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Strange metals from quantum geometric fluctuations of interfaces
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Our current understanding of strongly correlated electron systems is based on a homogeneous framework. Here
we take a step going beyond this paradigm by incorporating inhomogeneity from the beginning. Specifying to
systems near the Mott metal-insulator transition, we propose a real-space picture of itinerant electrons functioning
in the fluctuating geometries bounded by interfaces between metallic and insulating regions. In 2+1 dimensions,
the interfaces are closed bosonic strings, and we have a system of strings coupled to itinerant electrons. When
the interface tension vanishes, the geometric fluctuations become critical, which gives rise to non-Fermi-liquid
behavior for the itinerant electrons. In particular, the poles of the fermion Green’s function can be converted
to zeros, indicating the absence of propagating quasiparticles. Furthermore, the quantum geometric fluctuations
mediate Cooper pairing among the itinerant electrons, indicating the intrinsic instability of electronic systems
near the Mott transition.
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I. INTRODUCTION

The emerging picture of strongly correlated electron sys-
tems is that they possess a multiplicity of nearly degenerate
ground states [1–3]. These systems are qualitatively different
from those with a single stable ground state, like Landau Fermi
liquids and symmetry-broken phases. A small change in the
external parameters, e.g., pressure, doping, and magnetic field,
substantially alters the macroscopic properties of these sys-
tems. A grand challenge of modern condensed-matter physics
is to build a theoretical framework for such systems with large
ground-state degeneracy. When the excitation energy is higher
than the energy barrier between different ground states, the
system is intrinsically inhomogeneous, with different ground
states coexisting and fluctuating in real space [1,4–6]. The cur-
rent paradigm of many-body systems based on a homogeneous
framework, with inhomogeneities treated as perturbations, is
not adequate for the description of such intrinsically inhomo-
geneous systems. Here, we propose a framework that explic-
itly incorporates ground-state degeneracy and inhomogeneity
from the beginning. The basis of our formalism is the quantum
geometric fluctuations associated with interfaces between
different degenerate ground states. The study of emergent
phenomena at interfaces has recently attracted much attention
[7–10], which provides further motivations for our work.

For concreteness, we consider the Mott metal-insulator
transition (MIT) [11,12], which is prototypical of strongly
correlated electron systems. At the MIT, the metallic phase
and the insulating phase are degenerate in free energy. In
a coarse-grained picture, each coarse-grained region can be
treated as in either the metallic or the insulating state (see
Fig. 1). Let us focus on the charge degrees of freedom. Then the
insulating regions can be treated as inert, e.g., not contributing
to transport or Cooper pairing. The metallic regions are the
active degrees of freedom. A crucial observation is that the
metallic regions are bounded by fluctuating boundaries, and
these boundaries are themselves active degrees of freedom.
Then our basic picture of a Mott MIT consists of regions of
itinerant electrons coupled to the fluctuating boundaries. Such

a picture is fundamentally different from usual condensed-
matter systems, which are generally defined on a rigid back-
ground. By contrast, in our formalism, the electronic system
near the MIT constitutes a physical system operating on a soft
background with quantum-mechanically fluctuating geometry
and topology. Thermally fluctuating geometries, which we
draw analogy with at various points, have been widely
explored in soft condensed-matter physics [13–18]. However,
the quantum counterpart, to the best of our knowledge, was
previously encountered only in quantum gravity [19]. The
closest example in condensed-matter physics is probably the
idea of fluctuating stripes [20].

Such quantum geometric fluctuations have far-reaching
implications for the response of a system near a second-order
or weakly first-order MIT, for which the geometric fluctuations
become (nearly) critical. The relevant physical systems include
cuprates [12,21], organic conductors [22,23], iron pnictides
[24,25], and heavy fermions [26,27]. These systems display
in their phase diagram a metallic region with anomalous
single-particle and transport properties vastly different from
that of Landau Fermi liquids. Such strange metal or non-
Fermi-liquid phases are usually associated with abrupt changes
of the Fermi surface, which signals an itinerant to localized
transition for certain degrees of freedom. Strange metal phases
are believed by many to be key to the understanding of
high-temperature superconductivity [21,28,29]. Indeed we
find that the geometric fluctuations of the interface lead to
anomalous scaling in the fermion self-energy. Furthermore,
due to inversion symmetry breaking around the interface,
couplings not allowed in a homogeneous environment are
enabled [30,31], which induce attractive interactions among
the fermions and promote pairing.

II. GLOBAL PHASE DIAGRAM

A central object in our consideration is the interface,
the morphology of which gives rise to a new dimension
in the global phase diagram. Let us start by considering a
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FIG. 1. Real-space configuration of coexisting metallic (M) and
insulating (I) regions, separated by the interfaces.

first-order MIT [see Fig. 2(a)]. Close to the transition point,
the system consists of mixtures of the metallic and insulating
phases, separated by the interface. The length scales associated
with the fluctuations of the interface are much larger than
typical microscopic scales such as the interaction range and
intercarrier spacing. Such length scale separation makes it
difficult to treat the interfacial degrees of freedom within a
microscopic Hamiltonian. Hence we will use a coarse-grained
description, where one represents the two phases as domains
of ferromagnetically ordered Ising spins: spin up for the
metallic phase and spin down for the insulating phase [32].
Concentrating on the behavior near the interface, one can
further integrate out the bulk Ising degrees of freedom to obtain

