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Nonlocal correlations and spectral properties of the Falicov-Kimball model
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We derive an analytical expression for the local two-particle vertex of the Falicov-Kimball model, including
its dependence on all three frequencies, the full vertex, and all reducible vertices. This allows us to calculate
the self-energy in diagrammatic extensions of dynamical mean field theory, specifically in the dual fermion
and the one-particle irreducible approach. Nonlocal correlations are thence included and originate here from
charge-density wave fluctuations. At low temperatures and in two dimensions, they lead to a larger self-energy
contribution at low frequencies and a more insulating spectrum.
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I. INTRODUCTION

In 1969 the Falicov-Kimball model (FKM) [1] was intro-
duced for describing SmBg and its semiconductor-to-metal
transition. Falicov and Kimball considered fully immobile
Sm- f electrons, interacting with mobile conduction electrons.
Nowadays we know that the FKM does not describe the
Kondo physics that is so important for metallic f-electron
systems since it requires at least a minimal f-electron
mobility or spin flip. Since Plischke [2] also showed that
the paramagnetic metal-insulator transition in the coherent
potential approximation (CPA) is a smooth crossover rather
than a phase transition, interest in the FKM faded in the 1970s.

Interest resurfaced in the 1980s when it was realized [3] that
the FKM is a simplified version of the Hubbard model [4] and
arguably the simplest model for electronic correlations. This
often allows for analytical solutions. An important analytical
result was achieved in 1986 when Brandt and Schmidt [5]
and, independently, Kennedy and Lieb [3] proved that there
is a phase transition towards a checkerboard charge density
wave (CDW) of the mobile and, antithetically, immobile
electrons for dimension d > 2. Freericks and coworkers
showed rigorously that alongside the CDW there is phase
separation in the limit of small [6] and large interaction
strength [7].

The dawn of dynamical mean field theory (DMFT) [8—11]
saw a further rapid development for the FKM. Among others,
Brandt and Mielsch [12] solved the paramagnetic FKM exactly
within DMFT or for dimension d — oo; van Dongen and
Vollhardt [13] studied CDW order; Freericks and Miller [14]
determined dynamical and transport properties; and JaniS$
proved the equivalence to the CPA solution of the FKM [15].
For a concise review of the DMFT results we refer the reader
to Ref. [16] by Freericks and Zlati¢.

The FKM remains an interesting physical model for mixed
valence systems and binary alloys, and an ideal testbed for
analytical results and new approaches. Regarding the latter, we
have seen considerable efforts to include nonlocal correlations
beyond DMFT. These started with the 1/d approach [17] and
cluster extensions of DMFT [18-22] and have been applied to
the FKM by Schiller [23] and Hettler ef al. [24], respectively.

More recently, diagrammatic extensions of DMFT be-
came the focus of this methodological development. These
extensions start with a local two-particle vertex [25] and
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from this construct the local DMFT correlations as well
as nonlocal correlations beyond. Different flavors of these
diagrammatic approaches are the dynamical vertex approx-
imation [26,27] (cf. Refs. [28,29]), the dual fermion (DF)
approach [30] and nonlocal expansion [31], the one-particle
irreducible approach (1PI) [32], the merger of DMFT with
the functional renormalization group (DMF’RG) [33], the
triply irreducible local expansion [34], and DMFT+fluctuation
exchange (FLEX) [35]. Diagrammatic extensions of the CPA
on the basis of the parquet approach have been introduced in
Ref. [36]. Among others, these approaches allowed for the cal-
culation of the critical exponents in the Hubbard model [37,38]
and FKM [39]. In agreement with the expectation from
universality, these exponents are of Heisenberg and Ising type,
respectively.

In the present paper, we derive an analytical expression for
the full vertex of the mobile electrons, including its Matsubara
frequency @ = 0 component, for the irreducible vertices in
the particle-hole and particle-particle channel as well as for
the fully irreducible vertex, employing the parquet equation.
The vertices irreducible in given channels have been known
before, see, e.g., Refs. [16,40,41]).

These local vertices of the DMFT solution are the starting
point of the aforementioned diagrammatic extensions of
DMFT, and hence an analytical expression is most valuable.
Here, we employ the ladder series in the particle-hole channel
to derive analytical expressions for the DF and 1PI self-
energy. We present explicit results for the paramagnetic
self-energy and spectral function when approaching the CDW
transition of the two-dimensional Falicov-Kimball model and
discuss the differences between DF and 1PI. Our results for
the spectral evolution complement the pioneering work by
Antipov et al. [39], which focused instead on the DF critical
exponents for the CDW phase transition. Let us also mention
the seminal work by Jani§ and Pokorny [42] and Pokorny and
Janis [43] studying vertex corrections to the conductivity.

In Sec. IT A we present the expressions for the local DMFT
vertices: the full vertex, the irreducible vertices in the particle-
hole and particle-particle channel, and the fully irreducible
one. This is supplemented in Sec. II B by numerical results
for these vertices at two different interaction strengths. From
these local DMFT vertices we calculate in Sec. III A the DF and
1PI self-energy which includes nonlocal correlations beyond
DMFT. Section III B shows numerical results obtained this
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way for the two-dimensional Falicov-Kimball model. Finally,
Sec. IV summarizes our main findings.

