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Motivated by the importance of noncollinear and noncoplanar magnetic phases in determining various electrical
properties in magnets, we investigate the magnetic phase diagram of the extended Hubbard model on an
anisotropic triangular lattice. We map out the ground-state phase diagram within a mean-field scheme that
treats collinear, noncollinear, and noncoplanar phases on equal footing. In addition to the standard ferromagnet
and 120◦ antiferromagnet states, we find the four-sublattice flux, the 3Q noncoplanar, and the noncollinear
charge-ordered states to be stable at specific values of filling fraction n. Inclusion of a nearest-neighbor
Coulomb repulsion leads to intriguing spin-charge-ordered phases. The most notable of these are the collinear
and noncollinear magnetic states at n = 2/3, which occur together with a pinball-liquid-like charge order.
Our results demonstrate that the elementary single-orbital extended Hubbard model on a triangular lattice
hosts unconventional spin-charge ordered phases, which are similar to those reported in more complex and
material-specific electronic Hamiltonians.
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I. INTRODUCTION

The transition metals and their oxides are well known for
exhibiting a variety of magnetic ordering phenomena [1,2].
The nature of the low-temperature magnetically ordered
states depends on the type of dominant magnetic exchange
interactions, which in turn depend on the details of the crystal
structure and electronic band structure. The theoretical models
that describe the magnetism of transition metals and their
oxides can be divided into three broad categories: (i) models
that do not a priori contain a local moment but allow for
moment formation via electron-electron interactions, such as
the Hubbard model [3]; (ii) models consisting of localized
spins only, such as the Heisenberg model; and (iii) models
that have itinerant electrons coupled to localized moments,
e.g., the Kondo lattice model [4]. Starting with a general
multiorbital Hubbard model, the other two types can be
obtained in appropriate limits [5]. Hence, the Hubbard model
is the elementary model for describing magnetism. Indeed, two
of the most common magnetically ordered ground states, the
ferromagnet and the staggered antiferromagnet, are present in
the mean-field phase diagram of the Hubbard model [6].

The search for noncollinear and noncoplanar magnetic
ordering in models and materials has emerged as an important
research topic in recent years. The reason is the fundamental
connection between the nature of magnetic order and electrical
properties of various magnetic materials. A noncoplanar
magnetic order is known to give rise to anomalous Hall
response in transport [7–9]. On the other hand, a planar spiral
order can allow for a ferroelectric response via the spin-current
mechanism [10,11]. Recent theoretical studies on Kondo-
lattice models have shown that a variety of unconventional
magnetic ground states can be stabilized depending on the
underlying lattice geometry and electronic filling fraction.
In particular, triangular and checkerboard lattices allow for
noncoplanar magnetism at quarter filling of the band [12–18].
More recently, the existence of spin-charge ordered phases
has also been reported at the average filling fraction of two
electrons per three sites [19]. Given that the Hubbard model

is the fundamental model for magnetism, it is important to
know if the unconventional magnetic phases found in the
Kondo-lattice Hamiltonian are also present in the Hubbard
model. Moreover, for some of the magnetic phases the shape
of the Fermi surface plays a crucial role and the ordered
phases should therefore be independent of the nature of the
interactions [12,20]. To the best of our knowledge a systematic
search across the electronic density range for noncollinear
and noncoplanar magnetic phases in the Hubbard model on a
triangular lattice has not been reported.

In this work, we map out the magnetic phase diagram
of the Hubbard model on an anisotropic triangular lattice
within a variational mean-field approach that captures the
noncollinear and noncoplanar magnetism on the same footing
as the collinear magnetism. The phase diagram is rich and
consists of many unconventional phases that are found in
the corresponding Kondo-lattice model. These include (i) the
four-sublattice 3Q order at quarter filling, (ii) the flux state at
quarter filling, and (iii) the noncollinear charge-ordered phase
at two-thirds filling. In addition, the 120◦ state is stable near the
isotropic triangular limit and a collinear stripe state is stable
in the anisotropic regime. The influence of nearest-neighbor
Coulomb repulsion on these phases is also investigated. We
find that a pinball-liquid-like charge-ordering phase, which
has so far been reported in spinless fermion models or
multiorbital models on a triangular lattice, is stabilized by
the Coulomb interactions at a filling fraction of n = 2/3 and
occurs concomitantly with either collinear or noncollinear
magnetic order. Given the fundamental nature of the Hubbard
Hamiltonian, our results are of general interest. In addition, the
reported phases are of specific relevance to various triangular
lattice systems, such as the layered AgNiO2 [21,22], the
NaCoO2 [23–27], and the organic charge-transfer salts [28,29].