FIG. 2. (a) Schematic phase diagram of a first-order MIT. The
horizontal axis denotes the external parameter that tunes the system
through the transition, the vertical axis denotes the temperature, and
the red dot is the critical end point. (b) The three-dimensional global
phase diagram for the metal insulator transition, including a new axis
representing the interface tension σ ≡ σ (T = 0). As σ decreases,
the critical endpoint is driven to lower temperatures (red solid line)
and becomes a QCP at σ = 0 and T = 0. (c) The three-dimensional
phase diagram projected to the tension-temperature plane. The droplet
phase with σ > 0 corresponds to the shaded region in (b). The sponge
phase is controlled by the tensionless QCP. (d) Typical interface
configuration in the sponge phase, with characteristic length scale
ξK .

an effective Hamiltonian for the interface. In d dimensions, the
Hamiltonian is of the general form [13–15]

Hs =
∫

dS

(
σ + κ

2
H 2 + κ̄K

)
, (1)

with the d − 1-dimensional area element dS, the interface
tension σ , the mean curvature H , the Gaussian curvature K ,
and the corresponding bending rigidities κ and κ̄ .

As one approaches the critical endpoint, the interface
tension vanishes as σ (T ) ∼ (1 − T/Tc)μ, with the critical
exponent μ (Widom scaling). The zero-temperature interface
tension σ (T = 0) varies from system to system, forming a
three-dimensional (3D) phase diagram [Fig. 2(b)]. As σ (T =
0) decreases, the temperature Tc of the critical endpoint
decreases. When σ (T = 0) vanishes, Tc also vanishes, and
there is a continuous phase transition at zero temperature,
which forms a quantum critical point (QCP). Projecting the
three-dimensional phase diagram to the tension-temperature
plane, one obtains the phase diagram shown in Fig. 2(c). Such
a phase diagram has been extensively studied in chemistry,
biology, and soft condensed-matter physics in the context
of surfactant systems [16–18]. When the surface tension is
positive and large, it is energetically favorable to minimize
the surface area, and the system is in the droplet phase, with
droplets of the minority phase residing in the majority phase.
When the tension is negative and large, with a positive bending
rigidity κ stabilizing the system, it is energetically favorable
to maximize the area of the interface, but at the same time
minimize the interface curvature. The system then consists
of alternating layers of metallic and insulating phases, and
the system is in the lamellar (for d = 3) or stripe (for d = 2)
phase.

The droplet phase and the lamellar or stripe phase are
separated by the QCP. In the quantum critical region, the
system consists of bicontinuous percolating domains of
the metallic and insulating regions [see Fig. 2(d)], and this
phase is usually termed the sponge phase in the study of
surfactant systems [16–18]. Mapping the system to Ising spins,
the droplet phase corresponds to the ferromagnetically ordered
phase, and the sponge phase corresponds to the paramagnetic
phase that restores the Z2 symmetry. The sponge phase can
also be reached by dynamically melting the stripes [20].

III. THE MODEL

We consider systems near a second-order or weakly first-
order MIT, which are then in the sponge phase at finite
temperatures. As a first step, we ignore the effect of disorder,
which can locally pin the interface fluctuations. Since the
fermions move much faster than the interface, there is a
separation of time scales. With the characteristic length scale
of the sponge structure, ξK , the characteristic velocity of
fermions, the Fermi velocity vF , the characteristic velocity of
the interface, the sound velocity vs , and the condition vF � vs ,
there are two characteristic time scales: ξK/vs and ξK/vF . At
time scales t < ξK/vF , assuming the fermion mean free path
to be much larger than ξK , the fermion propagation is ballistic.
At time scales ξK/vF < t < ξK/vs , the interface can be treated
as quasistatic, and the fermions propagate in a random porous
media [see Fig. 2(d)]. This corresponds to the region of
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Knudsen diffusion [33], where the dominant scattering process
is the scattering of fermions with the boundary. In this region,
fermions are largely confined to local cages with typical
size ξK , and transport occurs through tunneling between
neighboring cages. At time scales t > ξK/vs , the interface
fluctuates strongly, fermions experience the averaged effect of
such fluctuations, and the system is on average homogeneous.

To capture the long-time-scale physics, we proceed in the
spirit of Hertz-Millis [34,35] to describe the system in terms
of fermions coupled to the bosonic collective modes, here the
quantum fluctuations of the interfacial geometry. The partition
function of the system involves a summation over different
fermion field configurations and a summation over different
geometries:

Z =
∫

DV
∫

DψDψ†e−Ss [∂V]−Se[ψ,ψ†]−Sint[ψ,ψ†,∂V], (2)

where V represents the real-space configurations of the
metallic regions, ∂V represents their boundaries, Ss represents
the interface action, Se represents the fermion action, and Sint

represents the coupling between fermions and the interface.
We treat the fermions, without coupling to the interface, as
a renormalized Fermi gas with the action Se = ∫

V dd rdtLe,
where

Le = ψ†(r,t)
(

i
∂

∂t
+ ∇2

2m∗ + μ∗
)

ψ(r,t), (3)

with effective mass m∗ and effective chemical potential μ∗.
Focusing here on the charge degrees of freedom, we have
suppressed the spin index.