II. LOCAL VERTEX FUNCTIONS FOR THE
FALICOV-KIMBALL MODEL

A. Analytic derivation of local vertex functions

The Hamiltonian of the one-band spinless Falicov-Kimball
model reads

(ij) i
—uyele —ep Y S ()
i i

where Eja(ém) creates (annihilates) an itinerant electron at

lattice site R; and fj( fi) creates (annihilates) a localized
electron at lattice site i; ¢ denotes the hopping amplitude of
itinerant electrons between nearest neighbours, and U is the
local Coulomb interaction between an itinerant and a localized
electron on the same lattice site i; pu and &, are the local
potentials for the itinerant and localized electrons, respectively,
subsuming the chemical potential. In the following B=1/T
denotes the inverse temperature. For the case of a two-
dimensional square lattice considered for the numerical results
we choose D = 4t =1 as the unit of energy. Our analytical
equations are, with an appropriate lattice summation and
dispersion relation &, valid for any FKM, but of course the
calculated local vertex is within the DMFT approximation and
the nonlocal correlations beyond DMFT rely on the DF or 1PI
approximations.

Let us recall that for the Falicov-Kimball model the DMFT
solution for the one-particle Green’s function of the itinerant
electrons can be found (semi-)analytically since the solution
of the corresponding impurity model [i.e., the resonant level
model (RLM)] can be obtained explicitly [16]:

GVW) = Gioe(v) = py +pGv),  (2)

1
G'v-U
— ——

Gvw)

where p; = (ﬁﬁ Y, p2=1—py, and G(v) is the lo-
cal noninteracting Green’s function of the RLM. From
Eq. (2) the DMFT self-energy Z(v) = G~ '(v) — G(v)l;i(v)
can be obtained and the lattice Dyson equation Gio.(v) =
Zk Gpwmrr(v,K) closes the DMFT self-consistency cycle. Here
ek = —2t(cos k, + cos k,) is the dispersion of the square lat-
tice, Yy, = 1/2m)? ffﬂ dk,dky, and Gpmpr(v,k) = 1/[iv +
uw — ex — X(v)]. Specifically, X(v) reads in terms of G(v) [or
Guml:

suy=_ Y
1 —pUG()
Similar as for the DMFT self-energy, in the Falicov-Kimball

model the local DMFT vertex functions for the itinerant

electrons can be calculated (semi)analytically. The reason
is the noninteracting nature of this system: The localized
electrons can be seen as just an additional potential for the
itinerant ones [see Eq. (2)] which are otherwise noninteracting.
The impurity solution in Eq. (2) is simply the sum of two terms,
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FIG. 1. Schematic representation of the structure of the full vertex
F in (Matsubara) frequency space [fermionic Matsubara frequencies,
v,, = (2n, + 1)m/B; bosonic ones, w,, = 2n,m/B]. There are only
o = 0 and v = v’ contributions.

with and without a present f electron (potential). As will be
shown in the following this leads to a factorization of the
vertex functions in terms of one-particle quantities [self-energy
W)

The vertex functions of the FKM only have finite values
for @ =0 and for v =’ (note once again the similarity
with a noninteracting system). This corresponds to the fact
that ¢ electrons are unable to exchange energy directly
between themselves. They can only scatter indirectly via the
f electrons. However, no energy transfer can occur in such
processes due to the zero bandwidth of the f electrons. The
reduced structure is depicted schematically in Fig. 1.

The simple structure as well as the factorization property
of the one-particle irreducible (1PI) vertex F allows for an
explicit calculation of the irreducible vertices in the particle-
particle (I',,,), particle-hole (I',,), and transverse particle-hole
(I',;) and by extension the fully irreducible vertex A (for the
definitions of F, I',, and A see, e.g., Refs. [25,26]).

Let us start with the definition of the DMFT local two-
particle Green’s function of the FKM G®®V"»).

GO0, w) = /drldrzdr3 eVl Ve =i 0TS

x (T (€ (11)é(r2)e" (13)¢)), )

where T denotes the time-ordering operator and (. ..) denotes
the thermal average at the (inverse) temperature B. The
frequency convention here is chosen in accordance with
particle-hole (ph) notation [25].

As already mentioned, for the Falicov-Kimball model, the
DMFT impurity problem actually consists of the weighted av-
erage of two noninteracting problems: one where no localized
f electron is present [the G(v) term in Eq. (2)] and one where
the existence of such a localized electron generates a potential
U for the itinerant electrons [the GY(v) term in Eq. (2)]. For
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FIG. 2. Feynman-diagrammatic relation between the two-particle
Green’s function G and the full vertex F (top), F, and the
irreducible vertex in the ph channel I',;,, given by the Bethe-Salpeter
equation (middle), and the relation between F, I'., and the fully
irreducible vertex A (bottom).

each of these two noninteracting situations Wick’s theorem
holds and allows us to express the two- (and multi-)particle
Green’s functions in terms of the one-particle ones:

GPw,v,0) = B(Su0 — 8,0 [P1G§ VG (V' + w)
+ P2Go(MGo(V' + w)], (%)

with G (v) being defined in Eq. (2).

The two-particle Green’s function can be decomposed into
a disconnected and a connected part containing the full (one-
particle irreducible) vertex function [25] F wWo [gee Fig. 2
(top); note that F is defined with opposite sign compared to
Ref. [25]]:

GO,V 0) = (800 — 8,)GOV)GO + )
+GW)GOW 4+ @)F"°GW)GO + w). (6)

From Egs. (5) and (6) it is well illustrated that the two-particle
local DMFT vertex of the FKM can be expressed exclusively
in terms of the one-particle noninteracting Green’s functions
G(v) and GY (v) or, equivalently, through the local DMFT self-
energy X(v). Using algebraic identities [including Eq. (3)] it
is possible to express F' as

Fv,v',a) — ‘3(6[1)0 _ 5‘),”;)61(1))61(])/ + w) @)

with
_ G-z
NIV

This result has been already obtained previously [16,40].