The remainder of the paper is organized as follows. In
Sec. II we describe the model and briefly discuss the previous
investigations that focus on noncollinear magnetism. In Sec. III
we describe the method used in this work. Results and
discussions follow in Sec. IV, where we first discuss the
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FIG. 1. (a) A schematic view of the anisotropic triangular lattice
with hopping parameters t and t ′ shown via solid and dashed lines,
respectively. (b)–(g) Building blocks of various long-range ordered
magnetic phases. The cone angle θ connects the flux state to the
antiferromagnetic state via the 3Q state.

density-versus-interaction phase diagram and then discuss the
phase diagrams corresponding to specific electronic filling. In
Sec. V we analyze the effect of nearest-neighbor Coulomb
repulsion on the magnetic phase diagram. Conclusions are
presented in Sec. VI.

II. MODEL

The single-orbital Hubbard Hamiltonian on an anisotropic
triangular lattice is given by

H = −t(t ′)
∑
〈ij〉,σ

c
†
iσ cjσ − μ

∑
i

ni + U
∑

i

ni↑ni↓, (1)

where c
†
iσ (ciσ ) is the creation (annihilation) operator, and

niσ = c
†
iσ ciσ is the number operator for electrons with spin

σ =↑ , ↓ at site i. The total number operator for electrons at
site i is ni = ni↑ + ni↓, and μ is the chemical potential. The
electronic hopping amplitudes between nearest-neighbor sites
on a triangular lattice are t and t ′ as shown in Fig. 1, and U

denotes the on-site Hubbard repulsion.
The Hubbard model is one of the most successful and

well studied Hamiltonians in condensed-matter physics [30].
However, due to its relevance to various materials, certain
filling fractions have been of more interest than others. For
instance, the model on a square lattice (t ′ = 0) has been
studied in great detail near half filling. Very few studies
have explored the possibility for noncollinear and noncoplanar
phases [31,32]. The half-filled case on a triangular lattice has
also been explored in search of spin-liquid phases, as the large-
U limit of the Hubbard model leads to the spin-1/2 Heisenberg
model which is frustrated on the triangular geometry. There
have been studies for the quarter-filled case, which describes
the physics of organic charge transfer salts [28,33,34]. The
filling fraction of n = 2/3 has also been of interest due to
its relevance to layered AgNiO2 and NaCoO2. A systematic
search for noncollinear and, in particular, noncoplanar phases

over the full range of electronic densities has not been reported
even at the mean-field level.

III. VARIATIONAL MEAN-FIELD SCHEME

We determine the ground-state phase diagrams by perform-
ing a systematic search in the phase space of various ordered
magnetic configurations. This is achieved by making use of the
rotational invariance of the Hubbard Hamiltonian [35]. Before
describing the details of the rotationally invariant scheme, let
us recall the commonly used unrestricted Hartree-Fock (UHF)
method. In this method, the interaction term is decoupled into
charge and spin sectors. Ignoring the second-order term in
fluctuations, the Hamiltonian reduces to the well-known form

H = −t(t ′)
∑
〈ij〉σ

c
†
iσ cjσ − μ

∑
i

ni

+(1 − λ)U
∑

i

[〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↓〉〈ni↑〉]

−λU
∑

i

[〈s+
i 〉s−

i + 〈s−
i 〉s+

i − 〈s+
i 〉〈s−

i 〉], (2)

where s+
i = c

†
i↑ci↓ and s−

i = c
†
i↓ci↑ are the spin operators. The

variational parameter λ determines the relative contribution of
the Hartree and the Fock terms in the mean-field decoupling.

In the UHF approach, the site dependence of the quantum
averages is retained. Starting from a random guess for the var-
ious mean-field parameters, the Hamiltonian is diagonalized
iteratively until self-consistency is achieved. In principal, the
self-consistent solution depends on the starting configuration
of mean-field parameters. Therefore, it is required to use a
large number of starting configurations. The reliability of the
final solution obtained in this way depends to a large extent
on the complexity of the energy landscape. The ground-state
degeneracies present in the case of frustrated lattices suggest
that the converged solution could be a metastable state. In addi-
tion, λ should be determined via an energy minimization over
the various self-consistent solutions. Although this scheme
can capture the conventional ordered magnetic phases very
well, it can easily miss unusual noncollinear and noncoplanar
magnetic orderings.

