ;
this first term also includes the action of an external potential,
vext, which gathers contributions from the nuclei (or ionic
cores) and, possibly, other external fields. The second term
is the Coulomb electrostatic energy, which in the context
of quantum mechanics of condensed matter systems is also
referred to as the Hartree term. The third term, Exc[n],
is the so-called exchange and correlation functional, which
contains the correlation contribution to the kinetic energy in
the interacting electron system, as well as any electron-electron
interaction effect beyond the classic Coulomb repulsion. The
last term, Enn, is the nucleus-nucleus electrostatic energy.
Note that Eq. (3) is written in atomic units, which are used
throughout the paper. (|e| = me = � = aB = 1, where |e| is
the magnitude of the electron charge, me is the electronic
mass, and aB is the Bohr radius).

As already mentioned, we assume that the Born-
Oppenheimer approximation applies, so that the positions of
the nuclei can be considered as parameters of the Hamiltonian.
We also assume periodic boundary conditions. (Finite systems
can be trivially considered by, e.g., adopting a supercell
approach [33].)

Within periodic boundary conditions, the eigenfunctions of
the one-particle Kohn-Sham equations, |ψj �k〉, can be written

as Bloch states characterized by the wave vector �k and the
band index j , with the occupation of a state given by oj �k . Note
that Eq. (3) is valid for any geometric structure of the system,
and we implicitly assume that the total energy (EDFT), the
one-particle eigenstates (|ψj �k〉), and all derived magnitudes
(such as the electron densities n, n0, and δn) depend on the
structural parameters ←→η and {�uλ}.

The total energy of Eq. (3) is a functional of the density
which, as described in Eq. (2), can be written as the sum of
a reference part n0(�r) and a deformation part δn(�r). When
we implement this decomposition, the linear Coulomb energy
term can be trivially dealt with. For the nonlinear exchange
and correlation functional, we follow Ref. ([12]) and expand

Exc[n] around the RED as

Exc[n] =Exc[n0] +
∫

δExc

δn(�r)

∣∣∣∣
n0

δn(�r)d3r

+ 1

2

∫∫
δ2Exc

δn(�r)δn(�r ′)

∣∣∣∣
n0

δn(�r)δn(�r ′)d3rd3r ′ + · · ·,
(4)

where we have introduced functional derivatives of Exc. In
principle, Eq. (4) is exact if we consider all the orders
in the expansion. (Expansions like this one are frequently
found in the formulations of the adiabatic density functional
perturbation theory [34,35].) In practice, under the assumption
of a small deformation density, the expansion can be cut
at second order. As we shall show in Secs. III D and III H,
this approximation includes as a particular case the full
Hartree-Fock-theory; hence, we expect it to be accurate enough
for our current purposes.

Within the previous approximation, we can write the total
energy as a sum of terms coming from the contributions of
the deformation density at zeroth (reference density), first, and
second orders. Formally we write

EDFT ≈ E = E(0) + E(1) + E(2), (5)

where the individual terms have the following form [36].
For the zeroth-order term E(0), we get

E(0) =
∑
j �k

o
(0)
j �k

〈
ψ

(0)
j �k

∣∣t̂ + vext

∣∣ψ (0)
j �k

〉

+ 1

2

∫∫
n0(�r)n0(�r ′)

|�r − �r ′| d3rd3r ′ + Exc[n0] + Enn. (6)

The above equation corresponds, without approximation, to
the exact DFT energy for the reference density n0. We can
choose the RED so that E(0) is the dominant contribution to
the total energy of the system, and here comes a key advantage
of our approach: We can compute E(0) by employing a model
potential that depends only on the atomic positions, where
the electrons (assumed to remain on the Born-Oppenheimer
surface) are integrated out. This represents a huge gain with
respect to other schemes that, like the typical DFTB methods,
require an explicit and accurate treatment of the electronic
interactions yielding the RED as well as solving numerically
for E(0) and n0 for each atomic configuration considered in the
simulation.

The first-order term involves the one-electron excitations
as captured by the deformation density,

E(1) =
∑
j �k

[
oj �k

〈
ψj �k

∣∣ĥ0

∣∣ψj �k
〉 − o

(0)
j �k

〈
ψ

(0)
j �k

∣∣ĥ0

∣∣ψ (0)
j �k

〉]
. (7)

Here, ĥ0 is the Kohn-Sham [1] one-electron Hamiltonian
defined for the RED,

ĥ0 = t̂ + vext − vH(n0; �r) + vxc[n0; �r], (8)

where vH(n0; �r) and vxc[n0; �r] are, respectively, the reference
Hartree,

vH(n0; �r) = −
∫

n0(�r ′)
|�r − �r ′|d

3r ′, (9)
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and exchange-correlation,

vxc[n0; �r] = δExc[n]

δn(�r)

∣∣∣∣
n0

, (10)

potentials. It is important to note that Eq. (7) is different from
the one usually employed in DFTB methods (see, for example,
Refs. [10] and [12]): while typical DFTB schemes include a
plain sum of one-electron energies, here we deal with the
difference between the value of this quantity for the actual
system and for the reference one [see sketch in Fig. 1(f)]. Such
a difference is a much smaller quantity, more amenable to
accurate calculations.

Finally, the two-electron contribution from the deformation
density, E(2), is given by

E(2) = 1

2

∫
d3r

∫
d3r ′g(�r,�r ′)δn(�r)δn(�r ′), (11)

where the screened electron-electron interaction operator,
g(�r,�r ′), is

g(�r,�r ′) = 1

|�r − �r ′| + δ2Exc

δn(�r)δn(�r ′)

∣∣∣∣
n0

. (12)

Here, δ2Exc/δn(�r)δn(�r ′) captures the effective screening of
the two-electron interactions due to exchange and correlation.
The latter magnitude is particularly important in chemistry, as
it is related to the hardness of a material [37].

In summary, in this section we have shown how a particular
splitting of the total density, into reference and a deformation
parts, allows us to expand the DFT energy around n0 and as a
function of δn. This expansion can be truncated at second order
while keeping a high accuracy; nevertheless, this approach
can be systematically improved by including higher-order
terms in δn, in analogy to what is done, e.g., in the so-called
DFTB3 method [21]. While the general idea is reminiscent
of DFTB methods in the literature, [10–12] our scheme has
two distinct advantages. On one hand, the zeroth-order term
can be conveniently parametrized by means of a lattice model
potential, so that it can be evaluated in a fast and accurate
way without explicit consideration of the electrons. On the
other hand, the first-order term is much smaller, and can be
calculated more accurately, than in usual DFTB schemes, as it
takes the form of a perturbative correction.

C. Formulation in a Wannier basis

1. Choice of Wannier functions

Our formulation requires the computation of the matrix
elements of the Kohn-Sham one-electron Hamiltonian, as
defined for the RED, in terms of Bloch wave functions
[Eq. (7)], as well as various integrals involving the deformation
charge density [Eq. (11)]. To compute these terms, we will
expand the Bloch waves on a basis of Wannier-like functions
(WFs), |χa〉, in the spirit of Ref. [38]. There are several reasons
for our choice of a Wannier basis set over the atomic orbitals
most commonly used in DFTB formulations [10–12,15].

First, the Wannier orbitals are naturally adapted to the
specific material under investigation. In fact, they will be
typically obtained from a full first-principles simulation of
the band structure of the target material, which permits a

more accurate parametrization of the system while retaining a
minimal basis set.

Second, the Wannier functions are spatially localized, and
several localization schemes are available in the literature
[38–44]. The localization will be exploited in our second-
principles method to restrict the real-space matrix elements to
those involving relatively close neighbors, as will be explained
in Sec. IV.

Third, the localized Wannier functions can be chosen to
be orthogonal. Note that methods with nonorthogonal basis
functions require the calculation of the overlap integrals that
have a nontrivial behavior as a function of the geometry of the
system. Moreover, the one-particle Kohn-Sham equations in
matrix form become a generalized eigenvalue problem, whose
solution requires a computationally demanding inversion of
the overlap matrix. The use of orthogonal Wannier functions
allows us to bypass these shortcomings.

Fourth, the Wannier functions enable a very flexible
description of the electronic band structure, as they can be
constructed to span the space corresponding to a specific
set of bands [38,45]. Therefore, the electronic states can be
efficiently split into: (i) an active set playing an important role
in the properties under study; and (ii) a background set that
will be integrated out from the explicit treatment. For instance,
if the problem of interest involves the formation of low-energy
electron-hole excitons, our active set would be comprised by
the top-valence and bottom-conduction bands, and we would
use the corresponding Wannier functions as a basis set.

Typically, we will start from a set of Bloch-like Hamiltonian
eigenstates |ψ (0)

n�k 〉 that define a manifold of J bands associated
to the RED. Then, following, e.g., the recipe of Ref. [42], we
have

|χa〉 ≡ | �RAa〉 = V

(2π )3

∫
BZ

d�k e−i�k· �RA

J∑
m=1

T (�k)
ma

∣∣ψ (0)
m�k

〉
, (13)

where the Wannier function | �RAa〉 is labeled by the cell A at
which it is centered (associated to the lattice vector �RA) and by
a discrete index a. Note that we use Latin subindices to label all
physical quantities related with the electrons; to alleviate the
notation, we group in the bold symbol a both the cell and the
discrete index, so that a ↔ �RAa. In Eq. (13), V is the volume of
the primitive unit cell, the integral is carried out over the whole
Brillouin zone (BZ), the index m runs over all the J bands of
the manifold, and the T (�k) matrices represent unitary transfor-
mations among the J Bloch orbitals at a given wave vector.

Figure 3 shows three paradigmatic examples: a nonmag-
netic insulator [bulk SrTiO3, Fig. 3(a)], a nonmagnetic metal
[bulk Cu, Fig. 3(b)], and an antiferromagnetic insulator [bulk
NiO, Fig. 3(c)]. In the first case, the valence bands are
well separated in energy from other bands; further, they
have a well-defined character strongly reminiscent of the
corresponding atomic orbitals. More precisely, three isolated
manifolds corresponding to the occupied valence bands—with
dominant O-2s, Sr-4p, and O-2p character, respectively—are
clearly visible; these bands are centered around 17 eV, 15 eV,
and 3 eV below the valence-band top, respectively. The Bloch
eigenstates for these bands can be directly used to compute
the corresponding localized Wannier functions following the
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(a) (b) (c)

O(2s)

O(2p)

Ti[3d(t2g)]

Ti[3d(eg)]

O(2s)

Ni[3d(t2g)]+Ni[3d(eg)]
+O(2p)

Ni[3d(eg)]

Cu(3d)+Cu(4s)

Sr(4p)

FIG. 3. Band structure, showing different band entanglements, in three archetypal cases: (a) insulating SrTiO3, (b) metallic Cu, and (c)
antiferromagnetic NiO. The groups of entangled bands are separated by energy gaps and colored differently. For SrTiO3: bands with dominant
O(2s), Sr(4p), O(2p), Ti[3d(t2g)], and Ti[3d(eg)] characters are plotted, respectively in red, orange, blue, green, and magenta. For Cu: all the
bands are entangled. For NiO: some weakly-dispersive bands at the top of the valence and bottom of the conduction regions (indicated by an
arrow) share the Ni[3d(eg)] character. On the leftmost and rightmost edges of the figure, the spatial shape of some of the Wannier functions for
SrTiO3 and NiO are displayed, respectively. Isosurfaces corresponding to positive and negative values of the MLWFs are plotted with different
colors. In these diagrams, golden, blue, red, and green spheres represent, respectively, Sr, O, Ti, and Ni ions. For NiO, the atoms in the cell
used to simulate the antiferromagnetic ground state are shown. Dashed red lines mark the Fermi energy of the metal and the top of the valence
bands of the insulators; in all cases such level is taken as the zero of energy.

scheme of Ref. [42] or similar ones. In contrast, the bottom
conduction bands of SrTiO3 have a dominant Ti-t2g character,
but overlap in energy with higher-lying (Ti-eg) conduction
bands. The situation is even more complicated in the cases of
Figs. 3(b) and 3(c), where the critical bands—i.e., those around
the Fermi energy in the case of Cu, and those comprising the
Ni-3d manifold in the case of NiO—are strongly entangled
with other states. In such cases, we may need to use a
disentanglement method—like, e.g., the one proposed in
Ref. [38]—to identify a minimal active manifold.

Note that the inverse transformation from Wannier to Bloch
functions reads ∣∣ψ (0)

j �k
〉 =

∑
a

c
(0)
ja�ke

i�k· �RA |χa〉, (14)

where the connection between the c
(0)
ja�k coefficients and the

transformation matrices in Eq. (13) is given in Ref. [36]. The
Wannier functions corresponding to the RED [Fig. 1(b)] form a
complete basis of the Hilbert space. Hence, we can use them to
represent any perturbed electronic configuration of the system
[e.g., the one sketched in Fig. 1(a)] as

|ψj �k〉 =
∑

a

cja�ke
i�k· �RA |χa〉, (15)

where the sum can be extended to as many bands as needed
to accurately describe the phenomenon of interest. (As in the
example of Fig. 1, this might be the addition of an electron
and the associated screening.)

