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We introduce a two-ladder lattice model with interacting Majorana fermions that could be realized on the
surfaces of a topological insulator film. We study this model with a combination of analytical and numerical
techniques, and we find a phase diagram that features both gapless and gapped phases as well as interesting phase
transitions including a quantum critical point in the tricritical Ising (TCI) universality class. The latter occurs
at an intermediate-coupling strength at a meeting point of a first-order transition line and an Ising critical line,
and it is known to be described by a superconformal field theory with central charge c = 7

10 . We discuss the
experimental feasibility of constructing the model and tuning parameters to the vicinity of the TCI point where
signatures of the elusive supersymmetry can be observed.
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I. INTRODUCTION

The tricritical Ising (TCI) phase transition occurs when an
Ising phase-transition line meets a first-order transition line. At
this critical point, three different phases become indistinguish-
able. The critical exponents also experience a dramatic change
when the system goes from the Ising critical line to the TCI
point as the latter belongs to a different universality class [1].
In conformal field theory (CFT) language, TCI CFT is the
second unitary minimal model, with central charge c = 7

10 ,
whereas the Ising CFT has c = 1

2 [2]. Recent interest in the
physical realizations of TCI CFT stems from the fact that
it is the simplest known CFT that exhibits supersymmetry,
a special type of symmetry that interchanges bosonic and
fermionic fields. This enigmatic property has been conjectured
to cure many problems in high-energy physics but remains
experimentally unobserved [3]. Technically, the TCI point can
be described by a superconformal field theory [4–6], which
is developed by extending the Virasoro algebra in CFT to its
supersymmetric counterpart.

There are two well-known spin models in the literature that
realize TCI CFT: the Blume-Capel model [7,8] and the Ising
metamagnet model [9]. The former is a modified Ising model
where each spin site is allowed to be vacant. The latter is
an Ising antiferromagnetic model with next-nearest-neighbor
ferromagnetic interaction. Despite extensive searches, TCI
quantum criticality and the associated supersymmetry have
yet to be observed experimentally in spin models. Other
condensed-matter systems have therefore been considered re-
cently as potential platforms for the observation of TCI points
and the associated supersymmetry. Among these, condensed-
matter realizations of Majorana fermions—Majorana zero
modes (MZMs) [10–14]—lend themselves naturally to this
task. As exotic bound states, MZMs were predicted to
emerge in topological superconducting systems. While the
noninteracting theories of MZMs are now well developed, a lot
of interest is currently focused on interaction effects [15–19]
as well as understanding the signatures of the interacting
regime [20,21]. Going beyond the mean-field description
of superconductivity, several proposals were put forward in
number-conserving fermionic systems with either attractive

or repulsive interactions, where Majorana or Majorana-like
bound states were demonstrated to occur at the boundaries
[22–24]. Here, instead of studying how interactions influence
the formation of individual MZMs, we consider interaction
effects in a Majorana fermion lattice where each site consists
of a single MZM.

It is well known that a simple noninteracting one-
dimensional (1D) chain of MZMs (a critical Kitaev chain)
maps onto the transverse field Ising model tuned to its critical
point and realizes a c = 1

2 CFT [25]. Breaking the translation
symmetry through dimerization produces various gapped
phases [26], while coupling MZMs to bosonic modes [27]
or adding four-fermion interactions [28,29] has been shown
to give rise to TCI behavior with c = 7

10 by tuning a single
model parameter. As the evidence supporting the existence
of MZMs in condensed-matter systems has been growing
[30–35], the possibility of realizing the TCI criticality built
upon this platform is becoming more promising. With the rapid
development in this field, one can expect in the near future to
manipulate MZMs and to be able to engineer interacting lattice
models envisioned theoretically [27–29]. At the same time,
realization of these models presents significant challenges.
The model of Ref. [27] requires Majorana modes to couple to
bosonic (spin) modes, and it is not clear how such coupling
might be engineered and controlled. The model of Ref. [28]
only requires short-range four-fermion interaction, which is
generically present in the system, but the TCI point occurs
only at very strong coupling.