Motivated by the appearance of such unusual magnetically
ordered phases in a Kondo-lattice model, we search for similar
magnetic phases in the Hubbard model. For this purpose, we
recast the mean-field decouplings in a way that allows us
to systematically search for a variety of ordered phases. We
begin by rewriting the Hamiltonian in a reference frame with
site-dependent spin-quantization axes [35]. This is done by
performing a site-dependent SU(2) rotation of the quantization
axes, given by[

ci↑
ci↓

]
=

[
cos

(
θi

2

)
ei

φi
2 − sin

(
θi

2

)
ei

φi
2

sin
(

θi

2

)
e−i

φi
2 cos

(
θi

2

)
e−i

φi
2

][
dip

dia

]

≡ R(θi,φi)

[
dip

dia

]
, (3)

where dip (dia) are annihilation operators for an electron at
site i with spin parallel (antiparallel) to the quantization axis.
A simple Hartree decoupling of the transformed Hamiltonian
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leads to

H = −t(t ′)
∑
〈ij〉

∑
σσ ′

(fσσ ′d
†
iσ djσ ′ + H.c.)

+U
∑

i

[〈nip〉nia + 〈nia〉nip − 〈nip〉〈nia〉], (4)

where niσ = d
†
iσ diσ and σ can take two values. The

coefficients fσσ ′ are explicitly given by[
fpp fpa

fap faa

]
= R†(θi,φi) · R(θj ,φj ). (5)

We consider two broad categories of variational states. The
first one is the set of general noncoplanar spiral states which
can be parametrized by a cone angle � and a spiral wave vector
q [36]. The polar and azimuthal angles of the spins are then
given by θi = � and φi = q · ri .

The other set of states are the block-periodic states, where
the spin configuration of an mx × my block is repeated
periodically to generate the configuration over the entire
lattice. The choice of these variational states is motivated
by the presence of various long-range ordered phases in the
corresponding Kondo-lattice model. The flux state and the
noncoplanar states shown in Fig. 1 are examples of the 2 × 2
block-periodic states. In the flux state the azimuthal angles
change by π/2 as one goes from site 1 to site 4, while the
polar angle remains equal to π/2. The noncoplanar state
can be obtained from the flux state by changing the polar
angles of the four spins as shown in Fig. 1. Similarly we
take a 3 × 3 block to capture the 120◦ state, which can
be connected to a ferromagnetic state by varying the polar
angle from π/2 to 0. In order to allow for the six-sublattice
noncollinear charge-ordered (NC-CO) state at n = 2/3, we
take a 6 × 6 cluster as the building block [19]. The calculations
have been performed in both canonical and grand-canonical
approaches. In the grand-canonical (canonical) approach,
we seek a self-consistent solution for a given fixed value
of chemical potential (density) for all the variational states
discussed above. In cases where more than one self-consistent
solution exists, the lower-energy solution is selected and
the corresponding state is taken as the mean-field ground
state at that value of the chemical potential (density). For
the grand-canonical approach, the density corresponding
to the ground-state solution is calculated at the given value of
the chemical potential and the phase diagrams are presented
with density as a parameter.

IV. RESULTS AND DISCUSSIONS

In this section we present the results obtained by using
the mean-field decoupling scheme described in the previous
section. For most of the calculations we used N = 642 k-points
in the first Brillouin zone. Results have also been checked for
N = 1282 in some cases. In the following section we discuss
the n-U phase diagrams for different values of t ′/t .

A. n-U phase diagrams

The n-U phase diagrams are obtained within the grand-
canonical approach. The energy minimization over the two sets

of variational states is performed for a fixed value of chemical
potential μ. The chemical potential is then systematically
varied in order to obtain different average electronic densities.
The total energy is computed at zero temperature, where
the Fermi function simply becomes a step function. The
grand-canonical approach has an advantage in that it allows
for the phase separation regions, which commonly arise in
electronic systems, to be easily captured.

