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It is well known that in a quantum phase transition (QPT), entanglement remains short ranged [Osterloh et al.,
Nature (London) 416, 608 (2005)]. We ask if there is a quantum property entailing the whole system which
diverges near this point. Using the recently proposed measures of quantum macroscopicity, we show that near a
quantum critical point, it is the effective size of macroscopic superposition between the two symmetry breaking
states which grows to the scale of system size, and its derivative with respect to the coupling shows both singular
behavior and scaling properties.
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Introduction. Superposition of states is the most important
and distinctive feature of the microscopic world: Atoms,
electrons, and photons, and even molecules [1,2], can exist in a
superposition of two or more physical states. This property lies
at the heart of all intriguing quantum phenomena that we know,
from wave-particle duality to entanglement and nonlocality.
Nevertheless, everyday objects of macroscopic size do not
exist in superposition of their different states. We do not see
states which represent a cat in a superposition of dead and
alive states [3]. This may be due to the fact that quantum
mechanics is modified at a certain scale [4,5], or it may be
due to the extremely rapid decoherence of such states as the
result of their macroscopic number of constituents with the
outside world [6]. There are now intensive experimental [1,2]
and theoretical investigations [5] to reveal if there is a distinct
border between the micro and macro world.

Despite the absence of quantum superpositions on macro-
scopic scales, we see many macroscopic phenomena which
are the result of collective quantum mechanical behavior of
their microscopic constituents. An important example is the
phenomenon of superconductivity which arises when pairs of
electrons interact with phonons and tend to entangle and form
Cooper pairs [7], which subsequently undergo Bose condensa-
tion. Without this microscopic superposition of atomic entities,
we do not have the phenomenon of superconductivity at the
macroscopic level. Nevertheless this cannot be called a witness
of quantum mechanics at macroscopic scale. It was Leggett
[8] who first emphasized the difference between this type of
macroscopic quantum effect, which is the result of collective
superposition of microscopic entities, and the one which was
discussed above, i.e., when a macroscopic system, a large
macromolecule [1], a virus or a cat [3], is in a superposition of
two macroscopically distinct states.

To put all this in very concrete terms, one can take a
number N ∼ Avogadro number of spin 1/2 particles. Then
the simplest conceivable example of the former is a state like
[ 1√

2
(| ↑〉 + | ↓〉)]⊗N

and of the latter a Greenberger-Horne-

Zeilinger state [9] |GHZ〉 = 1√
2
(| ↑〉⊗N + | ↓〉⊗N ). It is only

the latter kind that is called a quantum superposition on a
genuinely macroscopic scale. We should stress the difference
between three concepts: macroscopic quantum superposition,
entanglement, and quantum correlation. By macroscopic
superposition we mean a state like |ψ1〉 + |ψ2〉, where |ψ1〉
and |ψ2〉 are macroscopically distinct [10], in which case a

measurement of any single particle can reveal the difference
between |ψ1〉 ≡ | ↑〉⊗N and |ψ2〉 ≡ | ↓〉⊗N . States with this
property are a priori extremely rare in many ensembles of
pure states, especially there are highly entangled states that
feature vanishing macroscopic superposition as pointed out
in Ref. [11]. Finally this property is distinct from quantum
correlation, which can exist even in separable mixed states
and is measured by quantum discord [12].

It is quite conceivable that there is a spectrum of states
between these two extremes. Therefore, like many other
quantities, once the qualitative difference and the typical
examples of these two classes of states are understood,
the next step is to define reasonable measures to quantify
exactly how macroscopic a quantum superposition is. These
measures are called measures of quantum macroscopicity. To
this end, various proposals have been suggested [10,13–20].
The basic idea used in all these proposals is that macroscopic
superposition entails a large amount of uncertainty when a
suitably chosen macroscopic observable is measured. The
way this large variance scales with N defines a measure of
macroscopicity.

We now come to the main questions asked in this paper:
Is there macroscopic superposition of symmetry breaking
states in a quantum phase transition (QPT), and if yes, how
this macroscopicity behaves near the critical point? How the
relevant critical exponents are related with this scaling? What
happens exactly near a point of quantum phase transition? The
intuition behind these questions is the observation that in a
classical phase transition, say in the Ising model, large areas
of up and down spins coexist. So one expects that in a quantum
phase transition, this coexistence appears in the form of large
scale superpositions. Therefore an exponent like ν which sets
the scale of divergence of correlation length in classical phase
transition, may appear here in some form of divergence of
macroscopic superposition.