The full vertex can be further decomposed into irreducible
and reducible contributions in the pp, ph, and ph chan-
nels [25]. The Bethe-Salpeter equations in the respective
channels relate the full vertex F and the vertices irreducible in
the given channel I'. (¢ = ph,ﬁ, pp) [see Fig. 2 (middle)]:

1
B

a(v) ®)

F\),v/’w — thu,v’,u) Z Fv.vl,a)G(vl + w)G(Ul)l—\phvl,v',u)

v

©))
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for the ph-irreducible vertex I';, and

’ ’

Fovhe _ Fppu,v,w + % Z Fu,vurwfwl,le(v + w))
)

xGOW +w — a)l)r'pp”"""”,’w_‘”' (10)

for the pp-irreducible vertex I',, (I'; can be obtained from
I",» by means of the crossing symmetry [25]). Regarding F’s
special structure, these equations can be solved analytically for
I";. We will start with the ph-vertex I' ;. First we consider the
case w # 0. In this situation Eq. (9) is easily solved, yielding

Ba(w)a(v' + w)

T = =8, .1
ph P14+ GOWGDOO + w)a(w)a(y' + w) (in
Let us stress that the expression obtained for F;Z,(wsﬁo) is

consistent with the corresponding result obtained in Ref. [16].

Calculating F[”,Z/“’ for w = 0 requires slightly more work.
The resulting expression is less well known than the w # 0
one, but it has already been obtained by Shvaika [41]. For the
sake of brevity, we will consider the case where v # V', but the
obtained solution holds for all cases. Inserting the expression
for F [Eq. (7)] in the Bethe-Salpeter equation (9) for w = 0
yields

aa(v') =T —a) Y anGV GV w)ry;"

Vi

+a(a)GPWG W, (12)

which can be rearranged to yield

o @@ +1/8 %, GPuNGOw), )

Poi ™ = 14+ a()a(w)GOW)GD(v)

13)

The right-hand side of Eq. (13) factorizes into a part dependent
on and a part independent of v and, hence, the same holds

for the left-hand side, i.e., F;’h”/’“’. Thus making the ansatz

F;Z/(w:m = BCh(v)b(V') one can easily show that b(v) is given
by
a(v)
b(v) = , 14
O = e GO)GD(v) (14)
and the proportionality factor C reads as
[a(w)GP(v))]?
C=11- 15
Z 1+ [a(v)GD(w)))? (1>

Vi

Summing up the results for w # 0 and w = 0 the vertex F;Z“’
has the form

Lo = Bbu0 C b(1b(Y)

ph
aWa(v' + w)
"1+ GOWMGOOW + w)a(W)a(v + o)
(16)

-4

Let us stress that the w = 0 part of the irreducible vertex is of
high relevance for the calculation of static susceptibilities in the
framework of DMFT. It is also worth recalling that, for w = 0,
the occurrence of several [45] divergences in the irreducible
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FIG. 3. Divergencies of the C-factor, Eq. (15), and hence the
local, irreducible vertices throughout the U-T phase diagram of the
2D Falicov-Kimball model. Note that the divergencies are visible in
the picture as jumps from negative (blue) to positive (red) values. The
red area on the left side for U < 0.6 is a consequence of the 1/T
scaling and does not signify a divergency. In the lower right part, the
lines are hardly visible due to emergent Moiré patterns.

vertex functions of DMFT have been reported both for the
Falicov-Kimball [36,40,44—46] and for the Hubbard model
[45,46]. In fact, we also observe the occurrence of divergencies
in 'y, : One can easily see that the prefactor C, defined in
Eq. (15), diverges once the sum over v; in this expression
becomes equal to 1. This leads to the divergence of the
irreducible vertex function I‘;’h”/’w at all fermionic frequencies
v, v'. Fig. 3 shows a false color plot of C, displaying the
positions of these vertex divergences in the DMFT phase
diagram of the Falicov-Kimball model.

Let us now turn our attention to the vertex I",,. It can be
obtained from the full vertex F by means of the Bethe-Salpeter
equation for the particle-particle channel, Eq. (10). Using the
explicit expression for F' in Eq. (7) Eq. (10) can be written as

pa()a(v' + w)(Bw,0 — 8v,v)
_ 0 1 /
= l";p + 3a(v)a(v’ + w)
XG(])(U)G(I)(U/ + a))(l—‘;;/’w _ F;;i—w,v”v—\;f)' (17)
Using the crossing symmetry F""-® = — F" @'~V which
also applies to the pp-irreducible vertex, one obtains for I'p,,

a(w)a(")
1+ a(a(@w)GOWMGOW")
(18)

F;’;/’w = ﬂ(5m,o - (Sv,v’)

As T, can be deduced from I, via the crossing symmetry

v o v, V4w,V —v
P = o , (19)

PHYSICAL REVIEW B 93, 195105 (2016)

180

90

170

o

—270
40

-170

FIG. 4. From top to bottom: Full vertex, particle-particle irre-
ducible, particle-hole irreducible, and fully irreducible vertex for
U=1 (left) and U =2 (right) at T =0.06 for v =0 for the
Matsubara frequency indices of the incoming electron (n,) and
hole (n,/).

we are in a position to calculate the fully irreducible vertex A
via the Parquet equation [25]

Av,v’,w — Z F;),v’,w _ 2Fv,v’,u) (20)
i

with i = ph, ph, or pp, respectively. Altogether we obtain
A" = Ba()a(v) (6.0 — 8y

[ b()b(v'") a(W)GYWa(W"HGV ") j|
X C - 2 ’
a(w)a(”) 1 +a@w)GOW)a(wHGDOW”)

21

completing the parquet decomposition of the local DMFT
vertex of the FKM.