For t ′/t = 0, the hopping connectivity is that of a square
lattice. Therefore, in this case we display the density range
0 < n < 1 in the phase diagram as the system is particle-hole
symmetric [see Fig. 2(a)]. The square-lattice phase diagram
is dominated by three simple phases: a Fermi liquid state
for weak to intermediate U and away from n = 1, an anti-
ferromagnetic (AFM) state near n = 1, and a ferromagnetic
(FM) state for large U and away from n = 1. In addition, in
the intermediate-U range we find a flux phase and a narrow
window of phase separation close to n = 1/2. The flux phase
is known to exist in the Kondo-lattice model with a classical
approximation for local moments [18,37–39]. It has also been
reported recently in the UHF study of a five-orbital Hubbard
model for iron pnictides [40]. The planar spiral states are stable
over a wide range of parameters. Next, we present the phase
diagram for the anisotropic case where the particle-hole sym-
metry does not hold. Therefore, the density range displayed
in Figs. 2(b)–2(d) is 0 < n < 2. The FM state is strongly
suppressed by the triangular anisotropy in the low-density
regime, whereas it still dominates the large-density regime.
This can be explained by invoking the Stoner picture for
ferromagnetism: the triangular lattice density of states is higher
if the Fermi level is located close to n = 3/2 and therefore
the Stoner criterion for ferromagnetism can be satisfied for
relatively small values of U . The flux state remains stable
in a narrow window around intermediate U and n = 1/2. A
new magnetically ordered state enters the phase diagram near
n = 1. This is the well-known 120◦ state, which is the classical
ground state of a triangular-lattice Heisenberg model. A wider
window of phase separation appears in the n > 1 regime,
where a conical spiral state also becomes stable. The phase
diagram remains qualitatively similar between t ′/t = 0.5 and
t ′/t = 0.7. However, the isotropic triangular case (t ′ = t) gives
rise to new and interesting phases. The first of these new
phases is the four-sublattice noncoplanar order near n = 1/2.
This unusual magnetic state, also known as the 3Q state, is of
wide interest as it supports a nonvanishing scalar spin chirality
and an associated quantized Hall conductivity [12,14]. The
quantized Hall conductivity is related to the nontrivial topology
of the electronic band structure that the 3Q state induces in
the Kondo Hamiltonians [41]. Interestingly, the 3Q state was
predicted to be stable in the Hubbard model at n = 3/2 based
on Fermi surface nesting arguments [12]. This has further been
analyzed recently in the weak-coupling limit of the Hubbard
model [42]. We find that the 3Q state is stable at n = 3/2 only
for U � 3 and loses to FM order for larger values of U . This is
in agreement with the weak-coupling analysis of the Hubbard
model [42]. The second new state that appears exactly at
n = 2/3 is the recently reported six-sublattice NC-CO state. In
addition, the (π,π ) ordered AFM state completely disappears,
and instead the 120◦ state dominates the phase diagram near
n = 1, as expected [43–46].
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FIG. 2. n-U phase diagrams obtained within the grand-canonical
approach for (a) t ′/t = 0, (b) t ′/t = 0.5, (c) t ′/t = 0.7, and (d) t ′/t =
1. PS denotes phase separation, P. spiral (C. spiral) refers to planar
(conical) spiral phase, and 3Q and NC-CO are the four-sublattice
and six-sublattice ordered phases found at n = 1/2 and n = 2/3,
respectively.

Having discussed the overall structure of the n-U phase dia-
grams, we now examine more closely the effect of anisotropic
hopping connectivity on different magnetic phases at specific
filling fractions.

B. t ′-U phase diagrams at n = 1/2, 2/3, 1, and 3/2

In this section we describe the t ′-U phase diagrams
obtained within the canonical ensemble approach, where the
minimization is performed over the variational parameters for
a fixed value of the average electronic density n. We discuss
the evolution of various phases as the lattice connectivity
changes from square type to triangular type. The noncollinear
flux phase is the lowest energy state for an unfrustrated
square lattice (t ′/t = 0) at n = 1/2 for intermediate coupling
strength. This state remains stable in a wide parameter regime,
0 � t ′/t � 0.8. In fact, the stability window of the flux state
widens in terms of the U values upon increasing t ′/t [see
Fig. 3(a)]. For t ′/t > 0.8, a noncoplanar state becomes stable
which evolves into the 3Q state at t ′/t = 1. The evolution from
the flux state to the 3Q noncoplanar state is depicted by the
change in variational angle θ [see Fig. 4(a)]. For the flux state
θ = π/2, whereas for the perfect 3Q state θ ≈ 0.98. The other
effect of the triangular geometry for n = 1/2 is to suppress the
FM phase. The FM phase gives way to planar spiral phases
even for small values of the parameter t ′/t . The transition
from a nonmagnetic Fermi liquid state to a magnetic state also
occurs at a slightly larger value of U for the triangular lattice
in comparison to the square lattice.