Finally, note that the Wannier function basis is implicitly
dependent on the structural parameters ←→η and {�uλ}, and it
should be recomputed for every new RED corresponding to
varying atomic positions. Ultimately, our models will capture
all such effects implicitly in the electron-lattice coupling terms,
whose calculation is described in Sec. III F.

Also, henceforth we will assume that each and every one
of the WFs in our basis can be unambiguously associated with

a particular atom at (around) which it is centered. Further, we
will use the notation a ∈ λ to refer to all the WFs associated
to atom λ in cell �, an identification that will be necessary
when discussing our treatment of electrostatic couplings in
Sec. III E.

2. Equations in a Wannier basis

Using Eq. (15), we can write the electron density n(�r) in
terms of the Wannier functions,

n(�r) =
∑

ab

dabχa(�r)χb(�r). (16)

We can assume we will work with real Wannier functions [45]
and therefore drop the complex conjugates in our equations.
In Eq. (16) we have introduced a reduced density matrix,

dab =
∑
j �k

oj �kc
∗
ja�kcjb�ke

i�k( �RB− �RA), (17)

which, following the nomenclature of Ref. [46], will be re-
ferred to as the occupation matrix for the WFs. This occupation
matrix has the usual properties, including periodicity when the
Wannier functions are displaced by the same lattice vector in
real space. Equation (16) can similarly be applied to the RED,

n0(�r) =
∑

ab

d
(0)
ab χa(�r)χb(�r), (18)

where the calculation of the occupation matrix is performed
with the coefficients of the Bloch functions that define the
reference electronic density, c

(0)
jα�k , as in Eq. (14).

In order to quantify the difference between the two densities
defined in Eqs. (16) and (18), we introduce a deformation
occupation matrix,

Dab = dab − d
(0)
ab , (19)
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which will be the central magnitude in our calculations. Now
the deformation density can be written as

δn(�r) =
∑

ab

Dabχa(�r)χb(�r). (20)

Using these definitions, we can rewrite the E(1) and E(2) energy
terms. Introducing Eq. (19) into Eqs. (7) and (11) we get, after
some algebra [36]

E(1) =
∑
ab

Dabγab, (21)

and

E(2) = 1

2

∑
ab

∑
a′b′

DabDa′b′Uaba′b′ , (22)

respectively, where γab and Uaba′b′ are the primary parameters
that define our electronic model. These parameters can be
obtained, respectively, from the integrals of the one- and two-
electron operators computed in DFT simulations, as

γab = 〈χa|ĥ0|χb〉 =
∫

d3r χa(�r) h0(�r) χb(�r), (23)

and

Uaba′b′ = 〈χaχa′ |ĝ|χbχb′ 〉

=
∫

d3r

∫
d3r ′χa(�r)χb(�r)χa′(�r ′)χb′(�r ′)g(�r,�r ′).

(24)

Alternatively, they can be fitted so that the model reproduces
a training set of first-principles data.

D. Magnetic systems

The above expressions are valid for systems without
spin polarization. The procedure to construct the energy
for magnetic cases is very similar, but there are subtleties
pertaining to the choice of RED.

In principle, one could use a RED corresponding to a
particular realization of the spin order, e.g., the antiferro-
magnetic ground state for a typical magnetic insulator, or
the ferromagnetic ground state for a typical magnetic metal.
However, such a choice is likely to result in a less accurate
description of other spin arrangements, which would hamper
the application of the model to investigate certain phenomena
(e.g., a spin-ordering transition).

Alternatively, one might adopt a nonmagnetic RED around
which to construct the model. Such a RED might correspond to
an actual computable state: For example, it could be obtained
from a nonmagnetic DFT simulation in which a perfect pairing
of spin-up and spin-down electrons is imposed. Further, as we
will see below for the case of NiO, in some cases it is possible
and convenient to consider a virtual RED whose character
can be inspected a posteriori. This latter option follows the
spirit of the usual approach to the construction of spin-phonon
effective Hamiltonians [47], where the parameters defining
the reference state cannot be computed directly from DFT, but
are effectively fitted by requesting the model to reproduce the
properties of specific spin arrangements.

In the following we assume a nonmagnetic RED, and
present an otherwise general formulation. The E(0) and E(1)

terms thus describe the lattice and one-electron energetics
corresponding to the nonmagnetic RED, and do not capture
any effect related with the spin polarization. In contrast, the
screened electron-electron interaction operator [Eq. (12)] is
spin dependent and equal to

g(�r,�r ′,s,s ′) = 1

|�r − �r ′| + δ2Exc

δn(�r,s)δn(�r ′,s ′)

∣∣∣∣
n0

. (25)

where s and s ′ are spin indices that can take “up” or “down”
values which we denote, respectively, by ↑ and ↓ symbols. This
distinction in the screened electron-electron operator leads us
to introduce two kinds of U parameters,

U
par
aba′b′ = ∫

d3r
∫

d3r ′χa(�r)χb(�r)χa′ (�r ′)χb′(�r ′)g(�r,�r ′,↑,↑)

= ∫
d3r

∫
d3r ′χa(�r)χb(�r)χa′ (�r ′)χb′(�r ′)g(�r,�r ′,↓,↓)

(26)

and

U anti
aba′b′ = ∫

d3r
∫

d3r ′χa(�r)χb(�r)χa′ (�r ′)χb′(�r ′)g(�r,�r ′,↑,↓)

= ∫
d3r

∫
d3r ′χa(�r)χb(�r)χa′(�r ′)χb′(�r ′)g(�r,�r ′,↓,↑),

(27)

which describe, respectively, the interactions between elec-
trons with parallel (U par) and antiparallel (U anti) spins. As a
consequence, E(2) in spin-polarized systems is

E(2) =
∑
s,s ′

1

2

∫
d3r

∫
d3r ′g(r,�r ′,s,s ′)δn(�r,s)δn(�r ′,s ′), (28)

where

δn(�r,s) =
∑

ab

Ds
abχa(�r)χb(�r), (29)

and Ds
ab is the deformation occupation matrix for the s spin

channel, defined for the up and down spins as

D
↑
ab = d

↑
ab − 1

2d
(0)
ab (30)

and

D
↓
ab = d

↓
ab − 1

2d
(0)
ab , (31)

respectively. Replacing Eqs. (29)–(31) into Eq. (28),

E(2) =1

2

{∑
ab

∑
a′b′

[D↑
abD

↑
a′b′ + D

↓
abD

↓
a′b′]U

par
aba′b′

+ [D↑
abD

↓
a′b′ + D

↓
abD

↑
a′b′]U anti

aba′b′

}
. (32)

For physical clarity, and to establish the link of Eqs. (26)
and (27) with Eq. (24), it is convenient to write U par and U anti

in terms of Hubbard- (U ) and Stoner- (I )-like parameters:

U
par
aba′b′ = Uaba′b′ − Iaba′b′ (33)

U anti
aba′b′ = Uaba′b′ + Iaba′b′ , (34)
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so

Uaba′b′ = 1
2

(
U

par
aba′b′ + U anti

aba′b′
)
, (35)

Iaba′b′ = 1
2

(
U anti

aba′b′ − U
par
aba′b′

)
. (36)

It is also convenient to introduce

DU
a′b′ = D

↑
a′b′ + D

↓
a′b′ , (37)

and

DI
a′b′ = D

↑
a′b′ − D

↓
a′b′ , (38)

so that Eq. (32) can be rewritten as:

E(2) = 1

2

∑
ab

∑
a′b′

{
DU

abD
U
a′b′Uaba′b′ − DI

abD
I
a′b′Iaba′b′

}
. (39)

Note that the value of U in Eqs. (33) and (34) is consistent with
the one in Eq. (24) if we consider a non-spin-polarized density
(D↓

ab = D
↑
ab). In addition, note that the newly introduced

constant Iaba′b′ only plays a role in spin-polarized systems
and is necessarily responsible for magnetism.

Connection with other schemes

The two-electron interaction constants—U and I defined
in Eqs. (33) and (34), respectively—are formally similar to the
four-index integrals typically found in Hartree-Fock theory [4]
and can be chosen to completely match this approach.
However, one should note that the electron-electron interaction
in our Hubbard-like and Stoner-like constants is not the bare
one, but is screened by the exchange-correlation potential
associated to the reference density, n0 [see Eq. (25)]. This fact
brings our formulation closer to the so-called DFT+U [48,49]
and GW [50,51] methods.

Looking in more detail at our expressions for U and I ,

Uaba′b′ =
∫

d3r

∫
d3r ′χa(�r)χb(�r)χa′(�r ′)χb′(�r ′)gU (�r,�r ′)

(40)

Iaba′b′ =
∫

d3r

∫
d3r ′χa(�r)χb(�r)χa′(�r ′)χb′(�r ′)gI (�r,�r ′),

(41)

we find that they are very similar to those of U par [Eq. (26)]
and U anti [Eq. (27)], except that the operator involved in the
double integral is, respectively,

gU (�r,�r ′) = 1

|�r − �r ′| + 1

2

[
δ2Exc

δn(�r,↑)δn(�r ′,↑)

∣∣∣∣
n0

+ δ2Exc

δn(�r,↑)δn(�r ′,↓)

∣∣∣∣
n0

]
, (42)

and

gI (�r,�r ′) = 1

2

[
δ2Exc

δn(�r,↑)δn(�r ′,↓)

∣∣∣∣
n0

− δ2Exc

δn(�r,↑)δn(�r ′,↑)

∣∣∣∣
n0

]
. (43)

Thus, we see that U contains the classical Hartree interactions,
screened by exchange and correlation. Moreover, from Eq. (39)

we see that U , as used here, is related with the deformation
occupation matrix DU , that captures the total change of the
electron density (i.e., the sum of the deformation occupation
matrix for both components of spins). Therefore, it is consis-
tent with the usual definition U = d2E/dn2, i.e., it quantifies
the energy needed to add or remove electrons.

On the other hand, Stoner’s [52–54] I only includes terms
with quantum origin. In particular gI provides the difference
in interaction between electrons with parallel and antiparallel
spins.

E. Electrostatics

1. One-electron parameters

The matrix element γab [Eq. (23)] gathers Coulomb inter-
actions associated to the electrostatic potential created by both
electrons and nuclei, which acts on the WFs χa and χb. Note
that these are the only long-ranged interactions in the system,
since all other contributions (kinetic, exchange-correlation,
external applied fields) can be considered local or semilocal. In
the following we discuss the detailed form of this electrostatic
part of γab, which we denote γ elec

ab .
Let us first consider the part of γ elec

ab associated to the
electrostatic potential created by the electrons, γ elec,e

ab . We have

γ
elec,e
ab ≡ −〈χa|vH(n0; �r)|χb〉

=
∫

χa(�r)

(∫
n0(�r ′)
|�r − �r ′|d

3r ′
)

χb(�r)d3r

=
∫

χa(�r)

(∫ ∑
c o

(0)
c |χc(�r ′)|2

|�r − �r ′| d3r ′
)

χb(�r)d3r. (44)

The expression of the reference electron density in terms of the
occupation of Wanniers, o(0)

c , and squares of Wannier functions
in the reference state will be described in more detail in
Sec. III J. Following the criteria of Ref. [55], the one-electron
matrix elements related with the Coulomb electron-electron
interaction can be split into two categories (see Fig. 4): (i) the
near-field regime, where the two WFs (a and b) significantly

FIG. 4. Schematic representation of the near- and far-field inter-
actions. The shape of the orbitals (represented here by two t2g-like
WFs labeled a and b) is important in the determination of the
short-range part of the γ and U interactions. In addition, the diagonal
terms like γaa and Uaabb also include far-field effects due to charges
and dipoles at distant regions of the material (see WF c in the figure).
As regards the far-field interactions, the precise shape of the charge
distributions generating the potential is not critical (illustrated by the
diffuse orbital at point c), and can be approximated by a multipole
expansion.
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overlap with the third WF (c) that creates the electrostatic
potential, and (ii) the far-field regime, where this overlap is
negligible.