In the present paper, we construct a fermionic model with
short-range four-fermion interactions that is more complex
than models of Refs. [27,28] but has an advantage that it
exhibits a TCI point at weak to intermediate interaction
strength and does not require coupling to bosonic modes.
Similar to the spin models [7–9], two parameters must be
tuned to reach the TCI point. The model can be realized in
the Fu-Kane superconductor [36] that occurs at the interface
between a 3D strong topological insulator and an ordinary
s-wave superconductor. Here MZMs are bound in the cores
of Abrikosov vortices and form a periodic lattice in the
applied magnetic field. Effective theories for MZMs in such
vortex lattices have been studied recently [37–42], with the
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FIG. 1. Geometry of the two-ladder MZM lattice. Blue dots
represent vortices, and red dots are antivortices. The arrow is added
to indicate the sign of bilinear hopping terms. If the arrow starts
from a site denoted by α to β, the bilinear term is written as iαβ.
The interaction term g involves four MZMs on the nearest-neighbor
rungs while g1 connects next-nearest-neighbor rungs.

conclusion that they realize a convenient platform to probe
interacting phases of Majorana fermions.

II. THE MODEL AND ITS REALIZATION

The model we consider consists of two coupled ladders,
each formed out of Majorana sites as schematically depicted
in Fig. 1. The upper ladder is composed of vortices, and the
lower one of antivortices. Each of them hosts a single MZM. A
realistic setup that can realize this model is a thin film of a topo-
logical insulator in proximity to superconducting films on the
two surfaces. When an external magnetic field perpendicular to
the surfaces is applied, vortices and antivortices are induced on
the upper and the lower surface, respectively. At the so called
neutrality point (i.e., when the chemical potential μ of the TI
coincides with the Dirac point), the Fu-Kane superconductor
in each surface develops an extra chiral symmetry [43], which
changes its noninteracting topological classification from Z2

to Z. The latter implies that the bilinear tunneling terms
between MZMs bound in two vortices of the same type are
prohibited, while four-fermion interaction terms are allowed
and could thus be dominant. There is no restriction on the
tunneling terms between a vortex and an antivortex. Slightly
away from the neutrality point, tunneling terms between two
vortices of the same type are allowed but are generically small.
In the two-ladder system, we shall work in the regime where
tunneling and interaction terms among vortices of the same
type are comparable and the terms involving vortices and
antivortices are dominated by tunneling.

If we assume that there are 2N MZM sites, then the above
discussion leads to the following Hamiltonian for the two-
ladder system depicted in Fig. 1,

H =
N/2∑
j=1

(−1)j−1[it(α2jβ2j + α2j−1β2j−1)

+ it1(α2j−1β2j + β2j−1α2j )] +
N−4∑
j=1

g1αjβjαj+4βj+4

+
N−2∑
j=1

[it2(αjαj+2 + βjβj+2) + gαjβjαj+2βj+2]. (1)

Here αj and βj are MZM operators at site j , with {αj ,αj ′ } =
2δj,j ′ , {βj ,βj ′ } = 2δj,j ′ , and {αj ,βj ′ } = 0. The t1 term couples
MZMs bound in vortices and antivortices, and the remaining
terms all involve MZMs bound in the vortices of the same
type. The sign of each bilinear term is chosen to satisfy
the Grosfeld-Stern rule [44]. Other sign choices are possible
in principle, and some of them would support the physics
discussed below while others would not. We shall focus here
on signs consistent with the Grosfeld-Stern rule and leave other
choices to future investigations. Furthermore, we assume g

and g1 to be positive, corresponding to attractive interactions.
In principle, the signs of t , t1, and t2 can be either positive or
negative, but these are equivalent since one can always perform
a unitary transformation that changes the sign of only one of
them without affecting the others. For instance, to change
the sign of t , we simply take (α,β)j → (β,α)j , which has no
influence on the energy spectrum. Hence we will only consider
the case in which all t’s and g’s are non-negative. We further
note that other tunneling and four-fermion interaction terms
are allowed by symmetries in the Hamiltonian (1), but these
will not qualitatively change the conclusions reached below as
long as their strength is not large.