B. Local numerical results from DMFT

In Fig. 4 the local DMFT vertex functions of the FKM are
depicted for two values of the coupling, U = 1 and 2, respec-
tively, for a half-filled lattice py = p» = 0.5 (n. =ny =0.5)
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at a fixed temperature 7 = 1/8 = 0.06. Here, the vertex is
depicted as a density plot in the v-v’ plane for a fixed value
of the bosonic Matsubara frequency. For our plots we choose
o = 0, which is arguably the most interesting case since for
w # 0 the vertex function consists only of another plane along
v = v’. Let us also note that on a bipartite lattice at half filling
the vertex functions are purely real.

The full vertex is depicted in the first row of Fig. 4 for U = 1
(first row, left panel) and U = 2 (first row, right panel). In the
half-filled case considered here the vertex F"”'(“=9 is a purely
real function of its fermionic Matsubara frequencies v and v’.
The features which can be observed in the frequency structure
of the vertex are the constant background, a diagonal where
the amplitude of the vertex is zero and a crosslike structure
in the center. Only for very small values of the Matsubara
frequencies one can see deviations from these main structures.
The origin of the predominant features described above can be
easily understood from Eqgs. (6) and (8): At half filling X£(v) =
U/2+iX"(v) where ¥"(v) denotes the imaginary part of
the DMFT self-energy. Hence, the full vertex acquires the
form

Fovo u? s (02 + 2 (V)2 4 S (2 (V)2
=| 7 FEOET )Y+ e7E )
X(I'=38y.v)B- (22)

First of all, one can easily observe that the constant background
is given by the term U?/4 in Eq. (22). This term can be
interpreted as the bare part of the interaction between the
itinerant electrons in the FKM which is mediated by the
localized electrons and hence of the order U?. Note that this
is different for the corresponding vertex in the Hubbard model
where the constant background of the vertex is just given
by the interaction U since the mobile particles have a direct
interaction among themselves [25]. Second, the zero values on
the diagonal clearly arise from the factor 1 — §,, ,» in the second
line of Eq. (22). This feature, which can be also observed in the
triplet (1) particle-particle irreducible vertex of the Hubbard
model [25], can be interpreted as a consequence of the Pauli
principle: for v = v’ both electrons would be in the same state,
which is forbidden by the Pauli principle. Third, the crosslike
structure observed in the center extending to infinite values of
the Matsubara frequencies originates from the second and the
third terms (2" (v)?> + £”(v')?) in Eq. (22); e.g., for v/ = /B,
the large contribution along this line in the frequency space
stems from the rather large value X" (;r/ 8) even for large values
of v where all the other contributions of the vertex (apart from
the constant term) are suppressed at least as 1/v. This explains
the horizontal line of the crosslike structure. An analogous
analysis for v = /B8 explains the vertical line. Finally, the
last term of (the first line of) Eq. (22) [U%/4X" (v)Z (V)]
decays in all directions of the frequency space and, hence,
yields relevant contributions only within a small frequency
box around the origin.

In comparison with the corresponding full vertex of the
Hubbard model [25] one realizes that a large contribution at
the secondary diagonal (v = —v’) is missing. This can be well
understood from the fact that such features arise from the
scattering events of two itinerant electrons on the same lattice

PHYSICAL REVIEW B 93, 195105 (2016)

site and at the same time. However, again such scattering events
are not possible in the FKM due to the Pauli principle.

Since the size of the main structures of the vertex functions
scales with X (v) it is clear that the vertex will become larger in
parameter regimes where the self-energy is strongly enhanced.
This is nicely illustrated by a comparison of the left (U = 1)
and right (U = 2) panels in the first line of Fig. 4: For the larger
value of U the corresponding self-energy is strongly enhanced
since the system is in the insulating phase, where the self-
energy is very large at low fermionic Matsubara frequencies.
At U =1 on the other hand we are just at the verge of the
metal-insulator transition [16,47]. The self-energy is still more
moderate than for U = 2, explaining the significantly smaller
size of the vertex at this parameter.

A similar analysis as for the full vertex F' can be performed
for the irreducible ones. As one can observe in Fig. 4 the
vertices irreducible in the pp channel (I',,) and ph channel
(I"pr) as well as the fully irreducible vertex (A) exhibit similar
structures as the full vertex (F). The explanation of these
features, hence, follows the discussion above. Let us just point
out that, for I' ), at U = 1 and for both I, and T, at U = 2
sign changes appear in the vertex functions at low frequencies.
This might be related to the previously observed divergences
in the irreducible vertex functions [36,40,44,46]. For U = 2,
", even shows a squarelike structure extending to a broadened
cross. Within these features the vertex exhibits sign changes.
Considering Eq. (21) for A the sign changes of I'; extend
obviously to the fully irreducible vertex.