In the far-field regime, the electrostatic potential outside the
region where a source charge χc is located can be expressed
as a multipole expansion (see Chapter 4 of Ref. [56]). More
precisely, we can write the far-field (FF) potential created by
the charge distribution given by χc as

ve
FF,c(n0; �r) = −o(0)

c

∫ |χc(�r ′)|2
|�r − �r ′| d3r ′, (45)

which applies to �r points for which χc(�r) ≈ 0. Now, let λ

label the atom—located at the RAG reference position �τλ =
�R� + �τλ—around which χc is centered. It is convenient to shift

the origin in the integral, �r ′′ = �r ′ − �τλ, to write

ve
FF,c(n0; �r) = −o(0)

c

∫ |χc(�r ′′ + �τλ)|2
|�r − �τλ − �r ′′| d3r ′′. (46)

Then, assuming that |�r ′′| � |�r − �τλ| and using the superscript
T to indicate the transpose operation, as necessary to compute
inner dot products, we get

1

|�r − �τλ − �r ′′| ≈ 1

|�r − �τλ| + (�r − �τλ)T �r ′′

|�r − �τλ|3 + . . . . (47)

Now, substituting Eq. (47) into Eq. (46) we obtain the
multipole series

ve
FF,c(n0; �r) ≈ qc

|�r − �τλ| + (�r − �τλ)T �pc

|�r − �τλ|3 + . . . . (48)

The coefficient of the first term is the total charge (i.e., the
monopole), and it is given by

qc = −o(0)
c

∫
|χc(�r ′′ + �τλ)|2d3r ′′ = −o(0)

c . (49)

The coefficient of the second term is the electric dipole moment
associated to χc, which amounts to

�pc = −o(0)
c

∫
|χc(�r ′′ + �τλ)|2�r ′′d3r ′′ = −o(0)

c (�rc − �τλ), (50)

where �rc represents the centroid of χc. Quadrupole and higher-
order moments follow in the expansion, but here we assume
they can be neglected. Finally, the full FF potential created by
the electrons at point �r is simply given by

ve
FF(n0; �r) =

∑
c

′
ve

FF,c(n0; �r), (51)

where the prime indicates that we sum only over WF’s such
that χc(�r) ≈ 0.

Let us now consider the part of γ elec
ab associated to the

potential created by the nuclei, which we call γ elec,n
ab . In analogy

with the electronic case, we write the FF electrostatic potential
created by the nuclei at point �r as

vn
FF(�r) ≈

∑
λ

′ Zλ

|�r − �τλ| +
∑

λ

′ (�r − �τλ)T Zλ�uλ

|�r − �τλ|3 + . . . , (52)

where the primed sums run only over atoms λ whose associated
WFs a ∈ λ satisfy χa(�r) ≈ 0.

Then, adding all far-field contributions to γ elec
ab , and assign-

ing each WF to its associated nucleus, we get

vFF(n0; �r) =
∑

λ

′ qλ

|�r − �τλ| +
∑

λ

′ (�r − �τλ)T �pλ

|�r − �τλ|3 + . . . , (53)

where

qλ = Zλ +
∑
c∈λ

qc (54)

is the charge of ion λ, while �pλ is the local dipole associated
to that very ion. Note that we add together the contributions
from electrons and nuclei, which allows us to talk about ions
in a strict sense [57]. We can further approximate this local
dipole using the Born charge tensor

←→
Z ∗

λ, to obtain

�pλ = Zλ�uλ +
∑
c∈λ

�pc ≈ ←→
Z ∗

λ�uλ. (55)

In order to get the final expression for the FF potential,
we note that the electrostatic interactions described above do
not take place in vacuum, but in the material at its reference
electronic density. Thus, we need to take into account that the
RED will react to screen such interactions, and that such a
screening can be modelled by the high-frequency dielectric
tensor of the material at its RED. Thus, the far-field potential
at the center of WF χa is

vFF(n0; �ra) ≈
∑

λ

′[�eT
λa(←→ε∞ )−1�eλa

] qλ

|�τλ − �ra|

+
∑

λ

′
[ �pT

λ (←→ε∞ )−1�eλa
]

|�τλ − �ra|2 , (56)

where �eλa is a unitary vector parallel to �τλ − �ra, ←→ε∞ is the high-
frequency dielectic tensor, and the primed sums are restricted
in the usual way.

We can now divide γab in long-range (lr) and short-range
(sr) contributions (see Fig. 4). Considering that χa and χb are
strongly localized and orthogonal to each other, we define γ lr

ab
as

γ lr
ab = −vFF(n0; �ra)δab. (57)

Then, we effectively define the short-range part of γab as

γ sr
ab = γab − γ lr

ab. (58)

Note that the short-range interactions defined in this way
include electrostatic effects as well as others associated to
chemical bonding, orbital hybridization, etc. These interac-
tions do not have a simple analytic form; hence, in order to
construct our models, they will generally be fitted to reproduce
DFT results.

It is important to note that the above derivation, and
decomposition in long- and short-range parts, is exact and does
not involve any approximation, except for: (i) the truncation of
the multipole expansion and (ii) the analytic form introduced

195137-10



SECOND-PRINCIPLES METHOD FOR MATERIALS . . . PHYSICAL REVIEW B 93, 195137 (2016)

for the long-range electrostatic interactions, which strictly
speaking only applies to homogeneous materials with a band
gap [58].

Finally, note that the γab couplings can be expected to be
short in range, as they involve WFs χa and χb that are strongly
localized in space and decay exponentially as we move away
from their centers. Hence, the γ matrix can be expected to
be sparse, which will result in more efficient calculations. It
is important to note that this short-ranged character of the
γab couplings is expected despite the fact that the interactions
contributing to γ lr

ab are electrostatic and thus long ranged.

2. Two-electron integrals

In a similar vein, we can split U in short- and long-range
contributions, so that

U sr
aba′b′ = Uaba′b′ − U lr

aba′b′ , (59)

where the long-range part will contain the classical FF interac-
tion between electrons that can be approximated analytically,
while the short-range part will contain all other interactions
including many-body effects.

Similarly to the case above, we expect that (i) long-range
two-electron integrals should be very small unless a overlaps
with b and a′ overlaps with b′, (ii) we can truncate the
multipolar expansion at the monopole level, and (iii) the
electrostatic interactions take place in a medium characterized
by the high-frequency dielectric tensor of the material at the
RED. Under these conditions we choose U lr

aba′b′ to be

U lr
aba′b′ = [�eT

aa′(←→ε∞ )−1�eaa′
] 1

|�ra′ − �ra|δabδa′b′ . (60)

In order to avoid the divergence of this term, we assume that
all one-body integrals (a = a′) are fully included in the short-
range part, U sr

aba′b′ . Assigning the Wannier functions to their
closest nucleus, and summing over all the atoms in the lattice,
we find that the total two-electron long-range energy adds to

E(2),lr = 1

2

∑
λυ

[�eT
λυ(←→ε∞ )−1�eλυ

]�qλ�qυ

|�τυ − �τλ| , (61)

where �qλ is the change in charge of the atom λ when
compared to the RED state [Eq. (54)]. Thus, the long-range
part of U simply updates the one-electron FF potentials due to
the charge transfers between atoms.

We would like to stress again that the separation in long-
and short-range parts does not involve any approximation;
indeed, effects usually considered important in many physical
phenomena, like, e.g., the anisotropy of the Wannier orbitals
at short distances [59], are included in U sr.

F. Electron-lattice coupling

The system’s geometry determines the reference density
n0(�r) as well as the corresponding Hamiltonian. In our scheme,
such a dependence of the model parameters on the atomic
configuration is captured by the electron-lattice coupling
terms.

Let us consider the lattice dependence of the one-electron
integrals γ [Eq. (23)]. In Sec. III E 1, these parameters were
split in short- and long-range contributions. The explicit

FIG. 5. Schematic representation of the effects of the expansion
of γ sr in terms of atomic deformations. Panels (a) and (b) illustrate the
electron-lattice coupling associated to diagonal, γ sr

aa, matrix elements
that control the average energy of the corresponding bands. In (a)
we sketch the forces on the atoms (represented by red spheres) as
generated by electrons placed on a px or py-like WFs. In our method,
these forces are captured by the tensor �f in Eq. (62). In (b) we
illustrate the change in the electronic structure as a consequence of the
atomic displacement: If the atoms displace along x in the way shown
in the top atomic chain of panel (a), then a variation in the position of
the px orbitals is induced, while the py level remains unaltered. Panels
(c) and (d) illustrate the change in nondiagonal γ sr matrix elements
between two neighboring orbitals when the intermediate atom moves,
thus altering the bandwidth as illustrated in (d). The change in the
bandwidth depends on the amount by which the atoms are displaced,
represented in the cartoon by two different displacement vectors δ�r1

and δ�r2.

dependence of the long-range part with the distortion of the
lattice is clearly seen in Eq. (55), where the electric dipole
that enters in the multipole expansion of the far field potential
[Eq. (56)] depends linearly with the atomic displacements, as
computed with respect to the RAG. As regards the dependence
of γ sr

ab on the atomic configuration (see Fig. 5), we include it
by expanding

γ sr
ab = γ

RAG,sr
ab +

∑
λυ

[
− �f T

ab,λυδ�rλυ

+
∑
λ′υ ′

δ�rT
λυ

←→
g ab,λυλ′υ ′δ�rλ′υ ′ + · · ·

]
, (62)

where

δ�rλυ = ←→η ( �Rϒ − �R� + �τυ − �τλ) + �uυ − �uλ (63)

quantifies the relative displacement of atoms λ and υ. In
addition, �f and ←→g are the first- and second-rank tensors
that characterize the electron-lattice coupling, closely related
to the concept of vibronic constants [60].

We have checked that including quadratic constants is
enough to describe typical changes in the value of γ with the
geometry. For example, we have inspected the γ parameters
associated with the oxygen 2p-like WFs of SrTiO3, i.e., with
the valence band of the material, and plotted in Fig. 6 the
three that are most sensitive to structural deformations: They
correspond to the diagonal elements of the σ and π functions
centered on the oxygen ions [see Fig. 3(a)] and a π − π
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FIG. 6. Variation of the γ matrix elements of bulk SrTiO3 that are most sensitive to the displacement of a Ti ion. Panels (a)–(c): the atoms at
a TiO2 plane are represented by big blue (Ti) and small red (O) spheres. The displacement of the Ti4+ is marked with an arrow. The Wannier-like
functions related with the γ matrix elements under consideration are plotted: (a) a p-like orbital with lobules pointing perpendicularly to the
Ti4+ displacement (π -bonding), (b) a p-like orbital with lobules pointing parallel to the Ti4+ displacement (σ -bonding), and (c) two p-like
orbitals centered on different O atoms with lobules pointing perpendicular in one case and parallel in the other to the Ti4+ displacement. In (a),
and (b), the corresponding matrix element whose evolution is studied is diagonal (i.e., a = b), while in (c) the matrix element is off-diagonal
(a �= b). Panels (d)–(f) show the variation of these matrix elements with respect to the Ti displacement. First-principles results are represented
by blue crosses, while the model values [see Eq. (62)] are represented by solid blue lines.

off-diagonal term. We find that, if we use a quadratic expansion
to describe such a structural dependence, the errors are smaller
than 1% over a wide range of distortions, up to 0.3 Å. Hence,
given the strong changes occurring in the hybridization of
ferroelectriclike materials like SrTiO3, we consider that the
approximation employed in Eq. (62) should be reasonable for
most systems.

Moreover, in the cases studied so far, we have found that the
quadratic constants are typically much smaller than the linear
ones; further, among the quadratic constants, the diagonal
ones are clearly dominant. Hence, in Eq. (62) we restrict the
expansion to two-atom terms, so that

←→
g ab,λυλ′υ ′ ≈ ←→

g ab,λυλ′υ ′δλλ′δυυ ′ = ←→
g ab,λυ . (64)

The physical meaning of �fab,λυ is particularly obvious when
a = b: it represents the force created by an electron occupying
the WF χa over the surrounding atoms [see Figs. 5(a) and 5(b)].
Such a parameter is key to quantify phenomena like the Jahn-
Teller effect in solids [60] or polaron formation [61].

Off-diagonal terms in �f describe the mixing of two WFs
upon an atomic distortion and thus quantify changes in
covalency [see Figs. 5(c) and 5(d)]. They can be identified with
the pseudo Jahn-Teller vibronic constants and are thus relevant
to a wide variety of phenomena including ferroelectricity [60],
spin-crossover [62], and spin-phonon coupling [63].

Finally, the geometrical dependence of the two-electron
parameters, U and I , can be included in our model in a
similar way. Nevertheless, since these terms are not explicitly
dependent on the potential created by the ions, their value
can be expected to be less sensitive to changes in the atomic
configuration. Hence, in this paper, and in analogy to what

is customarily done in model Hamiltonian and DFT+U
approaches [48], we will neglect such effects keeping in mind
that these may be introduced, if necessary, in the future.

G. Total energy

Replacing the expressions for the one-electron [Eq. (21)],
and two-electron [Eq. (39)] integrals into Eq. (5) for the total
energy, we get

E =E(0) + E(1) + E(2)

=E(0) +
∑

ab

DU
abγab

+ 1

2

∑
ab

∑
a′b′

(
DU

abD
U
a′b′Uaba′b′ − DI

abD
I
a′b′Iaba′b′

)
, (65)

or, equivalently, in terms of the spin-up and spin-down
densities,

E =E(0) +
∑

ab

(D↑
ab + D

↓
ab)γab

+ 1

2

∑
ab

∑
a′b′

{(D↑
ab + D

↓
ab)(D↑

a′b′ + D
↓
a′b′)Uaba′b′

− (D↑
ab − D

↓
ab)(D↑

a′b′ − D
↓
a′b′)Iaba′b′ }. (66)

Now we introduce the decomposition of the γ [Eqs. (57)
and (58)] and U [Eqs. (59) and (60)] parameters into long
and short-range parts and gather together all the long-range
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terms to obtain

E =E(0) +
∑
ab

DU
abγ

sr
ab

+ 1

2

∑
ab

∑
a′b′

(
DU

abD
U
a′b′U

sr
aba′b′ − DI

abD
I
a′b′Iaba′b′

)

+
∑

a

DU
aa

(
−vFF(�ra) + 1

2

∑
a′

DU
a′a′U

lr
aaa′a′

)
. (67)

Note that for the case of a non-spin-polarized system (DI
ab =

0) the expression for the total energy reduces to

E =E(0) +
∑

ab

DU
abγ

sr
ab

+ 1

2

∑
ab

∑
a′b′

DU
abD

U
a′b′U

sr
aba′b′

+
∑

a

DU
aa

(
−vFF(�ra) + 1

2

∑
a′

DU
a′a′U

lr
aaa′a′

)
. (68)

H. Self-consistent equations

As it is clearly seen in Eq. (67), the total energy in our
formalism depends on the deformation occupation matrix
defined in Eq. (19) and later generalized for the case of
spin-polarized systems in Eqs. (30) and (31). This quantity
is directly related with the deformation charge density, i.e.,
with the difference between the total charge density and the
reference electronic density. It can be computed from the
coefficients of the Bloch wave functions in the basis of Wannier
functions, which are thus the only variational parameters of the
method.