In general, one needs at least three independent parameters
to realize a model capable of supporting a TCI point, and in
order to reach the transition two of them need to be fine-tuned.
Fermionic models with an extra symmetry [27,28] represent
an exception to this rule such that the TCI point is reached by
tuning a single parameter. For our specific model, as we will
see later, all the terms except t2 in Eq. (1) are required to induce
the TCI phase transition. To make it simple, we begin by setting
t2 = 0 for the moment and recover it later to study how TCI
points are affected. As mentioned earlier, a TCI point can be
thought of as the meeting point of a first-order phase-transition
line and an Ising transition line. So the system is required to
have both first-order transition points and Ising critical points.
The first-order phase transition occurs naturally in our model
when t1 = 0. In this case, the two ladders are decoupled and
thus we need to only consider one of them. To see where
the transition occurs, we perform a unitary transformation
[(α,β)2j−1 → (β,α)2j−1 for j ∈ even] on the upper ladder,
and we rewrite the Hamiltonian in terms of Dirac fermion
operators cj = (αj + iβj )/2. We obtain

Hu =
N∑

j∈odd

2nj [t − 2g(1 − nj+2) + 2g1(1 − nj+4)], (2)

where nj = c
†
j cj is the occupation number operator that takes

values either 0 (empty) or 1 (occupied). Note that constant
terms are left out in Eq. (2), and a periodic boundary condition,
nN+j = nj , is assumed.

Since nj is a good quantum number in Eq. (2), all the
eigenstates of Hu are also eigenstates of nj , characterized by
each site being empty or occupied. It is not difficult to see
that the system favors a doubly degenerate ground state when
t < 2g, with every other site being occupied. For t > 2g, the
ground state is unique with all sites empty. Evidently, the
ground state experiences an abrupt change when the system
passes the transition point at t = 2g. In addition, when g1 > 0
the system at the transition point exhibits a finite gap � = 4g1
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to the lowest excited state. Hence exactly at the transition point,
a level crossing occurs and the ground state is triply degenerate,
which demonstrates a discontinuous phase transition. It should
be noted that the g1 term is very important here: without
it, the ground-state degeneracy at the transition point would
be infinitely large in the thermodynamic limit, making it a
multicritical point instead of a first-order transition. This is
why we need the g1 term in our specific TCI model.

To identify the Ising phase-transition line, we restore t1
and apply a different unitary transformation, (α,β)2j−1 →
(−β,−α)2j−1 and (α,β)2j → (β,α)2j for j ∈ even, to the
Hamiltonian in Eq. (1). We then translate it to spin language
by performing a Jordan-Wigner (JW) transformation [25]

αj =
j−1∏
k=1

σx
k σ z

j , βj = −
j−1∏
k=1

σx
k σ

y

j , (3)

followed by a Kramers-Wannier duality transformation

σx
j = τ x

j−1τ
x
j , σ z

j =
∏
k<j

τ z
k . (4)

The resulting Hamiltonian takes the form

HS =
N/2∑
j=1

−t
(
τ x

2j−2 + τ x
2j

)
τ x

2j−1 − t1
(
1 + τ x

2j−2τ
x
2j

)
τ z

2j−1

+
N/2−1∑
j=1

g
(
τ x

2j−2τ
x
2j + τ x

2j τ
x
2j+2

)
τ x

2j−1τ
x
2j+1

−
N/2−2∑
j=1

g1
(
τ x

2j−2τ
x
2j+2 + τ x

2j τ
x
2j+4

)
τ x

2j−1τ
x
2j+3, (5)

where we defined τ x
0 = 1. Clearly, τ x operators at even sites

commute with the Hamiltonian above and thus represent con-
served quantities. Inspecting each term in Eq. (5) individually,
it is not difficult to establish that the ground state favors
the configuration in which the absolute values of the terms
inside the parentheses are maximized. For instance, the ground
state of the g term would favor τ x

2j τ
x
2j+2 = 1 for all j or

else τ x
2j τ

x
2j+2 = −1 for all j . When considering the whole

Hamiltonian, we expect this argument to hold if all four terms
favor the same configuration. Indeed such a configuration
exists, having τ x

2j = 1 for all j . In this configuration, it is easy
to see that the remaining degrees of freedom are described by
the Ising metamagnet model well known to support the TCI
point [9]. In the special case when t and g1 are absent, the
Hamiltonian becomes simply that of the transverse field Ising
model in which the Ising phase transition occurs exactly at
t1 = g. With finite g1, the transition point is expected to move
toward a larger t1 while preserving the Ising universality class.