As one of the two main applications of the local vertex
functions of DMFT we have calculated by means of the
Bethe-Salpeter equation in the ph channel using the nonlocal
DMFT Green’s functions the CDW susceptibility x(w,q) of
the system (for the concrete calculation see Sec. III and
Ref. [10]). A divergence of this susceptibility at @ = 0 and
q = (m,m) signals the transition from a paramagnetic to a
checkerboardlike charge-ordered phase (within the framework
of DMFT). The values of x(w = 0,q = (r,77)) are reported in
Fig. 5 yielding the phase diagram of the half-filled FKM, which
agrees well with the result of the literature [39].

III. NONLOCAL CORRECTIONS TO DMFT
SELF-ENERGIES FROM 1PI AND DF

A. Analytic derivation of correction terms

The DMFT captures local correlations in the FKM. In
this way it is possible to describe physical phenomena
which are driven by local correlations such as, e.g., the
Mott-Hubbard-like metal-to-insulator transition in the Falicov-
Kimball model. However, DMFT cannot describe physical
properties due to nonlocal correlations between the electrons
on a finite-dimensional lattice. The latter are particularly
important in the vicinity of second-order phase transitions from
a paramagnetic to a spatially ordered phase. In this case the
correlation length of the system can become very large and
eventually diverges at the transition. While, in this situation,
the order parameter itself is of course zero above the critical
temperature, T, one observes strong nonlocal fluctuations of
this order parameter on all length scales.

195105-5



T. RIBIC, G. ROHRINGER, AND K. HELD

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

U

FIG. 5. DMFT phase diagram for the 2D Falicov-Kimball model.
Shown is the CDW susceptibility as a function of U and 7. In
the region where x [w = 0,q = (;r,7)] is negative—indicated by the
white region in the phase diagram—the system is already in the CDW
ordered phase.

As discussed before, the half-filled Falicov-Kimball model
on a bipartite lattice exhibits an instability towards CDW
ordering at low temperatures: itinerant and localized electrons
arrange themselves in a checkerboard structure. Below the
ordering temperature the physics of such a system is to a large
extent controlled by the presence of the spatial order, i.e., by
the finite value of the order parameter. This ordered phase can
be described by DMFT (see Fig. 5). Hallmarks of this ordered
phase can be observed, however, already in the paramagnetic
phase slightly above the transition temperature. These effects
on the other hand are not captured by the DMFT self-energy.

Let us recall that the effect of strong order-parameter
fluctuations in this regime is very pronounced in two-particle
observables such as the charge susceptibility. The latter is
strongly enhanced in the vicinity of the ordered phase and
eventually diverges when approaching the transition (see Fig. 5
and Ref. [39]). On the other hand, the presence of the phase
transition should also affect one-particle properties of the
system, in particular spectral functions and self-energies. In
order to treat such a situation from a theoretical perspective
we have to include nonlocal correlations beyond the local
ones of DMFT into the self-energy of the system. Cluster
extensions like cluster dynamical mean field theory [19] or
dynamical cluster approximation [18] are able to include
short-range correlations within the cluster size. However, since
exactly at the phase transition the correlation length of the
system diverges, a finite-cluster treatment is insufficient for
a comprehensive description. In this respect, diagrammatic
extensions of DMFT, which are capable of treating spatial
fluctuations on all length scales, offer an alternative route for
analyzing the half-filled Falicov-Kimball model on the verge
of charge ordering.

Here, we have applied the DF and 1PI approach to include
nonlocal correlations in the electronic self-energy and spectral
function on top of the local ones of DMFT. The alternative
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dynamical vertex approximation is considerably more difficult
to implement for the FKM since it relies on the equation of
motion, which in turn requires the calculation of the c- f vertex
between localized and mobile electrons. Both DF and 1PI start
from the action of the FK model:

1
Sexle™e.f . f1= 3 D I=iv + & — plel (e (1)
v,k
1
t3 Y l=iv+ £ W) )

B
+U Z/o dt ¢t (t)e; (O fF () f; (2),

(23)

where c§+)(1:) and fl.(+)(r) represent the fermionic Grassmann
fields for the itinerant and localized electrons, respectively,
at lattice site R; and imaginary time t. cl(:r)(v) denotes
the corresponding Fourier transform of the itinerant field to
frequency and momentum space, where k is a momentum
vector in the first Brillouin zone and v = %(Zn + 1),n e
is a Matsubara frequency at a given (inverse) temperature
B=1/T.

In the spirit of DMFT we now express the actual FK
model in terms of a purely local system [coined the resonant
level model (RLM)] for which one- and two-particle Green’s
functions can be obtained exactly (as was done in the previous
section). To this end we replace the only nonlocal term in
Eqg. (23), i.e., the lattice dispersion ¢y, by a local hybridization
function A(v) (e.g., the one of DMFT). It is evident that the
exact action of the FKM can be then expressed in terms of this
hybridization and a corrections term containing all nonlocal
parts of the action:

SFK[C+»C»f+sf] = ZSRLM[C;LscivfiJr’fi]

1
-3 D IAW) — alef (ekv),  (24)
v,k

where the action of the RLM at the lattice site i can be obtained
from Eq. (23) by just replacing ex with A(v) (and, of course,
omitting the sums over i and k).