Solving for the ground state amounts to finding a point at
which the energy is stationary upon variations in the electronic
density, n(�r). Following a textbook procedure [2–5], we obtain
a set of self-consistent conditions analogous to the Kohn-Sham
equations [1] ∑

b

hs

ab,�k cs

jb�k = εs

j �k cs

ja�k, (69)

where, as defined above, εs

j �k , is the j th band energy at wave

vector �k for the spin channel s. The corresponding Hamiltonian
matrix hs

ab,�k is

hs

ab,�k =
∑

�RB− �RA

ei�k·( �RB− �RA)hs
ab, (70)

where hs
ab is the real-space Hamiltonian

hs
ab = γab +

∑
a′b′

[(
Ds

a′b′ + D−s
a′b′

)
Uaba′b′

− (
Ds

a′b′ − D−s
a′b′

)
Iaba′b′

]
. (71)

Note that this is a mean-field problem fully equivalent to
that of the Hartree-Fock approach, and it must be solved self-
consistently. The practical procedure for finding the solution
is straightforward: Given an initial guess for the deformation
occupation matrix (Ds

ab), we compute the corresponding
mean-field Hamiltonian (hs

ab); from the diagonalization of this

matrix we obtain a new deformation occupation matrix, and
the procedure is iterated until reaching self-consistency. Note
that electrostatic effects are accounted for by computing the
long-range part of the γ and U parameters; this is our scheme’s
equivalent to solving Poisson’s equation, as customarily done
in DFT and other approaches. Finally, note that in cases in
which the system does not present any electron excitation, i.e.,
whenever the full density is equal to the reference density and
we have Ds

ab = 0, no self-consistent procedure is needed to
obtain the solution.

I. Forces and stresses

Forces and stresses can be computed by direct derivation of
the total energy [Eq. (65)] with respect to the atomic positions
and cell strains. After some algebra, the result for the forces is

�Fλ = −�∇λE = −�∇λE
(0) −

∑
ab

DU
ab

�∇λγab, (72)

where λ denotes a specific atom in a certain cell; here we
assume that electron-lattice couplings are restricted to the one-
electron terms. The derivative of E(0) can be computed directly
and exactly from the force-field on which our model is based.

The deformation occupation matrix DU
ab depends on the

eigenvector coefficients and occupations. However, its deriva-
tive with respect to the atomic displacement is not required,
since the energy is stationary with respect to these coefficients
and occupations on the Born-Oppenheimer surface, and the
Hellman-Feynman theorem guarantees that their first-order
variation will not modify the total energy, and therefore will
not affect the forces. Moreover, due to the orthogonality of the
basis set used, no orthogonality forces need to be included,
as it is the case when using a basis of nonorthogonal atomic
orbitals (see Appendix A of Ref. [31]).

It is interesting to further inspect the similarity between
the second term in our forces and the Hellmann-Feynman
result [3],

�Fλ = −�∇Enn −
∑
j �k

oj �k〈ψj �k| �∇λĥ0|ψj �k〉, (73)

as (via a Fourier transform) �∇λγab is analogous to
〈ψj �k| �∇λĥ0|ψj �k〉, and DU

ab plays the role of the occupations oj �k .
This connection should be considered with caution, though, as
our forces have a dominant contribution from the RED state,
which is also included in the Hellmann-Feynman expression.
It is also interesting to note that, if we included the dependence
of U (and I ) on the nuclear positions, we would have a Pulay
term in Eq. (72) [64], reflecting the change of the WF basis set
with the atomic displacements.

Now we calculate the stress tensor in an analogous way. We
adopt the standard definition [3]

Sαβ = − 1

V

∂ ′E
∂ ′ηαβ

, (74)

where V is the volume of the real-space cell and ∂ ′ denotes
derivative keeping the fractional coordinates of the atoms in
the system constant. We notice that there are only three terms
in the energy that depend explicitly on the strain tensor ←→η ,
namely, the RED energy E(0), the short-range one-electron
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term, γ sr
ab, and the electrostatic energy. Thus, we have

Sαβ = − 1

V

[
∂ ′E(0)

∂ ′ηαβ

+
∑

ab

DU
ab

∂ ′γ sr
ab

∂ ′ηαβ

+ ∂ ′Eelec

∂ ′ηαβ

]
, (75)

where Eelec corresponds with the electrostatic energy as
written in the fourth contribution to the total energy in Eq. (67).
As in the case of the forces, the E(0) derivative is computed
from the force field that describes the RED state. Similarly, the
calculation of the last, electrostatic term can be achieved via
Ewald summation techniques (see, e.g., Ref. [65]). The only
term that requires further manipulation is the derivative of γ sr

ab,
Eq. (62), with respect to the strain, which yields

∂ ′γ sr
ab

∂ ′ηαβ

=
∑
λυ

[
− �f T

ab,λυ

∂ ′(δ�rλυ)

∂ ′ηαβ

+
∑
λ′υ ′

∂ ′(δ�rT
λυ)

∂ ′ηαβ

(←→g )ab,λυλ′υ ′δ�rλ′υ ′

+
∑
λ′υ ′

δ�rT
λυ(←→g )ab,λυλ′υ ′

∂ ′(δ�rλ′υ ′)

∂ ′ηαβ

]
. (76)

As in the case of the forces, the similarity between this result
and the Hellmann-Feynman expression is apparent.

To end this section, let us stress that only excited elec-
trons/holes, which render Dab �= 0, create forces and stresses
not included in the underlying force-field described by E(0).
In fact, in the typical case, the dominant contribution to both
forces and stresses will come from the derivative of E(0), with
corrections that are linear in the difference occupation matrix.

J. Practical considerations

So far we have introduced a method for the simulation of
materials at a large scale. We have presented the basic physical
ingredients (reference atomic geometry, reference electronic
density, deformation density, etc.), that allow us to approximate
the DFT total energy, forces and stresses.

In this section we discuss some practicalities involved in the
implementation of this method in a computer code to perform
actual calculations. Of course, different implementations are
in principle possible; here we briefly describe some details
pertaining to our specific choices, which should be illustrative
of the technical issues that need to be tackled.

1. Definition of the RED

The formulation above is written in terms of differences
between the actual and reference states of the system in a
completely general way. However, from a practical point of
view, an appropriate choice of the RED, n0(�r), is a necessary
first step towards an efficient implementation of our method.

The most important ingredient to define n0 is the reference
occupation matrix that, following Eq. (17), amounts to

d
(0)
ab =

∑
j �k

o
(0)
j �k

[
c

(0)
ja�k

]∗
c

(0)
jb�ke

i�k( �RB− �RA), (77)

where o
(0)
j �k and c

(0)
ja�k characterize the RED. While it would be

possible to use the d
(0)
ab result computed from first principles

to perform second-principles simulations, in the following
we shall simplify this expression in order to obtain a more
convenient form.

Note that the reference occupation matrix satisfies d
(0)
ab = 0

for a and b belonging to different band manifolds. (By
definition, if a and b belong to different bands, they cannot
appear simultaneously in the expansion of a particular Bloch
state [Eq. (14)], and the corresponding d

(0)
ab [Eq. (77)] will

vanish.) It is thus possible to rewrite Eq. (77) and split the sum
over states in two, one over manifolds J and a second one
over bands within a manifold.

After having established this property, we impose that all
the bands j that belong to the same manifold J have the same
occupation in the RED

o
(0)
j �k = oJ ω�k = oJ

Nk

, (78)

where ω�k is the weight of each �k-point in the BZ. As we
assume an homogeneous sampling in reciprocal space, ω�k =
N−1

k , where Nk is the total number of points in our BZ mesh.
Thus, for example, in a diamagnetic insulator [see Fig. 3(a)]
(where the valence and conduction band always belong to
different manifolds) we would choose the occupation for the
reference states so that all the valence bands are fully occupied
while all conduction bands are completely empty. In this way
the reference electronic density for a diamagnetic insulator is
simply the ground state density.

For metals [Fig. 3(b)], and magnetic insulators [Fig. 3(c)],
where a disentanglement procedure [38] has to be carried out
to separate the desired bands from others with which they
are hybridized in a given energy window, the choice is not
so simple. In such cases we distribute all the electrons of the
entangled bands equally among the bands in the manifold. For
example, in the case of metallic copper [Fig. 3(b)], which has
an electronic configuration 3d104s1 where the five 3d functions
cross with the 4s-like band, we would distribute the eleven
electrons over the six bands taking oJ = 11/6. On the other
hand, for NiO [Fig. 3(c)] some Ni(3d) bands are occupied
and entangled with the O(2p) ones; at the same time, empty
eg-like orbitals are part of the conduction band and entangled
with other levels there. Here, we choose to disentangle the
bands with strong Ni(3d) and O(2p) character from the other
bands. Further, we assign the occupation by distributing the
corresponding electrons—eight 3d electrons of Ni2+ and the
six 2p electrons of O2−—over the corresponding bands—five
3d bands and three 2p bands—yielding oJ = 14/8. Taking
into account the spin polarization, the occupation per spin
channel is just oJ = 7/8.

Using Eq. (78) to rewrite Eq. (77), and taking into account
the relationship between the coefficients of RED Bloch states
and the unitary transformations between Bloch and Wannier
representations, we have [36]

d
(0)
ab = oJ δabδ �RA

�RB
= oJ δab, (79)

where we have used the properties of the unitary matrices.
From this expression we see that oJ is simply the occupation
of the WF χa in the reference state, o

(0)
a . Finally, inserting
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Eq. (79) into Eq. (18), we arrive to the conclusion that [36]

n0(�r) =
∑

a

oJ |χa(�r)|2 =
∑

a

o(0)
a |χa(�r)|2, (80)

where we have used the fact that o
(0)
a = oJ for all WFs in the

manifold.
We would like to stress that this approach simply allows

for a more efficient computational method since we can still
retrieve the full electron distribution in space by substituting
the first-principles WFs into Eqs. (16) and (18).

2. Deformation electron density

From the definition of the charge density in terms of the
density matrix, Eq. (16), and the orthogonality of the Wannier
basis functions, it trivially follows that the total number of
electrons in the system is the trace of the density matrix,

N =
∫

n(�r)d3r =
∑

a

daa. (81)

Therefore, the trace of the deformation matrix gives the
number of extra electrons or holes that dope the system.

From the very definition of the deformation matrix, we can
deduce that if its diagonal element,

Daa = daa − d (0)
aa , (82)

is negative (positive), that means that we are creating holes
(inserting electrons) on that particular state, as illustrated in
Fig. 1. The fact that most of these electron/hole excitations
take place around the Fermi energy has a very important
consequence with regards to the efficiency of the method. In
order to calculate Daa, and the total energy [see Eq. (67)],
we do not need to obtain all the eigenvalues of the one-
electron Hamiltonian, but just those around the Fermi energy.
This opens up the possibility to use efficient diagonalization
techniques that allow a fast calculation of a few relevant eigen-
values, e.g., Lanczos. This approach allows us to speed up the
calculations in a very significant manner. (The diagonalization
of the full Hamiltonian matrix is one of the main computational
bottlenecks in electronic structure methods.) Along these lines,
the possibility of obtaining linear scaling within our method
will be discussed in a future publication.

IV. PARAMETER CALCULATION

The method presented above allows for the simulation of
very large systems under operation conditions assuming that
a few parameters describing one-electron and two-electron
interactions, as well as the electron-lattice couplings, are
known beforehand. For the sake of preserving predicting
power, it is important to compute those parameters from first
principles.

All the electronic parameters of our models have well-
defined expressions [see Eq. (23) for γab, Eq. (40) for Uaba′b′ ,
and Eq. (41) for Iaba′b′ ], whose computation requires only
the knowledge of the Wannier functions, the one-electron
Hamiltonian, and the operators involved in the double inte-
grals, all of them defined for the RED. Since the chosen basis
functions are localized in space, the required calculations could

be performed on small supercells. Such a direct approach to
obtain the model parameters is thus, in principle, feasible.