A. Modeling the interface

When the interface is classical, its action takes the form
Ss = Hs/T . Near the MIT where quantum fluctuations are
important, we also include the temporal fluctuations of the
interface in the action. Let us now specify to d = 2, for
the following reasons: (1) simplicity of theoretical treatment
and (2) prominent MIT materials, e.g., cuprates and organic
conductors, indeed have layered structure. In this case, the
fluctuating interfaces are closed bosonic strings. We use ξa with
a = 1,2 to represent the worldsheet coordinates of the string
and Xμ with μ = 0,1, . . . ,D − 1 to represent its space-time
coordinates. Here D = d + 1, and in our case d = 2. It is
also useful to bear in mind that a Euclidean quantum field
theory in d-dimensional space at T = 0 can be mapped
to a (d + 1)-dimensional classical field theory. Hence the
quantum string action in (2+1)-dimensional space-time can
be mapped to the classical membrane Hamiltonian in three
dimensions [taking d = 3 in Eq. (1)]. When the string tension
σ vanishes, the string worldsheets form spongelike structures
in 2+1-dimensional space-time.

The leading-order term in the string action is the tension
term, named the Nambu-Goto action [19]:

S (1)
s = σ

∫
d2ξ

√
g, (4)

with g ≡ det gab, and gab ≡ ∂aX
μ∂bXμ is the induced metric.

Since we consider the system near a QCP associated with
vanishing tension, higher-order terms in the string action

need to be included. Hence the string theory for interface
fluctuations near the QCP goes beyond the standard textbook
string theory [19] which involves only the Nambu-Goto action.
The higher-order terms are associated with the curvature of the
worldsheet (see, for example, [13,14] and references therein).
The local curvature properties of a surface are encoded in the
two principal curvatures K1 and K2, which are the inverse of
the principal curvature radii. The product of the two principal
curvatures is the Gaussian curvature K = K1K2, and their
average is the mean curvature H = (K1 + K2)/2.

The mean curvature term (Polyakov-Kleinert action) is of
the form [36,37]

S (2)
s = κ

2

∫
d2ξ

√
gH 2. (5)

In terms of the string coordinates Xμ, this term can be written
as

S (2)
s = κ

2

∫
d2ξ

√
g(�gXμ)2, (6)

where �gXμ = 1√
g
∂a(

√
ggab∂bXμ).

The third term associated with the Gaussian curvature K is
the Einstein-Hilbert action of the worldsheet field theory:

S (3)
s = κ̄

∫
d2ξ

√
gK, (7)

since the Gaussian curvature K is related to the scalar curvature
R by K = R/2. This term is a total divergence. The Gauss-
Bonnet theorem relates such a term to the topology of the
surface: ∫

d2ξ
√

gK = 2πχ, (8)

where χ is the Euler characteristic of the surface. Thus this
term is only relevant when the topology of the worldsheet
changes.

It is quite useful to write the action in the Monge repre-
sentation, X0 = ξ1 = vst , X1 = ξ2 = x, X2 = h(t,x), where
vs is the sound velocity of the interface (see Fig. 3). The area
element is then dS = d2X

√
1 + (∇h)2, with d2X ≡ dX0dX1,

and

∇h =
(

∂h

∂X0
,

∂h

∂X1

)
=

(
1

vs

∂h

∂t
,
∂h

∂x

)
. (9)

The low-energy effective action (usually named the capillary
wave action; see, e.g., [38] and references therein) is obtained
by expanding the action in powers of field gradients, assuming
that the variation of h in space-time is smooth. The Nambu-
Goto action then becomes

S (1)
s = σ

∫
d2X

[
1 + 1

2
(∇h)2

]
. (10)

In the Monge gauge, the mean curvature reads

H = ∇ · ∇h√
1 + (∇h)2

. (11)

Hence the Polyakov-Kleinert term can be expanded to give

S (2)
s = κ

2

∫
d2X(∇2h)2. (12)
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FIG. 3. Typical interface configurations contributing to the
bosonic string correlator 〈O(XA)O(XB )〉 (a) and 〈O(XB )O(XC)〉 (b).

The Gaussian curvature term is associated with the global
topology change, and does not enter the capillary wave
action. In summary, the capillary wave action reads Scw =∫

dxdtvsLcw, with the Lagrangian

Lcw = σ

2

[
1

v2
s

(
∂h

∂t

)2

+
(

∂h

∂x

)2]
+ κ

2

(
1

v2
s

∂2h

∂t2
+ ∂2h

∂x2

)2

.

(13)

Luttinger-liquid perspective

In the above consideration, the interface fluctuations
are treated as noninteracting. However, since the interface
fluctuations are confined to one dimension, the effect of
interactions can be dramatic. In fact, in one dimension, both
the interacting bosons and fermions are governed by Luttinger-
liquid physics at low energy [39]. We can use a general
scaling form for the capillary wave correlator, assuming
the interactions have driven the interface fluctuations to the
Luttinger-liquid fixed point. An equivalent way to take into
account such Luttinger-liquid physics is to map the quantum-
mechanically fluctuating interfaces in 2+1 dimensions to
random surfaces in 3D Euclidean space and consider random
Gaussian surfaces with a general probability distribution e−Scw ,
where [40]

Scw = B

2

∫
dqdω

(
q2 + v−2

s ω2
)1+ζ |h(q,ω)|2, (14)

with the stiffness B and the roughness exponent 0 � ζ � 1.
One geometric measure of such random surfaces is the fractal
dimension Df of the contours with equal height h(x,t), which

relates the length l of a contour to its radius r , with l ∼ rDf . The
fractal dimension 1 � Df � d = 2 is related to the roughness
exponent by [40]

Df = 3 − ζ

2
. (15)

We note that fractal distributions of dopants have been
observed in cuprates, and they are correlated with the enhance-
ment of the superconducting transition temperature [41].