III. NUMERICAL RESULTS

The analytical arguments advanced in the previous section
identified first-order and Ising phase transitions in two special
cases, each of which corresponds to a point on one of
the coordinate axes in the t-t1 phase diagram. In the Ising
metamagnet model, it is known that a phase-transition line
exists that connects these two points, and a TCI point resides

somewhere along this line. On the basis of the above analysis,
we expect the same scenario to take place in our fermionic
model. To verify the validity of this conjecture and to locate
the TCI point, we performed extensive numerical analysis
of the model defined by Eq. (1). Using the density-matrix
renormalization-group (DMRG) technique, we located the
phase-transition line and we computed the central charge along
the line. In the DMRG computations, we performed 10–12
sweeps, and the truncation error in each sweep was set to be
lower than 10−10. The central charge c has been extracted
from the fit to the entanglement entropy S(n) of the ground
state according to the relation [45]

S(n) = c

3
ln

[
N

π
sin

(
πn

N

)]
+ S0, (6)

where N is the system size, n is the subsystem size, and S0 is
a constant. It should be noted that Eq. (6) only works under
(anti)periodic boundary conditions. When a phase transition
occurs, either first-order or continuous, the central charge
shows a peak. For a continuous phase transition the peak tends
to a finite value, while it drops to zero in the thermodynamic
limit for a first-order phase transition [46]. We could then
locate the phase-transition points and identify their types. We
note that in the following DMRG computations, antiperiodic
boundary conditions are assumed.

As we discussed earlier, the transition point on the t1 axis
should still belong to the Ising universality class when finite
g1 is switched on. Indeed, our DMRG results shown in Fig. 2
demonstrate that the transition in the presence of g1 is still
characterized by Ising CFT with c = 1

2 . Also we found that
for g1 ≤ g, the critical point tC1 is approximately linear with
g1, and the slope is estimated to be 1.5. However, this linear
relation would fail for large g1 since the transition point
approaches tC1 = g1 when g1/g → ∞, where the system is
described by two decoupled Ising chains, as can be seen in
Eq. (5). Since the g1 term preserves the Ising phase transition
on axis t1 and at the same time introduces the first-order
transition on axis t , we can thus expect the TCI phase

FIG. 2. Phase transition point tC
1 evolves with g1 in the absence

of t and t2. The system size is N = 80.
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FIG. 3. (a) Phase diagram of the model in the t-t1 plane (system
size N = 120) for t2 = 0, and (b) central charge plot along the phase-
transition line obtained by DMRG. The inset shows the evolution of
entanglement entropy with the length of the subsystem, whose slope
gives the central charge, according to Eq. (6). The t1/g = 0.88 line
corresponds to the TCI point, with c = 7

10 , and the other line is in the
Ising transition regime, with c = 1

2 . In both panels, the interaction
strength g1/g = 0.8 is assumed.

transition to occur somewhere in the t-t1 plane in the presence
of finite g1.

Representative results for generic values of g and g1 and
t2 = 0 are shown in Fig. 3. The central charge plot in Fig. 3(b)
clearly demonstrates that a TCI point occurs characterized by
a peak with c = 7

10 that separates the discontinuous portion of
the transition line (c = 0) from the Ising critical line (c = 1

2 ).
We note that the TCI points exist in the t-t1 phase diagram
whenever g and g1 are positive. Different values of these
parameters simply alter its position.

Up to now we have not included the t2 term, which, however,
will be present generically in any physical realization of the
model. In the following, we argue that weak to moderate values
of t2 (compared to g and g1) do not qualitatively change the
phase diagram shown in Fig. 3(a), and, specifically, the TCI

point remains robustly present. We then present numerical
evidence supporting these arguments.