Note that there has been significant work to calculate
related integrals from first principles, as can be found, e.g.,
in Refs. [42,48,49,51,66–73]. Yet, we feel that most of these
approaches are too restrictive for the more general task that
we pursue in this paper. For instance, the focus in the previous
references is placed on strongly correlated electrons in a single
center, while we are also interested in multicenter integrals.

A significant effort would thus be required to implement
the calculation of the more complex interactions, including all
the potentially relevant ones, and developing tools to derive
minimal models that retain only the dominant parameters
and capture the main physical effects. Note that, in a typical
system, the number of potentially relevant integrals will be
very large. In fact, the presence of four-index integrals like
Uaba′b′ and Iaba′b′ is the reason why Hartree-Fock schemes
scale much worse than DFT methods with respect to the
number of basis functions in the calculation [∼O(N5) vs
∼O(N3), respectively]. Hence, at the present stage we have
not attempted a direct first-principles calculation of the
parameters, which is a challenge that remains for the future.
Instead, we have devised a practical scheme to fit our models
to relevant first-principles data.

A. Parameter fitting

Our procedure comprises several steps.

1. Training set

First, we identify a training set (TS) of representative
atomic and electronic configurations from which the rel-
evant model parameters will be identified and computed.
For example, the training set for a magnetic system should
contain simulations for several spin arrangements, so that the
mechanisms responsible for the magnetic couplings can be
captured. Additionally, if we want to study a system whose
bands are very sensitive to the atomic structure, the training
set should contain calculations for different geometries so that
this effect is captured. Alternatively, if we want to describe
how doping affects the physical properties of a material,
then different DFT simulations on charged systems should
be carried out [74], etc.

Let us note that it is typically possible to restrict the TS
to atomic and electronic configurations compatible with small
simulation boxes. This translates into (and is consistent with)
the fact that, when expressed in a basis of localized WFs,
the nonelectrostatic interactions in most materials are short
ranged.

We will use NTS to denote the total number of TS
elements, noting that we will run a single-point first-principles
calculation for each of them. Further, NRAG is the number
of TS configurations that correspond to the reference atomic
geometry.

2. Filtering the training set

Let hs
ab(i) be the Hamiltonian of the ith TS configuration, in

matrix form and as obtained from a first-principles (typically
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FIG. 7. Representation of the bands of SrTiO3 (top row) and NiO (middle and bottom rows, corresponding to the majority and minority
spin channels, respectively) for various values of the Hamiltonian cutoff, δεh. Black lines represent the bands as obtained from first principles,
while the results from the second-principles model are shown in green. On top of each plot we indicate the corresponding number of hs

ab matrix
elements per primitive cell that were included.

DFT) calculation. We denote the whole collection of one-
electron Hamiltonians in the training set by {hs

ab(i)}.
These Hamiltonians are expressed in a basis of localized

WFs. Formally, they can be obtained by inverting Eq. (70)
(see Sec. VI A of Ref. [45]), so that

hs
ab = (2π )3

V

∫
BZ

d3k

⎡
⎣∑

j

[
T

s(�k)
ja

]�
εs

j �kT
s(�k)
jb

⎤
⎦ei( �RA− �RB )�k,

(83)
where the T matrices are unitary transformations that convert
the first-principles eigenstates into Bloch-like waves associ-
ated to specific (localized) WFs. These transformations can
be obtained by employing codes like WANNIER90 [66], which
implements a particular localization scheme, i.e., a particular
way to compute optimum T matrices [42,45].

Once the hs
ab(i) Hamiltonians are known, we can identify

the pairs of WFs with a large enough interaction and which
need to be retained in the fitting procedure. In practice, we
introduce a cutoff energy δεh such that∣∣hs

ab(i)
∣∣ > δεh, for at least one i in the TS, (84)

defines the Hamiltonian matrix elements to be retained.
(Diagonal elements, hs

aa, are always considered independently
of their value.) This condition allows us to identify the WF
pairs (a, b) to be included in the fitting procedure, regardless
of the geometry or spin arrangement.

In Fig. 7 we compare the full first-principles bands for
SrTiO3 and NiO with those obtained from models corre-
sponding to different energy cutoffs. For all the δεh values
considered, we also indicate the number of parameters in the
resulting models. This allows us to estimate the size of the
model (and associated computational cost) needed to achieve
an acceptable description of the band structure.

3. Identifying most relevant model interactions

Our models, even though we truncate them at second order
of the expansion in Eq. (5), contain a daunting number of
electron-electron interaction parameters. Constructing an ac-
tual model usually involves further approximations regarding
the spatial range of the interactions, the maximum number
of different bodies (WFs) involved, etc. Hence, we need a
procedure to identify the simplest models that can reproduce
the first-principles TS data with an accuracy that is sufficient
for our purposes.

The scheme we have implemented is based on a very
simple logic: We start from a certain complete model that may
contain, in principle, all possible one-electron, two-electron,
and electron-lattice parameters. We can then fit such a model
to reproduce the one-electron Hamiltonians {hs

ab(i)} of our
TS within a certain accuracy. Typically, by doing so, and by
systematically exploring different combinations of parameters
in the model, we can identify the simplest interactions (i.e.,
those that are shortest in range, involve fewest WFs, etc.)
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sufficient to achieve the desired level of accuracy; in other
words, in this way we can identify noncritical couplings that
just render the fitting problem underdetermined, do not im-
prove the accuracy of the model, and can thus be disregarded.
Naturally, this split between relevant and irrelevant couplings
is strongly dependent on the choice of the training set, which
should be complete enough to capture the physical effects of
interest.

To better understand how the scheme works, consider the
one-electron integrals γab in the case of a nonmagnetic material
like SrTiO3. These parameters will be the only ones entering
the description of the band structure of the RAG in the RED
state. Hence, we can fit them directly by requiring our model
to reproduce the Hamiltonian hab of this particular, reference
state with a certain accuracy.

More generally, the one-electron Hamiltonian correspond-
ing to a TS configuration will reflect electronic excitations
departing from the RED state. More precisely, we can recall
Eq. (71) to write

hs
ab(i) = γab +

∑
a′b′

[(
Ds

a′b′(i) + D−s
a′b′(i)

)
Uaba′b′

− (
Ds

a′b′(i) − D−s
a′b′(i)

)
Iaba′b′

]
, (85)

where we restrict ourselves to TS configurations at the RAG,
so that no electron-lattice term appears in this equation. It is
convenient to isolate the U contribution by defining

hU
ab(i) = h

↑
ab(i) + h

↓
ab(i)

2
= γab +

∑
a′b′

DU
a′b′(i)Uaba′b′ , (86)

and its average over all the RAG configurations in the training
set,

h̄U
ab = 1

NRAG

∑
i

hU
ab(i) = γab +

∑
a′b′

D̄U
a′b′Uaba′b′ . (87)

Analogously, the antisymmetrization of the Hamiltonian ma-
trix elements with respect to the spin yields

hI
ab(i) = h

↑
ab(i) − h

↓
ab(i)

2
=

∑
a′b′

DI
a′b′(i)Iaba′b′ . (88)

We expect that the most important Uaba′b′ and Iaba′b′

parameters will be, respectively, those involving WF pairs
whose corresponding hU

ab(i) and hI
ab(i) are most strongly

dependent on the TS state. Hence, we introduce the two-
electron cutoff energy, δεee, and retain only the (a,b) pairs
that satisfy, for at least one TS configuration, at least one of
the following conditions:

∣∣hU
ab(i) − h̄U

ab

∣∣ =
∣∣∣∣∣
∑
a′b′

[
DU

a′b′(i) − D̄U
a′b′

]
Uaba′b′

∣∣∣∣∣ > δεee, (89)

or

∣∣hI
ab(i)

∣∣ =
∣∣∣∣∣
∑
a′b′

DI
a′b′(i)Iaba′b′

∣∣∣∣∣ > δεee. (90)

Note that we gauge the hU
ab matrix elements with respect to the

h̄U
ab average values so that the corresponding cutoff condition

does not depend on the one-electron couplings γ .

Once we have selected all the {(a,b)} pairs that fulfill
such criteria, we can build the list of potentially relevant
U and I constants to be considered in the fit. Note that
the number of free parameters is usually reduced by the
fact that the Uaba′b′ and Iaba′b′ integrals are invariant upon
permutations of the (a,b,a′,b′) indexes. In some cases, and
in spite of the reduction of parameters due to symmetry, the
list of relevant interactions is excessively long and needs to
be further trimmed to successfully carry out the fitting. In
such situations we introduce a third cutoff, δD, that operates
over the difference occupation matrix to select the interactions
associated to important changes of the electron density. When
doing so we only accept U constants for which at least one
pair of the associated indexes fulfills∣∣DU

a′b′(i) − D̄U
a′b′

∣∣ > δD (91)

and the corresponding expression for I∣∣DI
a′b′(i)

∣∣ > δD. (92)

Let us also note that the most relevant γab parameters
are trivially identified when we filter the TS one-electron
Hamiltonians as described above.

4. Fitting the RAG model

Once our list of relevant γ , U , and I parameters is complete,
we fit them to reproduce the {hs

ab} matrix elements above the
δεh energy cutoff introduced previously. We have found it
convenient to perform the fit in several steps, so that different
types of parameters are computed separately. More precisely,
we first fit the U parameters by requesting that our model
reproduces the hU

ab(i) − h̄U
ab matrices [Eqs. (86) and (87)].

Analogously, we obtain the I constants by fitting to the
hI

ab(i) matrices [Eq. (88)]. Importantly, both of these fits are
independent of the one-electron integrals, and have typically
yielded well-posed, overdetermined systems of equations in
the cases we have so far considered. Finally, we obtain the γ

parameters from the fitted U ’s directly from Eq. (86). Direct
comparison of the modeled bands with those obtained from
the full first-principles {hs

ab(i)} set provides an estimate of the
goodness of the model (see the example in Sec. VI B and,
particularly, Fig. 9).

Note that, alternatively, one could try a direct fit of all the
γ , U , and I parameters to the real-space Hamiltonians, using
Eq. (71). However, we typically find that this strategy leads
to nearly-singular problems in which very different solutions
lead to comparably good results. In the general case, such a
difficulty may be mitigated by extending the TS. However,
here we adopted the simple and practical procedure described
above, which permits a numerically stable method that yields
accurate and physically sound models.

To end with this section we would like to stress that the γab

constants obtained with this procedure contain both the short-
and long-range contributions described above [Eq. (58)]. In
order to isolate γ sr

ab, we simply subtract the corresponding
electrostatic contribution [Eq. (57)] from the determined, full
γab value. In order to calculate the electrostatic contribution
[Eqs. (55)–(56)] we need first-principles results for the Born
charge tensor,

←→
Z ∗

λ, and the high-frequency dielectric tensor,
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←→ε∞ , that can routinely be obtained for systems where the RED
is insulating [58].

5. Relevant electron-lattice interactions

As above, we assume that the deviations from the RAG
only affect the one-electron integrals γ , and not the U and I

parameters. We further assume that such a dependence on the
atomic structure is given by the linear and quadratic electron-
lattice constants �f and ←→g introduced in Eq. (62).

The selection of the most important electron-lattice cou-
plings is performed by observing how much a particular matrix
element hs

ab changes with a particular distortion of the lattice
with respect to the RAG. To quantify this change, we need to
compare pairs of configurations i and i ′ that correspond to the
same electronic state (e.g., to the same spin arrangement, to the
same amount of electron/hole doping, etc.) but differ in their
atomic structure. More precisely, one of the configurations
must correspond to the RAG state (i), while the other one
(i ′) is characterized by a distortion given by {�uλ(i ′)}. For
simplicity, here we will restrict to distortions involving only
one displacement component of one atom, so that we only have
one specific uλα(i ′) �= 0, where α labels the spatial direction.
We then consider that a particular atom λ participates in the
electron lattice affecting the hs

ab element if

1

|uλα|
∣∣hs

ab(i ′) − hs
ab(i)

∣∣ > δfe−l , (93)

where δfe−l is a new cutoff. Note that, for a large enough
distortion |uλα|, this condition pertains to both the linear ( �f )
and quadratic (←→g ) electron-lattice interactions. Yet, since we
activate a single atomic displacement at a time, in the case
of ←→g we are only probing the diagonal elements. Restricting
ourselves to the diagonal elements of ←→g is justified by the
observation that, in the systems we have so far studied, those
are the only significant ones. At any rate, the scheme can
be trivially extended to check a possible contribution of off-
diagonal terms.

V. IMPLEMENTATION OF THE ALGORITHM:
THE SCALE-UP CODE

We have implemented this new method in the SCALE-UP

(Second-principles Computational Approach for Lattice and
Electrons) package, written in Fortran 90 and parallelized us-
ing Message Passing Interface (MPI). Presently, this code can
perform single-point calculations, geometry optimizations,
and Born-Oppenheimer molecular dynamics using either full
diagonalization or the Lanczos scheme mentioned above.