In fact, it was anticipated that near a quantum critical
point, we will see long range entanglement (a quantum parallel
of diverging correlation length in classical phase transition).
However it came as a big surprise [21] that near a critical
point, entanglement always remained short ranged. Instead
what becomes singular and shows scaling behavior is the
derivative of this short-range entanglement. Later elaborations
revealed a more detailed picture. First it was shown that
while entanglement remains short range in a QPT, other kinds
of quantum correlations, measured by discord, can be long
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ranged [22]. Then it was shown that depending on whether
the QPT is first order or continuous, the entanglement itself or
its derivative is the quantity which is relevant in detecting it
[23,24].

Therefore this result gives some weight to the question
we are asking. In fact by using the measures of macroscopic
superposition which have been recently developed [14,19], we
show that near the point of phase transition, the system, which
is undecided between the two symmetry breaking phases,
actually goes into a macroscopic superposition of them and
shows singular behavior and scaling properties in the derivative
of the effective size of this superposition. Our findings on
macroscopic superposition, in conjunction with other results
on short-range entanglement in quantum phase transitions
[21,25–30], confirm the recent results of Ref. [11] according
to which macroscopicity is rather rare in ensembles of random
pure states despite having large geometric entanglement.

The Ising model in transverse field. We now consider
a paradigmatic example of quantum phase transitions [31],
namely the Ising model in transverse field, described by the
Hamiltonian

H = −λ

N∑

i=1

σx
i σ x

i+1 −
N∑

i=1

σ z
i , (1)

where σ
μ

i is the μth Pauli matrix (μ = x,y,z) at site i and λ is
the inverse strength of the external field. Besides the obvious
translational symmetry, the Hamiltonian is real and has a global
phase flip symmetry [U,H ] = 0, where U = ∏N

i=1 σ z
i . The

operator U flips σx
i (and also σ

y

i ) and leaves σ z
i unchanged.

Let the state vectors {|0〉,|1〉} and {|+〉,|−〉} be the eigenstates
of the σ z and σx , respectively. In the limit λ = 0 the unique
ground state |00 · · · 0〉 is unchanged under the U symmetry,
while in the limit λ −→ ∞ the symmetry is broken (in the
thermodynamic limit) and the two degenerate ground states
| + + · · · +〉 and | − − · · · −〉 are mapped to each other by
U . The model is solved exactly by using the Jordan-Wigner
transformation which turns it into a free fermion model
[32,33]. At zero temperature and in the limit λ = 0, the system
goes to the unique ground state |00 · · · 0〉 where all the spins
are aligned in the z direction. In this phase 〈σx〉 as a local order
parameter vanishes. As we gradually increase the value of λ, at
λ = 1, the system undergoes a quantum phase transition, the
symmetry break downs, and the system chooses one of the two
degenerate ground states, finally in the limit λ −→ ∞ system
goes to | + + · · · +〉 or | − − · · · −〉, where each of these two
states shows superpositions (in the {|0〉,|1〉} basis), but on a
microscopic scale of each individual spin.

Measures of macroscopic superposition. We now remind
the reader of a few basic facts about two measures of
macroscopicity which we mainly use in our analysis. A simple
calculation shows that the variance of any additive operator
like A = ∑N

i=1 Ai on any product state |�〉 = |ψ〉⊗N is
proportional to N , that is V�(A) = NVψ (A), where Vφ(X) :=
〈φ|X2|φ〉 − 〈φ|X|φ〉2 is the variance of the observable X

on the state |φ〉. However quantum states which are in
macroscopic superpositions show quadratic behavior when the
variance of suitable additive operators are measured on them.
An example is the GHZ state. For this state the observable
Mz := ∑N

i=1 σ z
i (e.g., the magnetization in the z direction)

shows an anomalously large variance. In fact straightforward
calculation shows that VGHZ(Mz) := 〈M2

z 〉 − 〈Mz〉2 = N2.
These anomalous large fluctuations are the signature of a
macroscopic quantum superposition. In view of the fact
that superposition is the characteristic feature of quantum
mechanics against classical mechanics, it is usually said that
the scaling of an additive operator with system size N is
taken to depict its classical or quantum behavior. However
it should be noted that this quantum versus classical division
is to be interpreted as superposition versus product state. There
are other divisions with respect to entanglement or more
generally the type of correlations [34] which, although they
have their root in the superposition property, are defined and
characterized in a different way. Here we confine ourselves to
this specific meaning mentioned above. Based on this concept,
the p− index of a pure state |ψ〉 is defined as [14]:

max
A∈A

Vψ (A) = O(Np), N large, (2)

where A is the set of all additive operators A = ∑N
i=1 Ai such

that every operator Ai acts nontrivially on the ith particle and
||Ai || = 1. A fully product state has p = 1. This means that
p > 1 is an entanglement witness for pure states. The state
with p = 2 contains superposition of macroscopically distinct
states, because in this case a Hermitian additive operator has
a “macroscopically large” fluctuation in the sense that the
relative fluctuation does not vanish in the thermodynamic limit.