Another unusual six-sublattice magnetic order was recently
reported in the Kondo-lattice model for an average density
of two electrons per three sites [19]. In order to explore the
possibility of this phase in the Hubbard model, we focus on
the filling fraction of n = 2/3 [see Fig. 3(b)]. We again find
that the FM state is suppressed in favor of the planar spiral
states. Additionally the 120◦ order is stable for t ′/t > 0.5. It
is interesting to note that the stability window of the 120◦ state
at n = 2/3 is even wider than that at n = 1. Importantly, we
find that the six-sublattice NC-CO order is the ground state for
t ′/t > 0.93 and for U > 7.

The half filling, n = 1, is the most commonly studied
filling fraction in the Hubbard models on triangular and square
lattices [47]. Within the mean field, we find that the AFM order
is robust and is stable in the regime 0 < t ′/t < 0.7. Beyond
t ′/t = 0.7, the AFM order continuously evolves towards the
120◦ state. In Fig. 4(a), we show the change in the spiral wave
vector (qx,qy) from (π,π ) to (2π/3,2π/3). The half-filling
case is also of interest for the possible existence of a spin-liquid
state [48]. However, our mean-field method does not capture
the spin-liquid states and therefore we cannot comment on
this competition in the present paper. Some earlier studies that
capture the electronic correlations beyond the mean-field level
show that a nonmagnetic insulating phase can exist between
the antiferromagnetic insulator and the paramagnetic metal
phase [49,50].

Finally we discuss the filling fraction n = 3/2, which is
interesting due to the presence of the Fermi-surface nesting
feature in the noninteracting Hamiltonian. In fact, the non-
coplanar 3Q state was first predicted based on the nesting
property of the Fermi surface. Clearly, for small U the 3Q
state is the ground state due to the presence of a peculiar
Fermi surface nesting in the noninteracting Hamiltonian [12].
Interestingly, the 3Q order loses to FM order for U > 3. The
relative stability of the 3Q state at n = 1/2 and n = 3/2
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FIG. 3. t ′-U phase diagrams obtained within the canonical
ensemble approach at commensurate values of average electronic
fillings: (a) n = 1/2, (b) n = 2/3, (c) n = 1, and (d) n = 3/2. The
notation for different phases is same as that in Fig. 2.

was also explored in the Kondo-lattice Hamiltonian with a
conclusion that the window of stability of the 3Q state is wider
for n = 1/2 compared to n = 3/2 [14]. Our calculations on
the Hubbard model support the results of the corresponding
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FIG. 4. (a) Change in the variational parameters corresponding
to the ground states for n = 1/2, n = 1, and n = 3/2 as a function
of t ′. The parameters are the spiral wave vector qx = qy for n = 1,
and the polar angle θ describing the 2 × 2 block-periodic states for
n = 1/2,3/2. For n = 3/2 the ground state is FM for t ′/t > 0.2.
The electronic density of states for various ground states for different
values of t ′ are as follows: (b) the NC-CO state at n = 2/3 and
t ′ = 1; (c) the flux and planar spiral states at n = 0.5 and n = 0.7,
respectively, for t ′ = 0; (d) the stripe and 120◦ states at n = 0.62 and
n = 0.5, respectively, for t ′/t = 0.5; (e) the flux and the staggered
AFM states for t ′/t = 0.7; and (f) the noncoplanar 3Q and conical
spiral states for t ′/t = 1.

Kondo-lattice model. In sharp contrast to the quarter filling
(n = 1/2), the three-quarter filling favors a FM state for
increasing t ′/t . As mentioned earlier, this can be understood
from the particle-hole asymmetry and large density of states
(DOS) in the n > 1 regime for the triangular lattice.