Consider first a case in which t2 � t,t1. The noninteracting
Hamiltonian (2) then describes four decoupled critical Majo-
rana chains with only nearest-neighbor hopping. As is known,
one such critical chain belongs to the Ising universality class
with central charge c = 1/2. Four such chains together would
trivially add and form a critical system with c = 2. To see
how the interactions g and g1 influence the gapless phase, we
can transform Eq. (1) into a spin basis. Since in the absence
of t and t1 the system decouples into two identical ladders,
we need only to work with one of them. Again we perform
a JW transformation on the upper ladder, and the resulting
Hamiltonian reads

H ′=
∑

j

−t2
(
σ z

j σ z
j+1+σ

y

j σ
y

j+1

)−gσx
j σ x

j+1 − g1σ
x
j σ x

j+2, (7)

which describes the spin- 1
2 Heisenberg XXZ model with

next-nearest-neighbor interactions. To obtain Eq. (7), we have
applied a unitary rotation σ z

j → −σ
y

j and σ
y

j → σ z
j for j ∈

odd, and the lattice index was relabeled since only the upper
ladder is considered. In the absence of g1, the XXZ model
shown in Eq. (7) is exactly solvable [47,48], and it is well
known that a transition occurs when t2 increases to t2 = g, at
which point the system transits from a ferromagnetic phase to
a gapless phase. Turning on finite g1 is expected to move
the transition point toward a larger t2, since g1 enhances
the ferromagnetic order favored by the g term [49]. We can
imagine that in the t-t1 phase diagram, the ferromagnetic phase
would disappear when t2 exceeds this transition point, and
only gapped phases are left since nonzero t and t1 would gap
out the t2-dominated gapless phase. We thus conclude that in
order to preserve the topology of the phase diagram indicated
in Fig. 3(a), t2 must not exceed the interaction parameters g

and g1. Otherwise, no TCI transition shall exist.
To investigate the stability of the TCI point when the t2 term

is weak, we actually only need to focus on the two special cases
of the model defined by t1 = 0 and t = 0. If the first-order
and Ising transitions persist, we can expect the transition line
connecting them to still exist and the TCI point thus to survive.

In the first case, a first-order transition occurs at t = 2g

in the absence of t1. Since t2 favors a gapless phase, one can
expect increasing t2 to drive the first-order transition toward
a continuous one. However, for small t2, the transition can
still be discontinuous, considering that the finite gap in the
first-order transition point cannot be closed by an arbitrarily
weak t2. As indicated in Fig. 4(a), the first-order transition
point indeed continues moving toward small t with the increase
of t2, until in the vicinity of t = 0 the transition becomes
continuous, characterized by c = 2. The same scenario unfolds
in the second case, where an Ising transition occurs at t1 =
tC1 (g,g1) in the absence of t and t2. By turning on finite t2, the
critical point moves while still being of Ising type, as is shown
in Fig. 4(b). We can thus expect the TCI point to still exist
when t2 is relatively small. This is demonstrated in Fig. 5 by
explicit computation of the phase diagram for t2 = 0.2.

To reach the TCI transition point in the setup of Fig. 1,
therefore, we require the amplitude of the tunneling terms
to be comparable with that of the four-fermion interaction
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FIG. 4. Influence of t2 on the first-order and Ising transitions in
two special cases (t1 = 0 for the upper panel and t = 0 for the lower
panel). As before, g1/g = 0.8. The small t2 term does not affect
the transition property, as discussed in the text. The system size is
N = 160 for the phase diagram in (a) and N = 80 for that in (b).

FIG. 5. Phase diagram (N = 120) for nonzero t2/g = 0.4 and
g1/g = 0.8. The TCI phase transition is stable against the inclusion
of small t2 except that the position of the TCI point is slightly changed.

FIG. 6. Phase diagram in (t,t1,t2) space. The surface defining the
phase transition has been constructed by extrapolating the DMRG
results obtained in various limiting cases (shown by blue and magenta
dots). The red (dashed) curve represents the approximate position of
the TCI phase transition line, which separates the Ising and first-order
phase transitions on the phase-transition surface shown in yellow. The
TCI points obtained from DMRG are marked by red stars.

terms, a regime of weak to intermediate coupling. The coupling
between the upper and lower ladder does not have to be strong
compared to the intraladder hopping, as can be seen from
Fig. 3(a). Also, we require that the bilinear coupling along the
ladder (t2 term) is comparable to or weaker than the interaction
strength.