For such pure states, the fluctuation of an observable
means the existence of a superposition of eigenvectors of
that observable corresponding to different eigenvalues with
the largest difference. An example is the GHZ state which is
the superposition of two states which are eigenvectors of the
additive operator

∑N
i=1 σz corresponding to N and −N .

As another measure of macroscopicity, Fröwis and Dür
defined the quantum fisher information [19] which detects a
certain kind of correlation. It is well known that a separable
state has a Fisher information which scales at most linearly
with the system size N for every local operator like A [35],
F(ρsep,A) � 4N . (For the definition of Fisher information
and its properties see Ref. [36].) On the other hand, for GHZ,
F(GHZ,A) = 4N2. The authors of Ref. [19] introduce the
concept of an “effective size” Neff. For a general state ρ of N

particles, this measure is defined as

Neff(ρ) := max
A∈A

F(ρ,A)/(4N ). (3)

In other words, Neff defines the scale over which macro-
scopic superposition and hence quantum behavior prevails.
If Neff(ρ) = O(N ), we have macroscopic quantum behavior
while if Neff(ρ) = O(1), then quantum behavior, if existing at
all, exists at the microscopic level. For pure states ρ = |ψ〉〈ψ |,
the Fisher information reduces to four times the variance
Vψ (A) = 〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2, and the effective size takes
the form

Neff(ψ) = max
A∈A

Vψ (A)/N. (4)

In the sequel we will use these two measures to quantify the
macroscopic superposition of the ground state of the Ising
model in transverse field, when it undergoes a quantum phase
transition.
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Macroscopic superposition and its scaling behavior. Let
us denote the ground state of the transverse Ising model
(1), by |ψ〉, which simplifies the more detailed notation
|ψλ(N )〉. Let A be of the form An = ∑N

i=1 σ i · n, where
n = (sin θ cos φ, sin θ sin φ, cos θ ). In order to use measure of
macroscopicity (4), we have to first determine the direction n
for which maximum variance is obtained. Using the definition
of variance we find

Vψ (An) = sin2 θ [cos2 φ 〈X2〉 + sin2 φ 〈Y 2〉] + cos2 θ〈Z2〉
+ 1

2 sin 2θ [cos φ〈ZX+XZ〉+sin φ〈ZY + YZ〉]
+ 1

2 sin2 θ sin 2φ 〈XY + YX〉
−〈X sin θ cos φ + Y sin θ sin φ + Z cos θ〉2, (5)

where X = ∑N
i=1 σx

i with similar definitions for Y and Z. The
U symmetry [by which (X,Y,Z) −→ (−X, − Y,Z)], implies
that 〈Y 〉 = 〈X〉 = 〈XZ + ZX〉 = 〈YZ + ZY 〉 = 0. As for
〈XY + YX〉, it vanishes due to the reality of the Hamiltonian
and Hermiticity of the operator XY + YX and the fact that
Y ∗ = −Y . Therefore the variance (5) is reduced to

Vψ (An) = sin2 θ [〈X2〉 cos2 φ + 〈Y 2 〉 sin2 φ] (6)

+ cos2 θ [〈Z2〉 − 〈Z〉2].

To find the direction n for which this variance is maximized,
we note that since n is defined on the compact surface of a
2-sphere, the maximum will be a local one which is determined
by examining the first and second derivatives of Vψ (An) as a
function of θ and φ. For simplicity let us denote this quantity
simply by V . It is then found that

∂V
∂θ

= sin 2θ [cos2 φ〈X2〉 + sin2 φ〈Y 2〉 − 〈Z2〉 + 〈Z〉2],

∂V
∂φ

= sin2 θ sin 2φ[〈Y 2〉 − 〈X2〉]. (7)

The extrema are obtained by setting these two derivatives equal
to zero which yield three solutions (θ = 0, φ = irrelevant) or
n = z, (θ = π

2 ,φ = 0) or n = x and (θ = π
2 ,φ = π

2 ) or n = y.
Examining the Hessian matrix (of second derivatives) shows
that n = x is indeed the point of maximum. Note that while
the model has a U symmetry, it lacks rotational symmetry and
hence in general 〈X2〉 �= 〈Y 2〉. In other words, the U operator
cannot change an operator’s X into Y or vice versa. Therefore
the observable which detects macroscopic superposition is
Ax = ∑N

i=1 σ i · x, which from (4) gives the effective size of
superpositions as

Neff ≡ Vψ (Ax)