B. Fermion-interface coupling

We now specify the form of the coupling between the
fermions and the interface. Similar to electron-phonon cou-
pling in layered systems with broken inversion symmetry, e.g.,
in the presence of buckling [42], we expect a local electric field
arising from the asymmetric environment around the interface,
with its direction perpendicular to the interface [30,31]. The
interface thus possesses electric dipole charges, and the local
segments of the strings can be thought of as oppositely charged
parallel plates. The formation of such electric dipoles at the
interface is widely observed in various heterostructures, e.g.,
the metal-semiconductor junction LaAlO3/SrTiO3 [43–46]. In
the Monge gauge, for a static interface, the local electric field
gives rise to the coupling Sint = ∫

dxdtvsLint, where

Lint = λEψ†ψ
∂h

∂x
. (16)

Consider a covariant generalization of such a coupling by
introducing the antisymmetric local electromagnetic field
tensor Fμν [47]. Here we assume the magnitude of the electric
field to be fixed. The fermion density ρ ≡ ψ†ψ then couples
to the worldsheet operator O[X] = Fμνεab∂aXμ∂bXν . The
interaction term thus reads

Sint = λ

∫
d2ξψ†ψFμνεab∂aXμ∂bXν. (17)

The combination ψ†ψFμν plays the role of the Kalb-Ramond
two-form field familiar in string theory [19].

IV. FERMION SELF-ENERGY FROM INTERFACE
FLUCTUATIONS

We now examine how the interface fluctuations influence
the dynamics of fermions. The leading-order corrections to
the fermion action are the self-energy effect and the density-
density interaction. The self-energy correction is of the form

δS(1)
e =

∫
d3XA

∫
d3XB�ABψ†(XA)ψ(XB), (18)

with

�AB = −λ2〈O(XA)O(XB)〉〈ψ(XA)ψ†(XB)〉. (19)

The induced interaction is of the form

δS(2)
e =

∫
d3XA

∫
d3XBVABρ(XA)ρ(XB), (20)

with the fermion density ρ = ψ†ψ , and

VAB = λ2〈O(XA)O(XB)〉. (21)
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So the effect of the interface fluctuations is encoded in the
bosonic string correlator:

DAB ≡ 〈O(XA)O(XB)〉 =
∫

DXO(XA)O(XB)e−Ss , (22)

which involves a summation over worldsheets that pass
through XA,B , with the vertex operator O inserted at XA,B .

The full string theoretical calculation for such a rigid string
theory is beyond the scope of the present paper, and we will
proceed using capillary wave theory, which captures the low-
energy fluctuations of the interface. To calculate DAB , we
employ the Monge gauge, where X0 = ξ1 = vst , X1 = ξ2 =
x, X2 = h(t,x). Since on average the system is homogeneous
and isotropic, the coordinates can be chosen in such a way
that the base plane for which X2 = 0 passes through XA,B .
Then for given XA,B , the correlator DAB is determined from
the 1+1-dimensional capillary wave field theory coupled to
the 2+1-dimensional fermions:

DAB 

∫

DhDψDψ†
(

E
∂h

∂x

)
A

(
E

∂h

∂x

)
B

e−S , (23)

with the action S = Se + Scw + Sint.
We emphasize here the subtlety of dimensionality in our

approach.
(1) We are concerned with the long-time dynamics of

the system, and the system is homogeneous and isotropic
on average at this time scale. Hence the correlator DAB

is defined in 2+1 dimensions and depends only on the
separation between XA,B , i.e., DAB = D(|XA − XB |). We
can then Fourier transform DAB from the 2+1-dimensional
space-time to the momentum/frequency domain.

(2) To calculate DAB , we need to specify the two points
XA,B and sum over all interfaces that pass through them. We
will use the capillary wave formalism for this step, that is,
we sum over low-energy fluctuations around the base plane
that passes through XA,B . Such capillary wave fluctuations are
encoded in a 1+1-dimensional field theory, in terms of the
transverse mode of the string, i.e., the height function h(t,x).

(3) Fermions couple to the interfaces and affect their
dynamics, causing Landau damping. Since fermions live in
2+1-dimensional space-time, we will need to project their
effect to the 1+1-dimensional interface.

We want to compute the Fourier transform of DAB to the
momentum/frequency domain, which can be obtained from
the correlator D(r,ω):

D(q,ω) =
∫

d2re−iq·rD(r,ω). (24)

The correlator D(r,ω), where r ≡ |rA − rB |, is related to the
capillary wave correlator Dh(k,ω) ≡ 〈h(k,ω)h(−k, − ω)〉 via

D(r,ω) =
∫

dkeikrE2k2Dh(k,ω). (25)

After integrating over the angular coordinate, one obtains the
following relation between D(q,ω) and the capillary wave
correlator:

D(q,ω) ∼
∫

drrJ0(qr)
∫

dkeikrE2k2Dh(k,ω), (26)

with the Bessel function J .

Once D(q,ω) is known, the one-loop fermion self-energy
can be obtained from

�(k,ω) = λ2
∫

d2qd�D(q,�)G(k + q,ω + �). (27)

Since the bosonic mode is much slower than the fermions,
the momentum integration can be factorized into two parts∫

dq⊥
∫

dq‖, with q⊥ representing the momentum component
transverse to the Fermi surface, i.e., the fast fermion modes,
and q‖ representing the parallel component, i.e., the slow
modes. Restricting k to be near the Fermi surface, and carrying
out the q⊥ integral, one obtains [48,49]

�(ω) ∼ iλ2
∫

d�d(�)sign(ω + �), (28)

where the bosonic correlator appears through the momentum-
integrated “local” form:

d(ω) =
∫ q0

0
dq‖D(q‖,q⊥ = 0,ω), (29)

with the momentum cutoff q0 ∼ kF .
We have presented above a general procedure to calculate

the fermion self-energy from the 1+1-dimensional capillary
wave correlator Dh(k,ω). We now proceed to consider different
models of the interface fluctuations that give specific forms of
Dh(k,ω).