The energy of the reference state, E(0), is obtained from
model potentials like those introduced by Wojdeł et al. [30],
which are interfaced with SCALE-UP. We have also developed
an auxiliary toolbox (MODELMAKER) for the calculation of
all the parameters defining E(1) and E(2), using as input
DFT results for one-electron Hamiltonians in the format of
WANNIER90 [66]. As shown in Sec. VI, these implementations
can be used to create models that match the accuracy of the
DFT calculations at an enormously reduced computational
cost, opening the door to large-scale simulations (up to tens

of thousands of atoms) of systems with a complex electronic
structure, using modest computational resources.

The input to the code is based on the flexible data format
(fdf) library used in SIESTA [31] and contains several python-
based tools to plot bands, density of states, geometries and
other properties.

VI. EXAMPLES OF APPLICATION

In order to illustrate the method, we will discuss its
application to two nontrivial systems with interactions of very
different origin. The first example consists in the calculation
of the energy of a Mott-Hubbard insulator, NiO, for different
magnetic phases. Our goal here is to show that the method
can be used to deal accurately with complicated electronic
structures including phenomena like magnetism in transition
metal oxides. In this example we will also show how the
method can tackle rather large systems (2000 atoms) that
are at the limit of what can be done with first-principles
methods today, reducing the computational burden by orders
of magnitude.

The second application involves the two-dimensional elec-
tron gas (2DEG) that appears at the interface between band
insulators LaAlO3 and SrTiO3 [75]. We will not discuss here
the origin of the 2DEG, which has been treated in great detail
in the bibliography [28,75–77]. Rather, we will check whether
our approach can predict the redistribution of the conduction
electrons at the LaAlO3/SrTiO3 interface, and the accompany-
ing lattice distortion, as obtained from first principles. Thus,
this example will showcase the treatment of electron-lattice
couplings and electrostatics within our approach.

A. Details of the first-principles simulations

We construct our models following the recipes described in
Sec. IV, and the first-principles data are obtained from small-
scale calculations with the VASP package [78–80]. The local
density approximation (LDA) to density-functional theory is
used to create the TS data for SrTiO3. The calculations for NiO
are also based on the LDA, but in this case an extra Hubbard-U
term is included to account for the strong electron correla-
tions [81], as will be discussed below. We employ the projector-
augmented wave (PAW) scheme [80] to treat the atomic cores,
solving explicitly for the following electrons: Ni’s 3s, 3p, 3d,
and 4s; O’s 2s and 2p; Sr’s 3s, 3p, and 4s; and Ti’s 3s, 3p,
3d, and 4s. The electronic wave functions are described with
a plane-wave basis truncated at 300 eV for NiO and at 400 eV
for SrTiO3. The integrals in reciprocal space are carried out
using �-centered 4 × 4 × 4 k-point meshes in both cases.

B. NiO magnetic couplings

Transition metal oxides are very interesting as they present
optical, magnetic, and structural properties that are, very
often, tightly coupled with each other. This fact, together
with the large variety of functional properties that they can
display, makes them a big focus of attention in both basic
and applied materials science. From a theoretical point of
view their study is complicated, mostly because of the strong
correlations associated to the electrons in the compact d shell
(especially, those of first-row 3d transition metal ions) and
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the frequent presence of many competing magnetic phases.
Naively, one may expect most of these oxides to be metallic due
to their open-shell nature while, in fact, many are insulators.
This problem strongly affects computational methods; in fact,
most common approaches, like DFT with local or semilocal
exchange-correlation functionals, often fail to correctly repro-
duce the magnetic or insulating properties of these compounds.
Simulations at this level of theory yield too diffuse states with
underestimated interactions. The key to simulate successfully
these materials lies in the way electron-electron interactions
are handled. A panoply of methods have been developed to
deal with this issue from first principles, ranging from the
inclusion of a Hubbard-like term in the Hamiltonian in the
so-called DFT+U methods, to more sophisticated schemes
with dynamically screened interactions, such as the GW
approximations [50,51].

For this first application of our scheme, we have chosen a
simple transition metal oxide, NiO, a staple example of many
new electronic structure simulation methods. Our goal is to
show how our second-principles scheme can handily be used
to compute the properties of strongly correlated materials,
based on parameters obtained from first-principles LDA+U
simulations. In particular we will study the band structure and
magnetism of this archetypical binary oxide.

1. Model parameters

The geometric structure of NiO shows some subtle
and not fully understood distortions associated to its mag-
netism [82,83], but this issue is beyond the scope of the present
paper. In order to keep the model as simple and illustrative as
possible, we neglect the lattice degrees of freedom in this case.
As regards the spin order, neutron diffraction experiments [84]
show that the ground state corresponds to the so-called AF2
phase, where planes of spin-up and spin-down polarized
nickels alternate along the 〈111〉 direction of the conventional
cell [see Fig. 8(c)]. Further experiments [85,86] evidence that
the AF2 to paramagnetic transition is of second order and
occurs at a Nèel temperature TN = 524 K.

The simulations of NiO are carried out in the experimental
rocksalt cell, with a lattice constant of 4.17 Å [87]. This cell is
compatible with several spin arrangements ranging from fully
ferromagnetic [FM; Fig. 8(a)] to various antiferromagnetic
(AF) ones [Figs. 8(b) and 8(c)]. Our TS includes the ground
state spin arrangement (AF2) as well as the ferromagnetic
one, which we choose because it represents a relevant limit
case for spin-spin interactions. We use the LDA+U approach
introduced by Dudarev et al., [81] with an effective U value of
7 eV, applied only on the 3d orbitals of Ni. These calculations
indicate that the AF2 solution is more stable than the FM one
by 89 meV per formula unit (f.u.).

Ligand-field theory predicts the magnetism in this lattice
to be the result of the half-filled eg shell of the octahedrally
coordinated Ni2+ ion [see Fig. 8(d)]. Thus, we expect the
levels around the Fermi energy to have this character. After
calculating the electronic structure from first principles within
the LDA+U, we find that the top valence and bottom
conduction bands are composed of several strongly entangled
states, as shown in Fig. 3(c). Thus, we project our WFs
seeking to disentangle orbitals participating in the valence

FIG. 8. Schematic cartoon of different magnetic configurations
of bulk NiO in the conventional cell of its rocksalt structure: (a)
ferromagnetic phase (FM), (b) antiferromagnetic phase with planes
of spin-up (red arrows) and spin-down (blue arrows) polarized nickels
alternating along the [001] direction (AF1), and (c) antiferromagnetic
phase with planes of spin-up and spin-down polarized nickels
alternating along the [111] direction (AF2). (d) Scheme of the d

levels associated to an isolated NiO10−
6 complex.

band [Ni(t2g), Ni(eg), and O(p)] from others in the conduction
band; to do this we use the tools provided within the WANNIER90

package. A graphical representation of the resulting orbitals
[Fig. 3(c)] clearly shows that we are able to isolate bands
with the expected chemical character: The isosurfaces of the
maximally-localized WFs (MLWFs) at the right hand side of
Fig. 3(c) clearly resemble the shape of the O(p), Ni(dxy), and
Ni(d3z2−r2 ) orbitals for the valence band, and of the Ni(d3z2−r2 )
orbital for the bottom of the conduction band. Given the strong
entanglement of these bands, we use a reference occupation
for the construction of our model that is obtained by populating
equally all of them. As discussed in Sec. III J 1, this amounts
to assuming oJ = 7/8 = 0.875 electrons per band and spin
channel.

At this point we start with the analysis of the Hamiltonian
as described in Sec. IV, using the {hs

ab(i)} set obtained after
the disentanglement procedure. First, we seek to choose a
reasonable value of δεh that allows us to describe accurately
the system’s bands without including an excessive number
of γab terms. As can be seen in Fig. 7, δεh = 0.05 eV is a
reasonable choice; this involves the use of 71 γ terms per f.u.

In order to decide the values of δεee and δD that will
determine the U and I parameters considered in the fit, we first
examine the occupation difference of each of the WFs, Daa.
Let us recall that the diagonal elements of the deformation
occupation matrices are defined as the difference between the
reduced density matrix computed at the LDA+U level for the
corresponding configuration in the TS and the reference one. In
the FM phase, the bands with eg character for the majority spin
channel are expected to be fully occupied (daa = 1), while they
should be empty for the minority spin (daa = 0). Therefore,
for WFs with eg character, we expect to have Daa = 0.125 for
the majority spins and Daa = −0.875 for the minority spins,
for both Ni atoms. For the antiferromagnetic configuration, as
the spin in one of the Ni atoms is reversed, we expect the same

195137-19
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TABLE I. The difference occupation of the Wannier functions
(Daa) in the training set used for NiO. The results are presented for
the ferromagnetic (FM) and AF2 antiferromagnetic states, and for the
majority (Major) and minority (Minor) spin channels.

State Spin Ni1(eg) Ni1(t2g) O1(p) Ni2(eg) Ni2(t2g) O2(p)

FM Major 0.125 0.125 0.125 0.125 0.125 0.125
FM Minor −0.756 0.124 0.047 −0.756 0.124 0.047
AF2 Major 0.122 0.125 0.083 −0.742 0.125 0.083
AF2 Minor −0.742 0.125 0.083 0.123 0.125 0.083

behavior for Daa as in the FM solution for one of the nickels,
while the character of the majority and minority spins must
be exchanged for the second Ni. In both cases (FM and AF2),
the t2g bands are fully occupied, so that the corresponding
Daa should be 0.125. These tendencies are well reproduced
in our TS configurations as can be seen in Table I, where the
occupations are obtained using the {hs

ab(i)} set obtained after
applying δεh = 0.05 eV filter. The differences with respect to
the ideal ionic values are due to the chemical bonding between
Ni and O.

If the results for the FM and AF2 configurations are
compared, we can see that the only significant change pertains
to the occupation of the eg-like orbitals of the Ni ion whose
spin is flipped: The majority (0.125) and minority (−0.756)
values of the difference occupation are basically exchanged as
we move from the FM to the AF2 calculation, as expected
from the localization of the magnetic moment over these
orbitals in Ni2+ ions (see Fig. 8). This is an indication that,
in order to capture the magnetic interactions in this system,
only electron-electron interactions involving eg-type WFs are
necessary. Moreover, we can observe how, on one hand, the
average orbital occupations vary very little (essentially by
0.005, 0.001, and 0.003 electrons for the Ni(eg), Ni(t2g), and
O(p)-like WF, respectively) between spin configurations. This
fact translates into a similar value of DU [Eq. (37)]. As
can be seen in Eq. (67), if DU is the same for the different
configurations of the TS, its contribution to the total energy is
constant, i.e., it does not play any role in the calculations of
the relevant energy differences. On the other hand, the spin-
up/spin-down differences of occupation are strongly changing
between the FM and AF2 configurations. This indicates that
only Stoner-type (I ) interactions are relevant to describe the
relative stability of the magnetic phases in the training set.
As can be seen in Table II, by playing with δεee and δD it
is straightforward to confirm that the eg−eg interactions drive
magnetism in this system, while Ni(t2g)-like and O(p)-like
energy levels have a secondary role. Nevertheless, including
the latter interactions is necessary to accurately describe the
bands.

In Fig. 9 we show the second-principles computed bands for
two different set of parameters: (i) the first one, obtained after
a filtering the electron-electron interactions with a threshold
of δεee = 1.10 eV, was selected to include only couplings
between Ni(eg)-like WFs. The results obtained with this set of
parameters are labeled SP-LDAU-Ni(eg); (ii) the second one,
obtained with a threshold of δεee = 0.20 eV, corresponds to a
case in which interactions between Ni(eg)-like and Ni(t2g)-like

TABLE II. Magnetic coupling constants of NiO obtained from
various experiments and first-principles (upper part of the table) and
second-principles calculations (lower part of the table). The latter
have been modeled after the LDA+U calculations (highlighted) and,
as can be seen, converge towards the results obtained with this method
when reducing δεee. HSE stands for the hybrid exchange and correla-
tion functional proposed by Heyd-Scuseria-Ernzerhof [90], PSIC for
pseudo self-interaction-correction, ASIC for atomic self-interaction-
correction, and GGA for generalized gradient approximation.

Method J1 (meV) J2 (meV)

neutron [88] 1.4 −19.0
neutron [91] −1.4 −17.3
HSE [89] 2.3 −21.0
PSIC [89] 3.3 −24.7
ASIC [89] 5.2 −45.0
GGA+U [92] 1.7 −19.1
LDA+U 2.6 −17.5

SP-LDAU-Ni(eg) −0.2 −19.1
SP-LDAU-Ni(3d) −0.0 −19.1
SP-LDAU-Ni+O 3.3 −17.6

WFs at the same atom, as well as between Ni(eg)-like and
nearest-neighboring O(p)-like WFs, are also included. The
results are labeled SP-LDAU-Ni+O. As can be seen, the
bands for the FM state are better reproduced in the second
case, because of the correction of the diagonal spin-up/spin-
down Ni(t2g) and O(p) energies. These diagonal Hamiltonian
matrix elements, which determine the center of mass of the
corresponding bands, vary with the Ni(eg) occupation as
expressed in Eq. (71). Indeed, we can estimate the maximum
error for the hs

ab terms as

δhs
ab = max

∣∣hs
ab(i) − hs

ab

∣∣, (94)

where hs
ab(i) is a matrix element directly obtained from

the first-principles TS and hs
ab is computed from Eq. (71)

for a given set of parameters. This maximum error reduces
from 0.651 eV in the SP-LDAU-Ni(eg) case to 0.132 eV for
SP-LDAU-Ni+O. We also considered a third, intermediate
case with δεee = 0.5 eV, where Ni(eg)-Ni(t2g) interactions
are included but those with oxygen orbitals are neglected
[SP-LDA-Ni(3d) in Table II]. The associated maximum error
is 0.29 eV for such a choice.