The main idea of the DF and the 1PI method is now to
perform a fermionic Hubbard-Stratonovich decoupling of the
term in the second line of Eq. (24):

o FIAO)=ale, (ks ()

o [ d, s )

s o E T IBW)=e1? B W6, 0o 0+, (et ()]

« e*[Bka(V)]za;(U)Ekn(V)’ (25)

where the ¢ are the Hubbard-Stratonovich fields, which are
coined “dual fermions” in the framework of the DF theory.
Choosing Bk, (v) = [Gk,c(v)]’l[A(v) — sk]’% allows us to
rewrite the term in Eq. (25) which couples the real and the
dual fermions from a sum over momentum to a sum over real

195105-6



NONLOCAL CORRELATIONS AND SPECTRAL PROPERTIES ...

()

Vi N\
> Fio. <
/(}// \@
DF
Floc Floc
R G R
(b)
Va4 AN
© Fioe ¢
© &
1PI
E()(‘ o F‘]O('
. GpmrT :‘Gloc + G .

FIG. 6. (a) Typical third-order diagram of DF. Note that apart
from local vertex functions it contains just purely nonlocal propaga-
tors G = Gpmrr — Gioe. (b) A diagram which can be constructed in
DF only at the three-particle level (with the red part as a one-particle
reducible three-particle vertex) [32], but is present in 1PI already at
the two-particle level.

space:

Z G (W)S, (V) + G (v)ek(v)

v,k

= ¢ W& )+ w)e; ). (26)

v,i

After these transformations the action regarding only the
original (physical) fields becomes diagonal in real space and,
hence, the original fermions can be integrated out locally (i.e.,
separately for each lattice site). In this way, one obtains an
effective action for the new fermions, the free propagator of
which is just given by the difference of the DMFT Green’s
function and its local counterpart, while the interactions
between these new particles are just the one-, two-, and
more-particle local (connected) vertex functions of DMFT.
Hence, the new theory contains already in its lowest-order
diagrammatic expansion all local correlations of DMFT via the
corresponding DMFT self-energy, while nonlocal corrections
can by constructed diagrammatically by means of the above-
mentioned propagator and the local DMFT vertex functions.
A typical (third-order) diagram of DF is shown in Fig. 6.

It is important to note that in the DF theory the full two-
and more-particle vertex functions act as interaction between
the dual electrons. Apart from 1PI contributions these vertices
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contain also one-particle reducible parts. This leads to two
main difficulties in the DF approach.

(i) The diagrammatic sums performed within DF will in
general contain one-particle reducible contributions to the
(dual) self-energy which have to be removed by corresponding
counterterms [48].

(i1) In almost all diagrammatic extensions of DMFT, only
local two-particle vertex functions are taken into account for
constructing nonlocal corrections to the DMFT self-energy.

Three- and more-particle local vertices are usually ne-
glected. Within such an approximation DF does not generate
all diagrams which could be constructed from these local
two-particle vertex functions. This is illustrated exemplarily
in Fig. 6: The diagram shown in Fig. 6(b) is not contained in
the DF theory when restricted to two-particle vertices. In fact,
it contains a purely local propagator which is not available in
the dual fermion theory. Specifically, the part marked in red
represents a one-particle reducible contribution to the local
three-particle vertex. Hence, the diagram in Fig. 6(b) can be
constructed in DF only when including local three-particle
vertex functions. On the other hand, this diagram consists—
apart from local and nonlocal DMFT Green’s functions—only
of two-particle vertex functions. Hence, it would be desirable
to include it already at the two-particle level in the theory.

The problem mentioned above can be avoided when
excluding one-particle reducible diagrams from the theory.
This can be done in the standard way by performing a
Legendre transform on the generating functional [32]. As a
result, the interaction between the new fields is given only
by the one-particle irreducible vertex functions. On the other
hand, one can show that for these new fields a purely local
propagator is available. Hence, the diagram in Fig. 6 is
generated in this new 1PI approach already at the two-particle
level. From the considerations above it is evident that the
set of diagrams included in the DF approach represents a
subset of the diagrams taken into account in the 1PI theory
when restricting both methods to the two-particle local vertex
functions.

However, for the peculiar model studied in this work, i.e.,
the half-filled FKM, the full three-particle vertex vanishes [39]
due to a perfect cancellation between one-particle reducible
and 1PI contributions. As in 1PI only the 1PI vertex is
considered in the theory, such a cancellation does not take
place in the effective interaction of the 1PI approach. This
suggests that for this special case DF results might be more
accurate.

For the formal derivation of the DF and the 1PI expressions
for the nonlocal corrections to the self-energy we refer the
reader to the literature [30,32]. Here, we present just the final
equations for the self-energy corrections which are obtained
from ladder contributions:

loc

2 R L
Sk = 5 > RYGuGuig Fy Giag — TV (270)
k'q

2

Yok = e

§ : wos 7~ Vve
Floc Gk’Gk’+qu Gloc,erw'
k'q

(27b)

Note that X, , = X, is, in fact, k independent (1PI correction
to the local self-energy due to nonlocal corrections). 252,1 is
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defined as

1 P _
2 w'w Vv
Egl)c = _p § :Floc Gk’Gk’+q Fl()c Gk+q- (28)
k'q

The latter contribution accounts for the double counting of the
second-order (in Fj,.) diagram due to the indistinguishability
of identical particles. Finally, the vertex Fy Ve s constructed
from ladder diagrams consisting of local two-particle vertices
and nonlocal Green’s functions of DMFT:
R = R+ 5 SR Gy (29)
k1

loc

where Flgz‘r" defines here the local two-particle vertex function
of DMFT. Let us stress that in order to capture the above-
discussed physics of long-range correlations it is absolutely
necessary to consider ladderlike diagrams which are capable
of describing these fluctuations on all length scales.