A. Fermion self-energy for perturbative models

One type of model that takes a more perturbative point
of view can be obtained by starting from Eq. (13), where one
considers the interface to have a tension σ , a curvature stiffness
κ , and a velocity vs relating frequency and momentum.
Coupling to fermions induces extra dynamics for the interface
fluctuations. Including such Landau damping effects, the
capillary wave correlator reads (see the Appendix for the
calculation)

Dh(q,ω) = 1

σ
(
q2 + v−2

s ω2
) + κ

(
q2 + v−2

s ω2
)2 + γ |ω|q2

,

(30)
with a new parameter γ ∝ λ2.

When the interface tension is large, the curvature term can
be neglected. We consider two limiting cases.

(1) When the Landau damping term is small, the dynamics
is relativistic, i.e., D−1

h 
 σ (q2 + v−2
s ω2). The local string

correlator is of the form

d(ω) ∼ vsq0√
ω2 + v2

s q
2
0

. (31)

The fermion self-energy then reads

�(ω) ∼ iarcsinh(ω/vsq0). (32)

After analytic continuation to real frequency, one can see that
the imaginary part of the retarded self-energy Im�R(ω) = 0
for ω < vsq0.

(2) When the dynamics is controlled by Landau damping,
i.e., D−1

h 
 σq2 + γ |ω|q2, one has

D(q,ω) ≡ d(ω) ∼ 1

σ + γ |ω| . (33)

195122-5



SHE, BISHOP, AND BALATSKY PHYSICAL REVIEW B 93, 195122 (2016)

The self-energy then reads

�(ω) ∼ isgn(ω) log

(
1 + γ

σ
|ω|

)
. (34)

Analytic continuation to real frequency yields Im�R(ω) ∼
log (1 + γ 2

σ 2 ω
2). At low frequencies ω � σ/γ , Im�R(ω) ∼

ω2, which is of the Fermi-liquid form. Hence for large interface
tension, the fermions remain in the Fermi-liquid phase.

When the interface tension vanishes, i.e., σ → 0, the
interface fluctuates much more violently. In this case, the
dynamics is controlled by the Landau damping term, with

Dh(q,ω) = 1

κq4 + γ |ω|q2
. (35)

The resulting string correlator is

D(q,ω) ∼ 1

(κq2 + γ |ω|)3/2
. (36)

The dynamical exponent which relates the temporal direction
to the spatial direction in ω ∼ qz is z = 2. The momentum-
integrated local string correlator reads

d(ω) ∼ 1

|ω| , (37)

and the fermion self-energy is

�(ω) ∼ isgn(ω) log |ω|, (38)

which diverges as ω → 0.
We can compare our result with other types of fluctuations.

For example, quantum critical fluctuations associated with
two-dimensional (2D) antiferromagnetic QCPs give rise to
�(ω) ∼ √

ω [50–52], which is much milder than our result of
a divergent self-energy. Such a

√
ω form of the self-energy was

also obtained in the random infinite-range interacting model
[53–55]. Similarly, quantum critical fluctuations associated
with 2D ferromagnetic QCPs lead to �(ω) ∼ ω2/3 [56]. It is
surprising that the innocent-looking capillary wave field theory
should have such a dramatic effect on the fermions. In fact, the
capillary wave field theory can be expressed in a more familiar
form by defining φ ≡ ∂h/∂x. Then the tension term is just the
mass term of the bosonic field σφ2, and the curvature term is
just the gradient term κ(∂φ)2. Setting σ → 0, one obtains a
massless bosonic field coupled to fermions that is well studied
and no such singular effect was found. The enhancement of
the self-energy correction in our case comes from the fact that
the interface fluctuations reside in one dimension lower than
that of the fermions. It is well known that fluctuations are more
severe in lower dimensions.

B. Fermion self-energy for Luttinger-liquid-type models

To put the above results in a broader perspective, let us
consider another type of model that takes a more scaling point
of view. From the action as shown in Eq. (14), one obtains the
capillary wave correlator:

Dh(q,ω) ∼ 1(
q2 + v−2

s ω2
)1+ζ

. (39)

The resulting local string propagator is

d(ω) ∼ 1

|ω|2ζ
, (40)

and the fermion self-energy is of the form

�(ω) ∼ isgn(ω)|ω|1−2ζ . (41)

The self-energy diverges for rough surfaces with ζ � 1/2.
For ζ = 1/2, where d(ω) ∼ 1/|ω|, the self-energy is �(ω) ∼
isgn(ω) log |ω|, which diverges logarithmically. This case
corresponds to the above perturbative model with vanishing
tension σ = 0.

We can take an even more coarse-grained scaling point of
view to regard the local string propagator d(ω) as having a
certain scaling form, and use that as input for the calculation
of the fermion self-energy. It is interesting to note that the
marginal Fermi liquid with �(ω) ∼ iω log(ω0/ω) corresponds
to d(ω) ∼ log |ω|, i.e., ζ → 0.