It is interesting to note that our TS does not contain enough
information to fit reliably all the Ni(eg)-Ni(eg) interactions
compatible with our filters. More precisely, we find that
there are only two relevant Iab,a′b′ constants: one related to
the self-energy of the eg states (Iaa,aa, where a is a eg-like
basis function), and a second one quantifying the interaction
between the two eg states in the same atom (essentially,
the exchange interaction known as Hund’s coupling). It is
clear that our TS is not suitable to distinguish between such
interactions. In both the FM and AF2 phases, the Ni2+ ions
display a S = 1 spin configuration; yet, the interplay between
self-interaction and Hund coupling only appears when trying
to differentiate between the high- (S = 1) and low- (S = 0)
spin intra-atomic states.
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FIG. 9. Band structure of NiO as obtained for two different sets of cutoff parameters. Solid black lines represent first-principles bands
obtained from LDA+U calculations, while solid green lines show the bands as obtained after filtering of hs

ab with a cutoff of δεh = 0.05 eV
[see Sec. IV]. Dashed red lines represent the bands as obtained after a second filtering with (a) δεee = 1.10 eV, δD = 0.10 and (b) δεee = 0.20
eV, δD = 0.10.

We checked whether such an indeterminacy affects the
energy difference between the FM and AF2 phases as obtained
from the model. To do so, we first add a Hubbard-U constant
associated to the self-energy of the eg WFs, and make it equal to
the corresponding I constant (i.e., we impose Iaaaa = Uaaaa).
In this way the self-interaction of an electron placed in one of
these orbitals is U − I = 0, while the interaction between two
electrons that only differ in their spin is U + I = 2I = 2U .
Then, we vary this self-interaction parameter between 0 eV and
6 eV, optimize the interaction between different eg orbitals to
reproduce the bands, and calculate the FM-AF2 energy gap.
We observe that the energy difference is quite insensitive to the
value of Iaaaa, varying by less than 5% in the explored range.
Hence, we simply take Iaaaa = 2 eV to fix the indeterminacy
in the model.

2. Results

Magnetism in rocksalt structures is usually described using
a Heisenberg Hamiltonian with coupling constants between
first- (J1) and second- (J2) nearest neighbors [86,88–92].
These constants can be obtained from the energy differences
between different spin arrangements by solving the equation
system:

EFM = Eref − 6J1 − 3J2

EAF1 = Eref + 2J1 − 3J2 (95)

EAF2 = Eref + 3J2,

which involves the spin arrangements of Fig. 8. Eref stands for
the energy of a reference phase.
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FIG. 10. Results for the DI difference occupation matrix in real
space. In panel (a) we display the 16-ion supercell employed in the
calculation along one of its main directions (left) and a general
panoramic of the same cell (right). Panels (b)–(d) show the DI

distribution in real space for the FM (b), AF1 (c), and AF2 (d)
phases, respectively. Blue and red regions correspond to spin-up and
spin-down magnetization, respectively.

We employ our models to compute the energy of these
phases, using a 2 × 2 × 2 supercell containing 16 atoms, as
sketched in Fig. 10. After converging the calculations, we plot
the spatial distribution of DI (using the spatial representation
of the WFs in our basis) to check that the obtained solu-
tions correctly correspond to the FM, AF1, and AF2 spin
arrangements. These plots are shown in Fig. 10, where it
can be seen that the electron distribution in the simulations
perfectly matches the spin orderings sketched in Fig. 8. We
can now check the numerical results for the phase energies
obtained with the three second-principles parametrizations
[denoted, respectively, SP-LDAU-Ni(eg), SP-LDAU-Ni(3d),
and SP-LDAU-Ni+O in Table II] and compare them to our full
DFT+U result and data in the literature (see, e.g., Ref. [89]).

We find that the coupling constants computed from our
models compare quite well with the first-principles results.
Indeed, we find the J2, running along the 180◦ Ni-O-Ni bridge,
to be much stronger than the J1 coupling along the 90◦ Ni-O-Ni
path. It is worth noting that a parametrization as simple as that
of the SP-LDAU-Ni(eg) model captures this essential feature
already. Then, when we include I couplings between Ni(eg)
and Ni(t2g) WFs, we obtain a very similar result, with a very
small J1 = −0.04 meV. Finally, when we include electron-
electron couplings with the oxygen orbitals, we get a value for
J1 that is very close to the first-principles result.

C. Electron gas at the LaAlO3/SrTiO3 interface

Now we tackle the well-studied electron gas appearing
at the interface between LaAlO3 (LAO) and SrTiO3 (STO).
The origin of the 2DEG has been intensively debated in
the literature [77,93]. Here we are going to consider an
idealized defect-free interface in which the driving force for

FIG. 11. Schematic representation of a polar (001)
SrTiO3/LaAlO3 interface. Atoms are represented by balls: O
(red), Ti (blue), Sr (yellow), Al (black), and La (green). A free
LaO-terminated surface of LaAlO3 is assumed. Numbers below
each layer indicate formal ionic charge. The built-in polarization
of SrTiO3 (null) and LaAlO3 is illustrated by black arrows. (b)
Schematic representation of the energy bands in the case of partial
compensation of the polar discontinuity at the interface. � represents
the LaAlO3 gap. (c) Set-up of the second-principles simulation for
this interface. White and dark green squares represent, respectively,
SrTiO3 and LaAlO3 cells. The metallic states in SrTiO3, containing
Ne electrons per cell, are represented here by a blue gradient. To
be consistent with the electrostatic boundary conditions we use
the charge image method, represented here by a positive charge
distribution (red gradient) on the LaAlO3 side. The meaning of NSTO,
NLAO, and Nfreeze is explained in the text.

the 2DEG is the so-called polar catastrophe that was proposed
originally [75,76], which arises from the charge discontinuity
between LaAlO3 and SrTiO3 when the bilayer is grown along
the (001) pseudocubic direction of the perovskite lattice [94].
In such a case, the occurrence of the metallic state strongly
depends on the electrostatic boundary conditions on each side
of the interface. [28] Let us look at them in some detail to
establish the basic elements of the calculation.

From simple electrostatic arguments we know that

DLAO − DSTO = σfree, (96)

where DLAO and DSTO are the normal components of the
displacement field in LaAlO3 and SrTiO3, respectively, and
σfree is the free charge density at the interface between the
materials. Hence, depending on the particular values of DLAO

and DSTO (which can be controlled in a simulation by varying
the charges at the open surfaces of the layers [28]), a 2DEG
appears at the interface according to Eq. (96). Figure 11(b)
illustrates the case for a partial compensation (DSTO = 0, and
DLAO < −0.5, both in units of electrons per surface unit cell),
which correspond to the case of a partial transfer of charge
from the LaAlO3 surface to the interface due to the crossing of
the top of the valence band of LaAlO3 with the bottom of the
conduction band of SrTiO3. (The interface free carriers occupy
states in the conduction band of SrTiO3.) When there is no full
compensation an electric field is present in the LaAlO3 layer.

This setup is ideal to test our method, since the main
physical effects are related to the negative doping of SrTiO3,
such a doping being controlled by the electrostatic boundary
conditions. Further, the properties of the 2DEG (e.g., spatial
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extension) depend essentially on the ability of SrTiO3 to
screen these additional charges, which in turn involves the
electron-lattice couplings in our models.

We simulate the LaAlO3/SrTiO3 interface [Fig. 11(c)] by
considering a slab of N = NLAO + NSTO 5-atom perovskite
unit cells, where the first NLAO cells are occupied by
LaAlO3 and the following NSTO cells by SrTiO3. Following
Stengel [28], we do not consider the electronic details of
the interface, as these were found to be of little relevance
to describe the main physical features of the 2DEG. In fact, as
regards the construction of our model, we treat the entire slab
as if it was made of SrTiO3, but introducing the following
modifications: (i) on the LaAlO3 side, the levels of the
conduction band are shifted up (by appropriately modifying the
γaa self-energies) so that they do not interact with those on
the SrTiO3 side, and (ii) to account for the large disparity
between the LaAlO3 and SrTiO3 dielectric constants (the
latter is around 25 times larger than the former at room
temperature) we simply freeze the coordinates of the atoms on
the LaAlO3 layer at the RAG, to prevent atomic displacements
from screening electric fields.

As regards the electrostatic boundary conditions, we con-
sider that DSTO = 0 and DLAO = −Ne/S, i.e., we have Ne

electrons per unit area S doping the slab. To impose such
conditions, we first freeze into the centrosymmetric structure
the atomic positions of Nfreeze unit cells at the end of the
SrTiO3 side of the slab [see Fig. 11(c)]. Secondly, we use
the image-charge method [56] [see Fig. 11(c)] to introduce an
electric field from the LaAlO3 side of the interface consistent
with DLAO = −Ne/S.

1. Model parameters

We now describe how we obtain the parameters for the
SrTiO3 layer. As already mentioned, SrTiO3 is a nonmagnetic
insulator and the RED corresponds to the ground state of the
undoped system. This allows us to take the lattice potential
for pure SrTiO3 described in Ref. [30] as the E(0) term of
our model [see Eqs. (5) and (6)], using the LDA-relaxed
cubic phase as RAG. [We slightly modified the force field
of Ref. [30], by tuning the interaction between first-nearest-
neighboring Ti and O pairs, to exactly reproduce a dielectric
constant of 500 for the cubic phase (see Fig. 12), as obtained
from LDA calculations in Ref. [28]].

We then extended the model to include the electronic states
associated with the bottom of the conduction band of SrTiO3,
which present a dominant Ti(t2g) character [see Fig. 3(a)]. We
followed the recipe in Sec. IV to extract the γ parameters
describing these bands.

Note that our focus in this application was to capture the
electron-lattice effects that determine the properties of the
2DEG, and we were not concerned with electron-electron
couplings beyond the LDA. Thus, we did not include U or
I terms in our model, and used a TS that contains the RAG
and distorted structures (with individual atoms displaced by
0.05 Å, 0.10 Å, and 0.15 Å from their RAG positions), all of
which where assumed to be in the RED state.

We then found all γ , �f , and ←→g parameters [Eq. (62)]
compatible with the choices δεh = 0.05 eV and δfe−l =
1.0 eV/Å [95]. We observe that the electron-lattice constants

FIG. 12. Dielectric constant of SrTiO3 as calculated in LDA [28]
(solid black line) and with our second-principles method (solid blue
circles and line) as a function of the electric displacement field, i.e.,
as a function of the number of electrons per surface unit doping the
interface.

associated to diagonal one-electron terms, γaa, are much more
sensitive to the displacement of the ions than the off-diagonal
ones. The distortions that induce larger changes involve the
Ti-O bond, as expected according to the long literature on
covalency in ferroelectric oxides and related materials [60,96–
98]. Finally, we took the Born charges and high-frequency
dielectric tensor used in our lattice model, E(0), to compute
the electrostatic energy associated to the electronic degrees of
freedom.

2. Results

We now compare the results for the LaAlO3/SrTiO3 inter-
face obtained with the above-described model and the LDA
results of Ref. [28], where the calculations were performed
for NLAO = 5 and NSTO = 12. Using these values, we carry
out geometry optimizations with the constraints illustrated
in Fig. 11(c). The results of these calculations are shown
in Figs. 13(a) and 13(b), where we compare the electron
densities from first-principles LDA and second-principles sim-
ulations for Ne = 0.3 and Ne = 0.5, respectively. Moreover, in
Figs. 13(c) and 13(d) we show the obtained lattice distortions,
in terms of the layer-by-layer rumpling, for the same cases.

We can observe that the second-principles and LDA results
match well for both atomic and electronic structure. Moreover,
following the discussion in Ref. [28], we checked that our
model captures correctly the influence that various physical
parameters (e.g., linear and nonlinear dielectric response of
the lattice, etc.) have in the final result. As regards relatively
small errors in the shape of the electronic density profiles, we
attribute them to technical differences (pseudopotentials, etc.)
in the LDA calculations of Ref. [28] and those performed to
construct our models.