A peculiarity of the FKM is that, similarly as for the local
vertex functions in the previous section, the correction formu-
las for the DMFT self-energy can be given (semi)analytically.
Indeed, after some algebraic transformations, analogously to

those in Sec. II A we obtain
a*(v)
[1—a2x (@)
a()a(vy)

_22 v, V]

oo 1—a(a()x (g

2P0k =2 dwa )y @Gk +q)

G,k +q)

sPwh =2>"¢,
q

G(vi,k + q), (30)

V1,4
—2Y d*wx @Gk +q). (3D
q
a*(v)
22(\)) - 2 C ~V,V GIOC(U)
; -amix @]
L Co LS e

S 1 —aat)y (@)

2 2
+5 D a()Gac(v)a(v) — Ecﬂ(v)Gloc(v). (32)

Vi

Here )N(w (q) is defined as

X @=Y GG k+q) (33)
k

and C, is given by

2 ~ D,V —1
Q:P+Z;wﬂ42ﬁ, o4

~V,V
> 1—a?(nx (@)
s 3@

s 2,7, and X, represent the single contributions of
the 1PI theory to the corrections of the DMFT self-energy
originating from nonlocal correlations in the system. 25” and
Ziz) represent exactly the DF corrections corresponding to
diagrams of the type shown in Fig. 6(a). In the 1PI approach,
on the other hand, also a purely local propagator is available
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FIG. 7. DF and 1PI self-energies for the k points (7,0) (left) and
(m/2,m/2) (right) at U = 1 for T = 0.055 (bottom) and 7 = 0.08
(top).

giving rise to the correction X, of the DMFT self-energy. A
typical diagram contributing to ¥, is depicted in Fig. 6(b).

Let us point out that the sum of Eil) and 2(12) does
not represent the final self-energy correction to the DMFT
self-energy obtained from dual fermion theory: In fact they
represent just the corrections for the dual particles and,
hence, have to be transformed back to the space of real
electrons [49]. Finally, we want to mention that the results
presented in the following are obtained by so-called one-shot
calculations, i.e., no self-consistency has been performed in the
DF theory [30] and no X correction has been applied to the 1PI
results [32].

B. Numerical results in two dimensions

In this section we present numerical results obtained for
the self-energies of the DF and the 1PI approach for U = 1.0
and 2.0 and for two temperatures, respectively. To this end we
have evaluated Egs. (30)—(32) numerically using 120 fermionic
frequencies for the Matsubara summations and 160k points
(in each direction) for performing the momentum integrals.
All calculations presented in this section have been performed
at half filling.

In Fig. 7 we compare the DMFT, DF, and 1PI self-energies
for U = 1 at two different temperatures, 7 = 0.08 and 0.055.
One can clearly see that the nonlocal correlations captured
by DF and 1PI strongly enhance the imaginary part of the
DMEFT self-energy (note that at half filling the real part on
the Matsubara axis is just given by the Hartree term). As
expected, at a higher temperature 7 = 0.08 this effect is
relatively moderate and also differences between the nodal
[k = (/2,7 /2)] and the antinodal [k = (7r,0)] k point on the
Fermi surface are insignificant. This is consistent with the fact
that at high temperatures the system exhibits a mean-field-like
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behavior with only small corrections to DMFT. Consistent
with this, also the differences in the self-energies between 1PI
and DF are relatively small.

At a lower temperature 7 = 0.055 the corrections of 1PI
and DF to DMFT become much larger as it can be seen in the
second row of Fig. 7. That means that nonlocal correlations
strongly affect the self-energy at this set of parameters.
According to the phase diagram in Fig. 5 the considered data
point is already (quite) close to the CDW phase transition;
the correlation length extracted from the nonlocal ph ladder is
given by & = 2.63. Already for such a &, the corresponding
charge susceptibility is large. Since the correlation length and
susceptibilities diverge, nonlocal correlations will be even
much larger close to 7.. The susceptibility contributes to
the DF and 1PI self-energies via the terms in the first row
of Eqgs. (30) and (32). Hence both DF and 1PI demonstrate
that strong charge fluctuations enhance the self-energy in
the vicinity of the CDW phase transition of DMFT in the
two-dimensional FKM. Our results are also consistent with the
observation that nonlocal corrections are substantially stronger
at the antinodal than at the nodal point: At the antinodal point
CDW fluctuations even more strongly enhance the self-energy
due to the presence of a van Hove singularity in the density of
state of the bipartite square lattice.

As for the difference between DF and 1PI one can see in
Egs. (30)—(32) that in 1PI in addition to the purely nonlocal
propagator G (v,k), which is rather small, also a purely local
DMFT propagator Gj.(v) appears in the equations [see
Fig. 6(b)]. The latter can be seen as part of a reducible local
three-particle vertex of DMFT, which appears in DF only
when considering three-particle vertex functions explicitly.
The difference will be reduced if a A correction [27] is
included in 1PI as this shifts the CDW divergence towards
lower temperatures. More details about the relation between
1PI and DF are discussed in Ref. [32].