C. Zero of the Green’s function

We found above that the interface fluctuations can give
rise to a divergent fermion self-energy. The fermion Green’s
function G(k,ω) = 1

iω−ξk−�(ω) is then dominated by the self-
energy term at low frequencies. For the perturbative model
with σ = 0, one has

G(k,ω) ∼ isgn(ω)

log |ω| . (42)

For the Luttinger-liquid-type model with ζ > 1/2, one has

G(k,ω) ∼ isgn(ω)|ω|2ζ−1. (43)

Due to the singular frequency dependence, the momentum
dependence becomes negligible, and the full fermion Green’s
function becomes local. Furthermore, the original pole of
the free Fermi gas Green’s function at ω = 0 is converted
to a zero by the divergent self-energy, which indicates that
propagating single electron states cease to exist. The Landau
Fermi-liquid picture completely breaks down, and we obtain
a non-Fermi liquid, i.e., strange metal state. The absence of
propagating single-particle states in our system is intuitively
clear: at the critical point, where the interface tension vanishes,
the interface forms spongelike structures at large scales [see
Fig. 2(d)]. Hence the electrons scatter so much with the
interfaces on their way to propagation that they can no longer
propagate at large spatial or temporal scales and are effectively
confined.

It is interesting to note that the conversion of poles of
the fermion propagator to zeros also occurs in the 1 + 1-
dimensional large-N gauge theory, which is a toy model for
quark confinement [57]. There such behavior is regarded as a
clear signature of the absence of physical single quark states.
The significance of the zeros of the Green’s function and in
particular their relation with the Luttinger theorem have been
discussed in [58,59].

With the absence of propagating single-particle states at low
energies, the resistivity of such non-Fermi-liquid metals is no
longer controlled by the quasiparticle decay rate as in a Fermi-
liquid metal, but by the decay rate of the total momentum.
Since the system equilibrates very rapidly, at scales shorter
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than that of the breaking of momentum conservation due to,
for example, impurity and Umklapp scattering, the transport
properties of the system can be described by hydrodynamics
[60,61]. The temperature dependence of resistivity is then
determined by the scaling dimension of energy density and
charge density operators [61,62]. One way to compute the
resistivity for systems near the MIT is to employ the random
resistor network [32]. The quantum-critical sponge phase
identified here corresponds to the spin-liquid phase of a
frustrated Ising model. It would be interesting to calculate the
resistivity of the resistor network defined on a geometrically
frustrated lattice. We leave this for a future investigation.

V. INTERFACE FLUCTUATION MEDIATED PAIRING

The interface fluctuations induce a density-density interac-
tion among the fermions as shown in Eq. (20). It can be written
more explicitly as

δS (2)
e ∼ −λ2

∫
dt1

∫
d2r1

∫
dt2

∫
d2r2D(r,t)

×ψ†
α(r1,t1)ψα(r1,t1)ψ†

β(r2,t2)ψβ(r2,t2), (44)

with the bosonic string correlator D, and r = r1 − r2, t =
t1 − t2. Here we have restored the spin indices α,β =↑, ↓,
and the summation over them is kept implicit to simplify the
notation.

As is familiar from the case of phonon mediated pairing,
such density-density interaction can give rise to Cooper pairing
in the spin singlet channel. We note the difference with
models employing homogeneous approaches [21,63], where
a repulsive current-current interaction is obtained between
two fermions with opposite momentum that pair [64]. In our
case, the local electric field resulting from inversion symmetry
breaking around the interface induces a direct coupling
between the fermion density and the bosonic mode, which
leads to an attractive density-density interaction among the
fermions. However, as shown above, the interface fluctuations
also generate self-energy corrections for fermions, which lead
to incoherence, and are actually detrimental for superconduc-
tivity. Indeed for σ = 0 in the perturbative models, and for
ζ � 1/2 for the Luttinger-liquid-type models, the self-energy
diverges. The pole in the single electron Green’s function is
converted to a zero, and there is no physical single electron
state. However, the existence of Cooper pairs is associated
with the pole of the two electron Green’s function in the
particle-particle channel. To see whether such a pole exists
at the one-loop level, we can use the Eliashberg formalism,
which takes into account the competing effects of self-energy
and density-density interaction. The Eliashberg formalism has
been applied to systems of fermions coupled to quantum
critical fluctuations in [48,49,52,65,66].

The density-density interaction can be decomposed in
the pairing channel. Keeping terms relevant for zero total-
momentum spin-singlet pairing, one has

δS (2)
e ∼ −λ2

∫
d2k

∫
dω

∫
d2k′

∫
dω′D(k − k′,ω − ω′)

×χ †(k,ω)χ (k′,ω′), (45)

with the spin-singlet pairing operator χ (k,ω) ≡ 1√
2

(ψkω↑ψ−k,−ω,↓ − ψkω↓ψ−k,−ω,↑). The superconducting gap
can then be defined from

�(k,ωn) ≡ λ2T
∑
k′,ω′

m

D(k − k′,ωn − ω′
m)〈χ (k′,ω′

m)〉. (46)

Since the interface fluctuation mediated interaction is
isotropic, pairing is in the s-wave channel. Other degrees of
freedom, e.g., spin fluctuations [67], need to be invoked to
generate unconventional, e.g., d-wave, pairing.