N
= 〈X2〉

N
=

N∑

n=1

〈
σx

1 σx
n

〉
, (8)

where in the last equality we have used translational invariance
of the system. Therefore determination of the macroscopic
measure of superposition is reduced to calculation of the
two point functions Gxx(n) := 〈σx

1 σx
1+n〉. Note that while the

model is a free fermion, determination of the two-point spin
functions is quite nontrivial due to the nonlocal nature of
the Jordan-Wigner transformation. These two-point functions
have been determined in Refs. [32] and [33]. They are

given by

Gxx(n) :=

∣∣∣∣∣∣∣∣∣∣∣

G−1 G−2 ... G−n

G0 G−1 ... G−n+1

. . .

. . .

. . .

Gn−2 Gn−1 ... G−1

∣∣∣∣∣∣∣∣∣∣∣

,

with Gn = Ln + λLn+1, and Ln = 2
N

∑
k>0 λ−1

k cos(kn),

where �k =
√

1 + λ2 + 2λ cos(k), m = 0,1, . . . , 1
2 (N − 1).

We now want to use (8) and see how this effective size
changes as we change the coupling λ. In the two limiting
case, the behavior is simple and expected. When λ = 0, the
ground state is |ψ〉λ=0 = |00 · · · 0〉, for which 〈σx

1 σx
n 〉n�=1 = 0.

Therefore we obviously have Neff = 〈σx
1 σx

1 〉 = 1 and hence
Neff = 1, implying no superposition. On the other hand in the
limit of very large λ, the first term of the Hamiltonian (1)
dominates and the ground state goes to |ψ〉λ−→∞ ≈ 1√

2
(| +

+ · · · +〉 + | − − · · · −〉), where it is expected that Neff −→
N . This is indeed the case as a simple calculation from (8)
shows.

Remark. Note that in the limit λ −→ ∞, as long as N

is finite, no symmetry breaking happens and so the ground
state in the limit does not break the U symmetry. So starting
at λ = 0 with the state |00 · · · 0〉 which is an eigenstate of U

with eigenvalue 1, when we continuously change λ, we always
remain in the same eigenspace and hence in the limit λ −→ ∞,
we have the superposition |ψ〉λ−→∞ ≈ 1√

2
(| + + · · · +〉 + | −

− · · · −〉) and not one of its individual components. It is only in
the thermodynamic limit that the symmetry breaks down and
only one of the two states is chosen and hence the macroscopic
measure again gives a zero value as λ = 0.

In the absence of symmetry breaking, which only happens
for an infinite system, we have to use (8) and do a finite size
scaling. The results are shown in Fig. 1. It is clear from this
figure that Neff

N
sharply goes from 0 to 1 at a point λm(N ). As

N approaches ∞, this transition becomes discontinuous. The
inset of Fig. 1 expresses this in an alternative way by showing
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FIG. 1. The macroscopic superposition as measured by effective
size Neff := 〈X2〉

N
in the transverse Ising model as a function of the

coupling λ. The curves from top to bottom, correspond to N =
21,101,401 and N = 1001. The inset shows the p index as a function
of λ. We considered different system sizes, 1000 < N < 2000, for
which a sharp transition in the p index could be detected. It is seen
that both Neff and p change discontinuously near the point λc = 1.
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FIG. 2. The derivative of macroscopicity as measured by
dNeff/dλ, obtains its maximum value at point λm(N ). The left
inset shows that this point approaches the actual critical point
λc := λm(∞) = 1 as in (9) and the right inset shows that the maximum
value itself diverges with N as in (10).

the p index as a function of λ where again a sharp transition
is found at λm(N ). Therefore the quantum phase transition is
concomitant with a divergence of the derivative of Neff which
sets the scale of macroscopic superpositions in the system,
that is, near a critical point, quantum superposition of the
two degenerate states entails the whole system. Obviously this
divergence is not seen directly for finite N . Instead what we see
is that dNeff

dλ
is a rapidly increasing function of N . Let us see the

position of the maximum λm(N ) and the maximum value of the
derivative behave with N . Figure 2 shows that by increasing N

toward the thermodynamic limit, the position of this transition
point approaches the actual critical value λc := λm(∞) = 1.
This approach toward the actual critical point is governed by
a power law in the form

1 − λm(N ) ∼ N−1.96. (9)

We note in passing that the same scaling behavior, albeit
with different powers, has been reported in other works. In
particular in Ref. [21] where the nearest neighbor concurrence
or entanglement is considered the relation is 1 − λm(N ) ∼
N−1.87 and in Ref. [27] where negativity of three consecutive
particles is considered the relation is like 1 − λm(N ) ∼ N−2.19.
Finally in Ref. [28] where the maximum of geometric phase of
the ground state is considered the approach toward the actual
critical point is like 1 − λm(N ) ∼ N−1.803.