The electronic spectrum corresponding to different phases
is displayed in the plots for the density of states in Figs. 4(b)–
4(f). The DOS is defined as

D(ω) = 1

N

∑
k

δ(ω − εk) ≈ 1

N

∑
k

γ /π

[γ 2 + (ω − εk)2]
, (6)

where εk are the eigenvalues corresponding to the lowest-
energy self-consistent solution, δ is the Dirac delta function,
and γ is the broadening parameter which we take to be 0.02t

for calculations. All three possible varieties of the spectra are
present: The spiral states are metallic, the 3Q is noncoplanar,
the (π,π ) AFM and the NC-CO states are insulating, and the
flux state is semimetallic with a graphenelike DOS. A robust
gap in the DOS is suggestive of the stability of these phases
against higher-order quantum corrections.

V. EFFECT OF INTERSITE COULOMB REPULSION ON
MAGNETICALLY ORDERED PHASES

In this section we analyze the influence of nearest-neighbor
(NN) Coulomb repulsion on various magnetic phases
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discussed so far. We begin by extending the Hubbard model,
Eq. (1), by including a NN repulsion. The extended Hubbard
Hamiltonian is given by

H ′ = H + V (V ′)
∑
〈ij〉

ninj . (7)

The parameters V and V ′ denote the strength of the
Coulomb repulsion along inequivalent directions on the
anisotropic triangular lattice. It is well known that NN
Coulomb repulsion in bipartite lattices favors charge order-
ing [33]. However, the triangular geometry frustrates the
checkerboard-type charge ordering and leads to exotic charge-
ordered phases, such as the pinball liquid and inverse pinball
liquid [51–54].

The parameter space for the Hamiltonian Eq. (7) comprises
t ′, U , V , V ′, and n as independent parameters. Clearly,
a complete exploration of this large parameter space for
various spin- and charge-ordered phases is easily a topic of
an independent study. Here, our primary focus is to test the
stability against the intersite Coulomb repulsion of the ordered
magnetic phases obtained in the Hubbard model. The effect of
the NN Coulomb repulsion is to promote charge ordering. The
system can either acquire a pure charge-ordered state with no
magnetic moments, or the charge order can be accommodated
within the magnetically ordered state. Given that the focus
of the present paper is on unconventional magnetic order, we
focus on the latter scenario. Therefore, we describe the fate of
each of the unconventional magnetically ordered states in the
presence of the NN Coulomb interactions.

The flux state at n = 1/2. We present results for the
quarter-filled case where the interesting mean-field ground
states are the flux state, for t ′/t � 0.8, and noncoplanar states
for t ′/t > 0.8. We use the variational scheme corresponding
to the block-periodic states discussed in Sec. III. This allows
for four inequivalent sites in terms of the spin and charge
structures. The planar structure is fixed to be of the flux type
and the polar angle is varied to obtain magnetic phases that
interpolate between the flux and the (π,π ) AFM state via the
3Q state (see Fig. 1). Results for V ′ = 0 are summarized in
Fig. 5. We find that the flux state (t ′/t = 0) is compatible with
stripe charge ordering. Indeed, the charge disproportionation
nB − nA becomes finite as soon as V 
= 0 [see Fig. 5(a)].
The magnetic structure retains the flux character; however,
the magnetic moments become unequal on sites A and B

[see Figs. 6(a)–6(c)]. For very large values of V the magnetic
moment becomes vanishingly small at one of the sites, leading
to a strongly charge-ordered AFM state. In fact, a similar state
has been reported in the quarter-filled Hubbard-Holstein and
Kondo-lattice models on a square lattice [55,56]. The nature of
the magnetic order is depicted by the value of the variational
polar angle θ corresponding to the minimum-energy self-
consistent solution. θ = π/2 remains constant for t ′/t = 0
[see inset in Fig. 5(d)].

The 3Q state at n = 1/2. In contrast to the flux state, the 3Q
state competes with charge ordering. It is easy to understand
this difference from the energetics: charge ordering leads to
lowering of energy via opening an energy gap in the spectrum.
Since the flux state is gapless, a gap opening lowers the energy
and therefore the ground state develops a charge ordering even
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FIG. 5. Results on the effect of Coulomb repulsion at n = 1/2.
The value of (a) the local charge densities and (b) the local magnetic
moments at two inequivalent sites as a function of V . The inset in
(d) shows the change in variational angle θ which connects the flux
state (θ = π/2) to the 3Q state (θ ∼ 0.31π ). Density of states of the
spin-charge ordered phases at different values of V for (c) t ′ = 0 and
(d) t ′ = 1. These results are obtained for U = 8 and V ′ = 0.