With the fermions moving much faster than the bosons,
momentum can be integrated out in the Eliashberg formalism,
leaving only the frequency dependence explicit. Near the
superconducting transition, one has the coupled equations for
the self-energy �(ωn) [Eqs. (28) and (41)] and the pairing
vertex �(ωn) (see, e.g., [49]):

�(ωn) = πT
∑
m

d(ωm − ωn)

|ωm|Z(ωm)
�(ωm), (47)

with the pairing vertex �(ωn) = �(ωn)Z(ωn), and the renor-
malization factor Z(ωn) = 1 + �(ωn)/ωn. Pairing occurs
when the gap equation [Eq. (47)] has a solution. In particular,
for a quantum critical boson with the local correlator d(ω) =
(�0/|ω|)2ζ , where 0 < ζ < 1, Eq. (47) always has a solution.
Since �0 is the only dimensionful parameter here, the resulting
pairing temperature Tc is set by �0, with [48,49,52]

Tc = �0f (ζ ). (48)

The coefficient f (ζ ) decreases with increasing ζ (see Fig. 4),
implying a stronger effect of incoherence.

The above calculations imply a novel picture for strange
metals: while there are no propagating single-particle exci-
tations, there can be Cooper pairs. Intuitively one expects
fermions confined in the sponge structures to be unstable,
since their zero-point energy is significantly boosted by the
confinement. Pairing is a plausible way to release such
energy. In fact, superconductivity has been widely observed
near Fermi-surface-changing MIT in materials like cuprates
[12,21], organic conductors [22,23], iron pnictides [24,25],
and heavy fermions [26,27]. However one needs to be cautious
with the above perturbative treatment of pairing. We discuss
below a more local picture of pairing in the fluctuating sponge
structure.

FIG. 4. The pairing temperature as a function of the critical
exponent ζ in the bosonic propagator.
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At time scales where the interface can be treated as
quasistatic, the electrons are localized to cells of size ξK due to
the inhomogeneous background. Then Cooper pairing occurs
locally. In two dimensions the binding energy of two electrons
scales with the size of the system as Eb ∼ 1/(L2 log L) (see
Appendix B). With L ∼ ξK , pairing is largely enhanced by
confining electrons in the sponge structures. This effect is in
some sense the real-space counterpart of Cooper’s mechanism
of pairing [68]. The celebrated Cooper instability relies on
the existence of the Fermi surface, and electron binding is
enhanced due to Pauli blocking in momentum space. In our
case, electron binding is enhanced due to the temporary
confinement of electrons in real space. The occurrence
of superconductivity also requires phase coherence. In the
fluctuating sponge structure, electrons can first pair locally,
taking advantage of the temporary confinement of the local
geometry. And then, at larger time scales, where the geometric
fluctuations come into action, the whole system becomes phase
coherent. Hence pairing and phase coherence have different
time scales, and correspondingly different energy scales. A
more in-depth investigation of this pairing mechanism is left
for a future publication.

VI. THERMODYNAMIC INSTABILITY

We have shown above that the interface fluctuations induce
pairing instability among the electrons. Here we will show that
there is indeed a deeper reason for the occurrence of pairing:
the strange metal phase is thermodynamically unstable below
certain temperature T ∗, and hence some new phase must set in
at such a temperature. The corresponding temperature scale is
on the order of the characteristic interaction energy scale �0,
which, as shown above, also determines the pairing scale, i.e.,
T ∗ ∼ Tc ∼ �0.

The entropy of the system can be determined from the
relation [69]

S

V
= −1

πiT

∫
d2k

(2π )2

∫
dωω

∂f (ω)

∂ω

[
log GR

k,ω − log GA
k,ω

]
,

(49)

where V is the volume of the system, and f is the Fermi
function. GR

k,ω and GA
k,ω are the retarded and advanced fermion

Green’s functions, and are obtained from the Matsubara
Green’s function through analytic continuation. For the self-
energy of the form as shown in Eq. (28), they read

G
R,A
k,ω = 1

ω − ξk − π
2 �0sgn(ω) ± i�0 log �

|ω|
, (50)

with the characteristic interaction scale �0, and the cutoff �.
The results are shown in Fig. 5. We find that the entropy

decreases with lowering temperature, and it becomes negative
at T ∗ = A�0, with A of order unity (here A 
 0.73). Since �0

is the only dimensionful parameter here (besides the cutoff),
it is not surprising that T ∗ is on the order of �0. The
negative entropy implies that the strange metal phase becomes
thermodynamically unstable for temperatures T < T ∗ ∼ �0.
Indeed, as shown above, pairing sets in at the same temperature
scale Tc ∼ �0. The concurrence of the two temperature scales
T ∗ ∼ Tc originates from the fact that both the self-energy and

FIG. 5. The entropy as a function of temperature for three
different characteristic interaction scales.

the pairing interaction have the same characteristic energy
scale �0 ∼ λ2

∫
D, which is determined by the coupling

strength λ and the bosonic propagator D. The resulting picture
is that the strange metal phase is intrinsically unstable, and it
is forced thermodynamically to be replaced by a symmetry-
broken phase at low temperatures.

VII. CONCLUSIONS

We have proposed a new framework for non-Fermi-liquid
metals near a Mott metal-insulator-transition with fermions
operating in spongelike structures formed by strongly fluctu-
ating interfaces. The geometric fluctuations of the interface
give rise to anomalous scalings in the fermion self-energy
that are qualitatively different from those of Landau Fermi
liquids. Furthermore the geometric fluctuations induce pairing
instability in the absence of external bosonic glues. The
resulting picture of a strange metal phase at high temperatures
and a low-temperature superconducting phase is in qualitative
agreement with the experimental phase diagram of cuprates,
iron pnictides, organic conductors, and heavy fermions.