Furthermore, the maximum value of the derivative at λm(N )
diverges with N as follows

dNeff

dλ
(λm,N ) ∼ N1.75, (10)

leading to a divergent behavior in the thermodynamic limit
(N −→ ∞). Finally the most important exponent, namely
ν = 1 which puts the model in the universality class of the Ising
model is obtained when the data for the function dNeff

dλ
(λ,N )

collapse to a single curve by choosing a suitable scaling
function. Figure (3) shows such a scaling function. It is clearly
seen that

dNeff

dλ
(λ,N ) − dNeff

dλ
(λm,N ) = N1.89Q(N (λ − λm)), (11)

where Q is a universal function derived numerically and
shown in Fig. 3. When this is compared with the scaling
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FIG. 3. The collapse of the derivative of macroscopicity on a
universal function of N (λ − λm), equation (11), which shows that
n̂ = 1. The inset shows the asymptotic behavior of dNeff/dλ in the
vicinity of the quantum criticality as in equation (12), the result is for
N = 4001.

function with variable N1/ν(λ − λm) [37], it leads to ν = 1,
in agreement with the well known results for the Ising model
in transverse field [32,33,38]. On the other hand, we can find
the asymptotic behavior of dN∗

eff
dλ

(λ) := dNeff
dλ

(λ,N → ∞) in
terms of the coupling λc − λ = 1 − λ. For this we have to
take very large values of N to mimic the thermodynamic limit
N −→ ∞. For N = 4001, the result is

dN∗
eff

dλ
(λ) ∼ (1 − λ)−1.89, (12)

as we see the exponent 1.89 is fully consistent with the equation
(11).

Note that in the light of (11), equation (10) is consistent
with a recent result of Ref. [39] on measuring multipartite en-
tanglement by dynamical susceptibilities, where it is reported
that fQ := FQ

N
∼ N0.75. Here FQ is the Fisher information

which for pure states reduces to four times the variance. The
consistency comes about by noting that fQ = 4Neff and a
relation like fQ ∼ N0.75h((λ − λm)N ), leads to the relation
dfQ

dλ
≡ dNeff

dλ
∼ N1.75h′((λ − λm)N ), where h′ is the derivative

of h.
Finally it is instructive to study a hypothetical transition

between the ground state at λ = 0 (|0〉⊗N ) and the ground
state at λ −→ ∞ ( 1√

2
[|+〉⊗N + |−〉⊗N ]), in the form of

|ψn〉 = 1√
2

[|+〉⊗n + |−〉⊗n] ⊗ |0〉N−n, (13)

where a domain wall has been created at site n. The state is
unzipped at point n and as n grows, the hypothetical state
changes from the ground state at λ = 0 to the ground state at
λ −→ ∞. It is a simple calculation to calculate Neff for this
state. It turns out to be

Neff = n(n − 1)

N
+ 1, (14)

which shows that the effective size raises from 1 to N in a
smooth way.

In summary, by studying a paradigmatic example of
quantum phase transitions and using the recently defined
measures of macroscopic superpositions we have shown that
the degree of macroscopic superposition diverges near the
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point of quantum phase transitions. Physically this means
that quantum phase transitions and the ensuing symmetry
breaking does not happen on a microscopic scale which then
would propagate through the whole system, but the entire
system goes into a macroscopic superposition of symmetry
breaking states. This change happens in a very sharp way
which becomes discontinuous in the thermodynamic limit.
These findings verify, by different tools, the scenario suggested
in Ref. [40] according to which, ‘a topological defect can be
put in a nonlocal superposition, where the order parameter
of the system is “undecided” by being in a quantum super-

position of conflicting choices of the broken symmetry.’ The
final stage of quantum phase transition is achieved by the
rapid environment-induced decoherence (τdec ∼ 1

N
) of this

macroscopic superposition to a statistical mixture of the two
symmetry breaking phases. Such statistical mixtures also show
a nonanalytical behavior, measured by the quantum Fisher
information, but they do not show diverging behavior [41].
These findings on macroscopic superposition, in conjunction
with the result of Ref. [21] on short-ranged entanglement, may
be an example of the interplay between the two properties,
recently mentioned in Ref. [11].
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