The situation described above is even more pronounced
for the larger coupling, U = 2, as illustrated in Fig. 8. One
observes large corrections to the DMFT self-energy from 1PI
and DF whereas again the effect of nonlocal correlations is
larger at lower temperatures (close to the charge-ordering
phase transition) and for the antinodal point on the Fermi
surface. As for the difference between DF and 1PI one can see
(similar as for U = 1) that the corrections of the 1PI method
are much larger than that of the DF ones.

In order to get a better physical insight into the meaning
of our results we performed an analytic continuation of our
self-energy data to the real axis by means of a Padé fit to
frequencies slightly above the real axis (Im @ = 0.1) From the
corresponding self-energy on the real axis we then obtain the
spectral functions for the system from DMFT, DF, and 1PI. In
Fig. 9 we compare the k-resolved spectral functions of DMFT,
DF, and 1PI for U = 1 and T = 0.055 for the nodal (right)
and the antinodal (left) point, respectively. For all methods we
observe a gap at the Fermi level whereas its depth is larger in
the 1PI data than in DMFT. This is of course expected from
the enhanced behavior of the 1PI (and DF) self-energy on the
Matsubara axis compared to DMFT. In the DMFT spectrum
we clearly observe two peaks corresponding to the formation
of two Hubbard-like bands, consistent with the DMFT metal-
insulator transition at U, = 1.
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FIG. 8. DF and 1PI self-energies for the k points (7,0) (left) and
(/2,7 /2) (right) at U =2 for T = 0.05 (bottom) and 7 = 0.07
(top).

Interestingly, in the 1PI results we find a four-peak structure.
While it is difficult to exclude irrevocably that this feature
is not an artifact of the analytic continuation, we find that
the four-peak structure is rather stable and present also for
different parameter sets close to the CDW transition of DMFT.
A possible interpretation is that the local DMFT correlations
split the original band into two. On top of that two additional
peaks emerge from non-local correlations that are precursors of
the CDW ordering. This assertion is supported by the spectral

T T T T T T T T T T

— G,

real

Timag
DMFT
-- G

Treal

G DMFT

Timag

-1.5-10-05 00 05 10 15 -15-1.0-05 00 05 10 15
w w

FIG. 9. Green’s functions for the k points (7,0) (left) and
(m/2,m/2) (right) at U =1 for T =0.07. We attribute small
nonanalyticities (positive imaginary parts) to the Padé fit.
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FIG. 10. Green’s functions for the k points (;r,0) (left) and
(r/2,m/2) (right) at U =1 for T =0.055. We attribute small
nonanalyticities (positive imaginary parts) to the Padé fit.

functions obtained at U = 2 and T = 0.055 in Fig. 10: Here
the four-peak structure of the 1PI spectral function is even more
pronounced, while in DMFT only two peaks representing the
two separated bands can be observed.

A similar four-peak feature in the spectral function is
visible in Monte Carlo data for the FKM [Fig. 21(f) of
Refs. [50-52]] and dynamical cluster approximation [24]. A
four-peak structure has also been reported in (semi)analytical
calculations for the Hubbard model [53], which attributed this
structure to a mixture of an antiferromagnetic and a Hubbard
band splitting.

Turning to our analytical expression, we associate the
four-peak structure to a combination of the DMFT (and
strong-coupling) pole at v = 0 leading to the DMFT band
splitting, and additional poles at a finite £v. The latter pole

develops if the denominator in Eq. (32), 1 — a(v)a(vl))w(v’v(q),
approaches zero. Since this denominator originates from the
geometric series of the charge susceptibility particle-hole
ladder diagrams, we can identify it with nonlocal CDW
fluctuations.

Finally, in Fig. 11 we show spectral functions for U = 1 at
k points on and away from the Fermi level. One can see that the
spectral weight away from the Fermi energy (M and I" points)
exhibits a strong peak at precisely g (red line), indicating that
the the imaginary part of the self-energy is rather small there.
On the other hand, at the antinodal (X) point we observe a
strong suppression due to the large value of the self-energy
and a splitting into a four-peak structure. The splitting at the
X point reminds us of the typical CDW (or antiferromagnetic)
splitting or the precursor thereof (cf. the green line).
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FIG. 11. Spectral functions along a path through the Brillouin
zone as a function of the real frequency w for U = 1 and T = 0.07.
For comparison, the eigenenergies of the square lattice (red, dark)
and a simple noninteracting system with on-site energies —U /2 and
U/2 on a checkerboard (green, light) are plotted.

IV. CONCLUSION

The derivation of closed-form expressions for all vertices
of the Falicov-Kimball model allows us to calculate nonlocal
self-energy corrections to DMFT analytically, within the DF
and 1PI approach.

In a pioneering work, Ref. [39], it was already shown that
the dual fermion critical exponents for the FKM are of the
Ising universality class. Beyond Ref. [39], we show how charge
fluctuations affect the paramagnetic spectral functions. These
nonlocal correlations lead to a more insulating solution with,
compared to DMFT, a larger splitting of the lower and upper
band. Our results also indicate a four-peak structure of the
k-resolved spectral function in parts of the Brillouin zone. As
a physical explanation we propose a dynamical mixture of the
DMFT metal-insulator transition caused by local correlations
and nonlocal checkerboard CDW correlations. Similar four-
peak features in the spectral function can be identified in Monte
Carlo studies for the FKM [50] and have been observed in
(semi)analytical calculations for the Hubbard model [53].
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