By directly incorporating quantum geometric fluctuations
into our framework, our result constitutes a step beyond
the homogeneous paradigm of many-body systems. The
fluctuating geometry is not a perturbation to the system,
but instead provides the template for all other degrees of
freedom. It will be interesting to study other processes, e.g.,
spin-fluctuation mediated pairing [70], in such a fluctuating
background.

A crucial question is how to distinguish between the
effects of geometric fluctuations and fluctuations of other
degrees of freedom. One strategy is to look for strange metal
behavior away from the symmetry-breaking QCPs. In fact,
strange metal behavior was observed in Ir- and Ge-substituted
YbRh2Si2 [71,72] and β-YbAlB4 under pressure [73] in
regions associated with a Mott transition away from the
magnetic QCPs. Quantum geometric fluctuations may play
important roles in these systems.

One further extension of our work is to consider fluctuating
interfaces involving topologically nontrivial phases, for which
there can be gapless fermion modes emerging at the interface.
A concrete example is a heterostructure of a 3D topological
insulator with a magnetic insulator near the ferromagnetic
transition. When approaching the transition from the ordered
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side, magnetic domains will be created. A gapless chiral
fermion mode is then induced on the topological insulator
at the location of the domain wall [74,75]. The domain walls
are then heterotic strings [76] in the sense that the fermionic
mode is chiral while the bosonic modes have both left- and
right-moving components.
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APPENDIX A: LANDAU DAMPING

Coupling to fermions leads to Landau damping in the
capillary wave correlator. One has the Dyson equation

D−1
h = [

D
(0)
h

]−1 + �h, (A1)

with the free part

[
D

(0)
h

]−1 = σ
(
k2 + v−2

s ω2) + κ
(
k2 + v−2

s ω2)2
, (A2)

and the self-energy correction �h coming from coupling to
fermions. The 2+1-dimensional fermion bubble

�0(q,�) ≡
∫

d2k
(2π )2

dω

2π
G0(k,ω)G0(k + q,ω + �) (A3)

is of the form

�0(q,�) ∼ |�|/q. (A4)

Fourier transforming to 2+1-dimensional real space yields

�0(r,�) =
∫

d2q
(2π )2

eiq·r�0(q,�) ∼ |�|
r

. (A5)

Since the system is homogeneous and isotropic on average,
�0(r,�) = �0(r,�) determines the self-energy in the 1+1-
dimensional field theory. With the fermion density coupling
directly to ∂h, one obtains the self-energy correction for
〈∂h∂h〉 as

�∂h(k,ω) = λ2E2
∫

dre−ikr�0(r,ω) ∼ −(γ0 + log |k|)|�|,
(A6)

with Euler’s constant γ0. We note that there is a logarithmic
divergence at small momenta, and an IR cutoff needs to be
imposed. The self-energy correction for the 〈hh〉 correlator is
then

�h(k,ω) = k2�∂h(k,ω). (A7)

Keeping only the leading power-law dependence, the result is
of the form

�h(k,ω) = γ |ω|k2, (A8)

with the prefactor γ ∝ λ2E2. We need to keep in mind that γ

depends on the IR cutoff. The capillary wave correlator thus
reads

Dh(k,ω) = 1

σ
(
k2 + v−2

s ω2
) + κ

(
k2 + v−2

s ω2
)2 + γ |ω|k2

.

(A9)
We also note that with the full Green’s function G(k,ω) ∼

isgn(ω)/ log |ω| the fermion bubble gives

�0(q,�) ∼
∫

dω
sgn(ω)

log |ω|
sgn(ω + �)

log |ω + �| ∼ |�|. (A10)

The leading power dependence of �h(k,ω) is then the same as
using the free fermion Green’s function, and the above form
of Dh(k,ω) is self-consistent.

APPENDIX B: COOPER PAIRING IN A CONFINING
GEOMETRY

Consider two particles in a harmonic trap interacting via a
pointlike force with Hamiltonian H = H0 + H1, where [77]

H0 = − �
2

2m
∇2

1 − �
2

2m
∇2

2 + 4π
�

2

m
a0δreg(r1 − r2), (B1)

H1 = 1

2
mω2

0r
2
1 + 1

2
mω2

0r
2
2 , (B2)

with the scattering length a0, and the regularized δ function
potential δreg(r). Such a pointlike potential is a good approxi-
mation for a0 � L, where L = √

�/(mω0) is the characteristic
length scale of the harmonic trap. The characteristic energy
scale of the harmonic trap is EL = �ω0 = �

2/(mL2).
In three dimensions, the binding energy is related to the

size of the trap via

√
2

�
(

Eb

2EL

)
�

(
Eb

2EL
− 1

2

) = L

a0
. (B3)

When the trap size is on the order of the scattering length,
L ∼ a0, the binding energy is Eb ∼ �

2/(ma2
0). Eb increases

rapidly as L decreases, and decays rapidly as L increases.
Mathematically bound states always exist in the presence of a
trap. But practically the binding energy is too small to lead to
any observable effect for L � a0. At large L, one has

Eb ∼ �
2a0

mL3
. (B4)

In two dimensions, the binding energy is given by [77]

ψ

(
Eb

2EL

)
= log

(
L2

2a2
0

)
, (B5)

where ψ is the digamma function. For x → 0, ψ(x) 
 −γ −
1/z. At large L, one has

Eb ∼ �
2

mL2 log
(
L2/a2

0

) . (B6)
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