D. Additional considerations

To finish this section we would like to give some estimations
of the computer time required to carry out the second-
principles calculations for the systems discussed in the present
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FIG. 13. Results for the 2DEG at the LaAlO3/SrTiO3 interface. The second-principles results are indicated with solid blue lines, while the
LDA results are given by dashed red lines. Panels (a) and (b) show the electron density distribution for Ne = 0.3, and Ne = 0.5, respectively.
Panels (c) and (d) show the rumpling of the lattice for the same two cases.

work. We will focus first on NiO, as we carried out both the
DFT and second-principles computations for the same unit
cells and on the same computational platform, so a reliable
comparison of timings should be feasible. In Table III we
show the time necessary to perform a single-point calculation
using a single CPU, using the same reciprocal space sampling
in the LDA+U and second-principles simulations. The values
for 4- and 16-ion cells clearly show the very large speed-up of
our second-principles simulations when compared to standard
DFT even in small cells. Looking at Table III we see that there
are very small differences between the timing results between
the different parameterizations associated to different levels
of description of the electron-electron interactions in NiO. Fi-
nally, in order to give an estimation of the scaling of the method
as it stands now (i.e., at an early stage of implementation), we
carried out a calculation of a 10 × 10 × 10 periodic supercell
that contains 2000 atoms. This is approximately the size

TABLE III. Simulation running times on a single CPU for the
4-ion 1 × 1 × 2, 16-ion 2 × 2 × 2, and 2000-ion 10 × 10 × 10 NiO
supercells. The lower time obtained for the SP-LDAU-Ni(3d) with
respect to SP-LDAU-Ni(eg) is due to the smaller number of self-
consistent steps required in the former simulation.

Method 4 ion (s) 16 ion (s) 2000 ion (hours)

LDA+U 65.0 3516.8
SP-LDAU-Ni(eg) 1.4 14.5 6.63
SP-LDAU-Ni(3d) 1.4 14.1 6.59
SP-LDAU-Ni+O 1.5 15.8 6.97

limit for single-point DFT calculations, and it would require
significant computational resources and a highly parallelized
code. However, this simulation at the SP-LDAU-Ni(eg) level
took 6.6 hours of a single CPU, suggesting that calculations
including tens of thousands of atoms are within reach using
our models.

Turning now to the simulation of the LaAlO3/SrTiO3

interface we note that each of the geometry optimizations
involving a 85-atom supercell took about 13 minutes using
a single desktop CPU.

VII. RELATION WITH OTHER METHODS

As already highlighted in the Introduction, various methods
have been proposed during the last few decades to bridge
over time and length scales while keeping DFT accuracy.
They range from empirical potentials [99], to efficient linear-
scaling DFT implementations permitting million atom simula-
tions [100], or the use of the non-self-consistent (e.g., Harris)
functionals [13], among others. A critical discussion of all
of them is out of the scope of the present paper. Instead, we
will focus on the two well-established methods most closely
related to the present scheme, namely, the self-consistent
charge density functional tight-binding (SCC-DFTB), and
the effective Hamiltonians for lattice dynamical studies of
ferroelectrics and related materials. The former puts the
emphasis on the description of the electronic structure, while
the latter is a purely lattice model without an explicit treatment
of the electrons. Detailed connections of different aspects of
the methodology have already been made at the corresponding
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sections where the main features of our model have been
presented. Yet, once a complete view of our new scheme
has been given, it seems appropriate to further compare the
present work with these two previous proposals, recalling
the basic features of those methods, pointing to the specific
sections where the equivalent approaches have been discussed
(enclosed in parenthesis below), and emphasizing the new
aspects and how we can go beyond the scope of the previous
schemes.

Our model is based on a simple and computationally-
efficient, electron-free description of the lattice dynamical
or vibrational properties of the material of interest. The
first step on this direction was taken in the 90’s works of
Vanderbilt, Rabe, and others, who introduced first-principles
model potentials (which they called effective Hamiltonians) to
describe the ferroelectric phase transitions of perovskite oxides
like BaTiO3 and PbTiO3 [16–18]. The effective-Hamiltonian
approach involves a drastic simplification of the material,
which is coarse-grained to retain only the lattice degrees
of freedom associated with the ferroelectric properties. The
material is then described in term of a reduced number of
variables (i.e., local polar modes and cell strains) whose
iterations are parametrized by means of a Taylor series of
the energy around a suitably chosen reference structure.
Such a scheme is physically-motivated, computationally very
efficient, and its precision can be improved, to some extent, in
a well-defined way. The application of the original scheme to
increasingly complex oxides has shown its generality, the good
transferability of the interatomic couplings among dissimilar
chemical environments, and the reliability and predictive
power of the models. More recently, this scheme has been
generalized by some of us [30] to retain all the atomic degrees
of freedom, thus removing the coarse-grain approximation.
These models can be trivially formulated for any material, their
accuracy is systematically improvable, their interpretation
is physically transparent, and they lend themselves to very
efficient schemes to compute the model parameters from first
principles.

In the approach of Ref. [30], it is implicitly assumed
that electrons follow the atoms adiabatically, so that, for
any atomic configuration, the electrons are in their ground
state configuration. Hence, such models allow us to perform
Born-Oppenheimer molecular-dynamics simulations, exactly
in the same way as most DFT codes do. Nevertheless, if we
wanted to monitor the electronic properties during such a
simulation, or consider situations in which the electrons are not
in their ground state (e.g., excitations, additional carriers, etc.),
we obviously need to extend the models. This is precisely the
step we have undertaken in this work, explicitly including the
effect of the electronic band structure using a tight-binding-like
description.

Among the most efficient implementations for large scale
atomistic simulations, the SCC-DFTB has got a remarkable
success. Several approximations are shared with our new
scheme. Among them, the second-order expansion of the
DFT total energy with respect a charge density fluctuation
(Sec. III B), the use of a localized minimal basis set to expand
the electronic wave functions (Sec. III C), or the approximation
(Sec. III C 2) and parametrization (Sec. IV) of interaction
integrals. Within this framework, SCC-DFTB is comparable

in speed with semiempirical methods, roughly 2–3 orders of
magnitude faster than standard DFT [32]. Therefore, it has
become a successful technique in the study of large organic
and biological molecules.

However, there are also some remarkable differences
between SCC-DFTB and the present approach. In the SCC-
DFTB method, the charge density fluctuations are quantified
with respect a reference electron density that is defined as the
superposition of neutral atom densities; hence, the reference
density is not related to the actual electronic structure of the
specific material being simulated. Therefore, the fluctuations
include the difference in the charge density between the ground
state charge density and the reference one due to the chemical
bonding. As a consequence, all the valence band orbitals
must be included in the calculation for an accurate enough
description of δρ. In contrast, we use a difference reference
electron density in our case: We usually take the self-consistent
solution for the ground state for a representative atomic
configuration of the material of interest. Our deformation
charge density thus represents a local deficiency/excess of
electrons that occur in excited or perturbed electronic states. In
other words, our model focuses on the description of electronic
excitations and is not hampered by the need to account for
chemical bonding. This opens the door to the treatment of
excitons, polarons, transport properties, or the analysis of
competing magnetic orders, in a very accurate way. In contrast,
our method does not allow us to compute cohesive energies and
other basic quantities that are accessible within a SCC-DFTB
scheme.

The second difference is in the choice of the minimal basis
set. The SCC-DFTB method employs atom-centered localized
orbitals [101], typically the product of a Slater orbital for the
radial part times a spherical harmonic for the angular part. At
least one radial function for each valence shell occupied in the
isolated atom must be included. Moreover, the basis functions
are nonorthogonal, giving rise to an overlap matrix and to a
generalized eigenvalue problem.

In contrast, in our scheme we can select the electronic bands
that really play a role in the description of the properties under
analysis, and use a basis of Wannier functions coming from
unitary transformations of the corresponding manifold. This
results in a basis set that is perfectly adapted to the specific
material and property under investigation, and which may
reduce by orders of magnitude the number of basis functions
and dimension of the the associated Hamiltonian matrices.
For example, in the case of SrTiO3 treated above in Sec. VI C,
instead of requiring 30 atomic orbitals per formula unit [9
atomic orbitals for Sr and Ti (1 s, 3 p, and 5 d) and 4 for
the O (1 s and 3 p)], we can consider only the 3-t2g orbitals
of the conduction band of SrTiO3. Since we use orthogonal
Wannier functions, the mathematical problem of diagonalizing
the Hamiltonian is more amenable and does not require the
costly inversion of overlap matrices. Naturally, the reduction
of the computational burden translates into an increase of the
size of the systems that can be simulated.

The third difference comes from the evaluation of the matrix
elements. In the SCC-DFTB method, only two-center Hamil-
tonian and overlap matrix elements are treated and explicitly
evaluated, neglecting several three-center contributions to the
corresponding matrix elements. Moreover, (i) the diagonal
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elements of the Hamiltonian are taken from the eigenvalues
of the free atom [12], so the crystal field terms are not
considered; and (ii) intra-atomic electron-electron interac-
tions are averaged, without considering differences shell-by-
shell [32]. In our case we explicitly retain many three- and
four-center integrals in the parametrization process, and the
diagonal matrix elements are sensitive to electrostatic effects,
as explained in Sec. III E. This allows us to treat transition
metal systems that traditionally have been challenging for
SCC-DFTB approaches [102,103].

The last important difference is the treatment of the lattice
and the interatomic interactions. In the SCC-DFTB method,
the term that involves the ion-ion repulsion, together with the
DFT double counting terms, are included in a short-range
repulsive potential. It is approximated as a sum of two-body
potentials, fitted from the difference of self-consistent DFT cal-
culations and the corresponding tight-binding band-structure
energy for suitable reference systems at various interatomic
distances. In the new proposed scheme, we deal with the
lattice dynamical part by using a model potential (force
field) that is directly fitted to a training set of relevant DFT
data, achieving very good agreement with the first-principles
energies (typically, accuracies below 1 meV per atom can
be achieved for the relevant part of the energy surface).
Hence, the generality of the employed model potential, and
the flexibility in its definition and truncation, makes it possible
to have a very accurate description of the Born-Oppenheimer
surface.

VIII. CONCLUDING REMARKS

In this paper we have presented a first-principles-based
multiscale method, which we denominate second-principles,
that makes it possible to compute the properties of materials at
an atomic level, with an accuracy essentially equal to DFT, and
at a very reduced computational cost. Our approach is based
on dividing the electron density of the system into a reference
part, usually corresponding to its neutral ground state at any
geometry, and a deformation part, defined as the difference
between the actual and reference densities. We take advantage
of the fact that the largest part of the system’s energy depends
on the reference density and can be efficiently and accurately
described by a force field with no explicit consideration of the
electrons. Then, the effects associated to the difference density
can be treated perturbatively with good precision by working
in the Wannier function basis corresponding to the reference
state. Further, the electronic description can be restricted to
the bands of interest, which renders a computationally very
efficient scheme.

Conceptually, the present approach constitutes a fresh look
at the problem of how to describe lattice and electronic degrees
of freedom simultaneously and effectively, introducing a con-
venient partition of the energy that permits an accurate treat-
ment of both types of variables and their mutual interactions.
In our view, our method constitutes a significant step beyond
the usual techniques—ranging from molecular-mechanics to
tight-binding and quantum-mechanics/molecular-mechanics
schemes—towards a more unified model.

As illustrated by the examples described here, the present
approach allows us to obtain DFT-like accuracy in the analysis

of subtle physical effects, like those determining the relative
stability of the magnetic phases of NiO, or those involved in
the structural relaxations and screening processes associated
to the two-dimensional electron gas formed at the interface of
LaAlO3 and SrTiO3. Note that these problems—which involve
electron correlation effects, transition-metal ions, etc.—are
usually hard to treat within DFTB schemes [103].

As currently formulated, our approach has only one
essential limitation: It is restricted to systems in which it is
possible to (loosely) define an underlying bonding topology
that is to be preserved. Hence, while the method allows the
system undergo significant structural modifications, e.g., like
those involved in typical ferroelectric or ferroelastic phase
transitions, it is not possible to study full-blown bond breaking
directly with it. Nevertheless, this limitation can be overcome
by using our method in multiscale simulations that permit a
more detailed treatment (e.g., with DFT) of the regions of
the material in which the constant-topology condition is not
satisfied.

It is also important to note that the constant-topology
condition is perfectly compatible with the study of many
structurally nontrivial cases, such as nanostructured materials,
surfaces, chemically-disordered solid solutions, coexistence
of different structural and electronic phases, etc. Hence, the
application scope of our scheme is enormous.

Let us also note that the present method can be extended to
cover physical effects not mentioned here. For example, it is
possible to expand it to treat relativistic phenomena (as spin-
orbit effects) or time-dependent nonequilibrium situations (as
resulting from the interaction with light) in essentially the same
way as the initial DFT implementations were extended to do
so (by implementing a noncolinear treatment of magnetism,
time-dependent DFT, etc.). Further, since our method provides
us with a Hamiltonian for the interacting system, one could
imagine solving the electronic problem in ways that go beyond
the mean-field approach adopted here, and thus better account
for many body effects.

The ability to simulate systems with thousands of atoms,
treating both lattice and electrons accurately, may permit for
the first time predictive investigations of a variety of intrigu-
ing phenomena—e.g., Mott transitions, coupled spin-lattice
dynamics, charged and conducting domain walls, polaron
transport, etc.—in realistic conditions of temperature, applied
fields, etc. We thus believe that the present method has the
potential to significantly advance our understanding of some of
today’s most interesting problems in condensed-matter physics
and material science.
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