for small values of V . However, the 3Q state is already gapped
with the origin of the gap tied to peculiar magnetic structure.
Therefore, in order to further lower the energy the charge
ordering must open a gap that offsets the 3Q gap. Starting with
t ′/t = 1, the charge disproportionation remains zero until V =
0.7. A weak reduction of the magnetic moment occurs near
V = 0.5 together with a deviation from the ideal 3Q structure.
Near t ′/t = 0.7, nB − nA becomes finite, and the magnetic

(a)  V=0.5 (b)  V=1.6 (c)  V=2.0

(d)  V=0.3 (e)  V=0.5

(f)  V=1 (g)  V=2

A

A

A

B

B

B

C

C

C

A B

FIG. 6. A schematic view of the spin-charge ordered phases that
appear for finite intersite Coulomb interaction for filling fraction:
(a)–(c) n = 1/2, t ′ = 0 and (d)–(g) n = 2/3, t ′ = t . The sizes of the
circles represent the local charge density. The higher-density sites are
shown as open circles for clarity.
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FIG. 7. Results on the effect of Coulomb repulsion at n = 2/3.
The value of (a) the local charge densities and (b) the local magnetic
moments of three inequivalent sites as a function of V for V ′ = 0. The
inset in (b) shows the change in variational angle � which connects
the FM state (� = 0) to the 120◦ state (� = π/2). (c)-(d) Density
of states of the spin-charge ordered phases at different values of V .
These results are obtained for U = 8 and V ′ = 0.

moment at site A vanishes, leading to the same charge-ordered
AFM state as for t ′ = 0. Therefore, in this case the 3Q state
is destabilized at the onset of charge ordering. The density
of states [Figs. 5(c) and 5(d)] show that a gap opens in the
electronic spectrum owing to the charge ordering. Thus, the
semimetallic flux state is turned into a fully gapped flux state,
and eventually into a gapped collinear AFM for large V .

The 120◦ state at n = 2/3. Finally, we study the effect
of Coulomb repulsion on the 120◦ phase. The results are
presented in Fig. 7. The 120◦ state is destabilized in favor
of a collinear state containing three inequivalent sites. Two of
the sites have equal charge density which is larger than that
on the third (nA = nB > nC). The magnetic moments on the
low-charge sites vanish, while those on the other two sites are
antialigned [see Figs. 7(a), 7(b) and Fig. 6(d)]. The resulting
spin-charge order can be visualized as two interpenetrating
lattices: an AFM ordered honeycomb lattice and a nonmag-
netic triangular lattice. This spontaneous separation into two
sublattices is similar to what happens in the pinball-liquid
phase, the crucial difference being the insulating character
of the DOS in the present case. For V > 0.4, the charge
densities on the three sites are given by nA = nB < nC , and all
three sites have finite magnetic moments. The resulting state
with up-up-down structure has also been found as the ground
state of the Ising spin Kondo-lattice model. For V � 0.9 the
charge densities at three sites are given by nA = nC > nB , and
the magnetic state again becomes noncollinear [see inset in
Fig. 7(b)]. Upon a further increase of V the charge density
as well as the magnetic moment on one of the sites keeps
reducing, giving rise to an effective honeycomb lattice for the
electrons.

For the flux state, the 3Q state, and the 120◦ state at n = 2/3,
the results for V ′ = V are qualitatively similar to those for
V ′ = 0. We show this explicitly in Fig. 8 by plotting the
values of the local charge densities and the local magnetic
moments for inequivalent sites in different spin-charge ordered
states. For the flux state, the charge inequivalence between
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FIG. 8. The value of (a) the local charge densities and (b) the
local magnetic moments at two inequivalent sites as a function of V

for n = 1/2. The value of (c) the local charge densities and (d) the
local magnetic moments at three inequivalent sites as a function of V

for n = 2/3. These results are obtained for U = 8 and V ′ = V .

two sites is induced for any finite value of V = V ′, and for
the 3Q state a critical value of V is required in order for the
charge inequivalence to appear. This is similar to the case of
V ′ = 0 [compare Figs. 8(a) and 8(b) with Figs. 5(a) and 5(b)].
Similarly, for the 120◦ state at n = 2/3 the sequence in which
the three sites become charge and spin inequivalent for V = V ′
is identical to that for V ′ = 0 [compare Figs. 8(c) and 8(d)
with Figs. 7(a) and 7(b)]. Therefore, the results for the above
magnetically ordered phases are qualitatively similar for the
cases V ′ = 0 and V ′ = V . The key difference is a reduced
value of charge disproportionation in the case of V ′ = V

compared to that in V ′ = 0.
Other than the three phases discussed above, all other

magnetically ordered phases become unstable towards pure
charge-ordered states for finite V/V ′. Given that the charge-
ordered states can themselves appear in various varieties,
including long-period modulations [57], it is a challenging
task to explore the full parameter space of t ′, U , V , V ′, and n

for all possible spin- and charge-ordered phases. This can be
taken up as an independent study in the future.