Figure 6 summarizes our main results. It shows the phase
transition surface in the 3D phase diagram spanned by
couplings (t,t1,t2). The surface consists of the Ising and
first-order transition regions separated by a line of TCI points.
When t2 is large enough, the phase-transition line in the (t,t1)
plane shrinks to a point on the t2 axis that represents a gapless
phase, and the TCI point therefore disappears.

IV. SUMMARY AND DISCUSSION

To conclude, we constructed and analyzed a fermionic
model with local interactions defined in a two-ladder Majorana
lattice, which could be realized in a vortex lattice formed on
two parallel surfaces of a proximitized topological insulator
film. We established a connection (in a certain limit) between
the low-energy sector of our model and an Ising metamagnet
spin model well known to support the tricritical Ising point.
We have numerically verified the existence of the TCI point
in our fermionic model and demonstrated that it occurs in the
regime of weak to moderate interaction strength.

To reach the TCI point, two model parameters must be
independently tuned, similar to the spin models where the
TCI point is known to occur [7–9]. While such a tuning is
unlikely to be practical in a spin system (since the coupling
constants are typically fixed by the material parameters), it
is conceivable, at least in principle, to do this in our model
when realized as described above. Here, three quantities
at least can be independently controlled: the topological
insulator thickness d (by fabrication), its chemical potential
μ (by crystal chemistry and gating), and the applied magnetic
field B. These three quantities have a very different effect
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on the system parameters: thickness d, for instance, affects
predominantly the tunneling amplitude t1, while the chemical
potential influences mostly t and t2. Magnetic field in turn
affects all parameters except t1. Therefore, by judicious
choice of these inputs, one could conceivably locate the
transition line present, e.g., in the t-t1 plane and then move
along the line to reach the TCI point. As suggested in
Refs. [28,29], various phases and phase transitions can then be
probed by tunneling (using a scanning tunneling microscope,
for instance) into the zero-mode states in the vortex cores
where the tunneling conductance G(V ) = dI/dV exhibits a
characteristic voltage dependence. For instance, gapped phases
of the model would show exponentially activated behavior
while Ising and TCI points exhibit power law G ∼ |V |α with
α = 0,2/5, respectively. Supersymmetry will be most easily
observable on the first-order transition line in the close vicinity
of the TCI point. Here it implies the existence of fermionic and
bosonic excitations at the same energies. Fermionic excitations
can be probed by an ordinary single-electron tunneling while
bosonic excitations could be probed by pair tunneling with a
superconducting tip [28,29].

Other routes to the TCI point and the associated super-
symmetry starting from Majorana fermions are possible and
present an interesting subject for future research. One such
approach would be to start from an SO(7) CFT, realized in
a cluster spin model [50] or using seven decoupled critical
Majorana chains, and adding Sugawara-type current-current
interactions with a G2 symmetry (here G2 refers to the
exceptional Lie algebra). This should gap out the primary

fields of the G2 CFT (central charge 14
5 ) and leave behind the

coset SO(7)/G2 with central charge 7
2 − 14

5 = 7
10 , which likely

corresponds to TCI CFT.
We close by noting that ingredients necessary to start

exploring various interacting models with Majorana zero
modes, including the one introduced in this work, are
currently in place. Superconducting order has been induced
in topological insulator surfaces by multiple groups and
in several different materials [51–59]. The ability to tune
the chemical potential to the vicinity of the Dirac point,
required to bring in the regime with significant interaction
strength, has also been demonstrated [55–57]. More recently,
individual vortices have been imaged in these systems [58],
and spectroscopic evidence indicative of MZMs in the cores
of vortices has been reported [60]. The current proposal
requires inducing superconducting order on two surfaces of
a topological insulator film, which presents an additional
experimental challenge. The rapid progress the field has been
experiencing suggests that this challenge can be met in the not
too distant future.
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