VI. CONCLUSIONS

Motivated by the importance of noncollinear and noncopla-
nar magnetism in determining electronic properties, such as
the anomalous Hall response, improper ferroelectricity, etc., a
systematic search is carried out for unconventional magnetic
ground states in the Hubbard model. Using a mean-field
decoupling scheme that treats collinear, noncollinear, and non-
coplanar order on equal footing, we uncover a rich magnetic
phase diagram for the Hubbard Hamiltonian on an anisotropic
triangular lattice. The most notable of the unconventional
magnetic ground states are (i) the four-sublattice flux order,
(ii) the 3Q noncoplanar state, and (iii) the six-sublattice
noncollinear charge-ordered state. These states have been
found as ground states of the Kondo-lattice model on a
triangular lattice in previous studies [12–14,19]. The effect
of nearest-neighbor Coulomb interactions on these magnetic
states is also investigated and leads to some fascinating spin-
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charge ordered phases. The flux state is found to be compatible
with a stripelike charge-ordered arrangement, whereas the
noncoplanar 3Q state competes with charge ordering and
becomes unstable upon increasing the Coulomb interaction
strength beyond a critical value. The spin-charge ordered state
found at n = 1/2 is a triangular lattice version of the state
found in quarter-filled Hubbard-Holstein and Kondo-lattice
models [55,56]. The 120◦ state gives way to a sequence of spin-
charge ordered states which lead to spontaneous decoupling of
the triangular lattice into a honeycomb lattice and a triangular
lattice. For a certain range of parameter values, one of the
sublattices is magnetic while the other is nonmagnetic. This
highly resembles the pinball-liquid state reported in theoretical
studies of a multiband extended Hubbard model on a triangular
lattice [58]. The phase diagrams presented here set the stage
for further studies to analyze the stability of these phases. A
number of states reported here possess a robust gap in the
electronic spectrum and, therefore, are likely to remain stable
against higher-order quantum effects. Given the fundamental

nature of the Hubbard model, our study is of fundamental
importance. In particular, the results are of relevance to various
triangular lattice systems, such as the layered AgNiO2 [21,22],
the NaCoO2 [23–27], and the organic crystals [28,29]. Many
of the phases presented in this work are similar to the
spin-charge ordered phases reported experimentally in these
materials. While material-specific models have been proposed
to understand these phases, it is interesting to see that the most
elementary model for magnetism—the single-band Hubbard
model—supports many of the unconventional spin-charge
ordered states.
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[8] I. Kézsmárki, S. Onoda, Y. Taguchi, T. Ogasawara, M. Matsub-

ara, S. Iguchi, N. Hanasaki, N. Nagaosa, and Y. Tokura, Phys.
Rev. B 72, 094427 (2005).

[9] S. Hayami and Y. Motome, Phys. Rev. B 91, 075104 (2015).
[10] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95,

057205 (2005).
[11] M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
[12] I. Martin and C. D. Batista, Phys. Rev. Lett. 101, 156402 (2008).
[13] S. Kumar and J. van den Brink, Phys. Rev. Lett. 105, 216405

(2010).
[14] Y. Akagi and Y. Motome, J. Phys. Soc. Jpn. 79, 083711 (2010).
[15] Y. Akagi, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 108,

096401 (2012).
[16] H. Ishizuka and Y. Motome, Phys. Rev. Lett. 109, 237207 (2012).
[17] H. Ishizuka and Y. Motome, Phys. Rev. Lett. 108, 257205 (2012).
[18] J. W. F. Venderbos, M. Daghofer, J. van den Brink, and S. Kumar,

Phys. Rev. Lett. 109, 166405 (2012).
[19] S. Reja, R. Ray, J. van den Brink, and S. Kumar, Phys. Rev. B

91, 140403 (2015).
[20] G.-W. Chern, Phys. Rev. Lett. 105, 226403 (2010).
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