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Electronic structure and the origin of the Dzyaloshinskii-Moriya interaction in MnSi
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The metallic helimagnet MnSi has been found to exhibit skyrmionic spin textures when subjected to magnetic
fields at low temperatures. The Dzyaloshinskii-Moriya (DM) interaction plays a key role in stabilizing the
skyrmion state. With the help of first-principles calculations, crystal field theory, and a tight-binding model we
study the electronic structure and the origin of the DM interaction in the B20 phase of MnSi. The strength of the �D
parameter is determined by the magnitude of the spin-orbit interaction and the degree of orbital mixing, induced
by the symmetry-breaking distortions in the B20 phase. Our calculations suggest strong coupling between Mn-d
and Si-p states, which is consistent with a mixed valence ground state |d7−xp2+x〉 configuration. Consistent
with previous calculations, we find that DFT+U leads to the experimental magnetic moment of 0.4 μB , which
redistributes electrons between the majority and minority spin channels. We derive the magnetic interaction
parameters J and �D for Mn-Si-Mn superexchange paths using Moriya’s theory assuming the interaction to
be mediated by eg electrons near the Fermi level. Using parameters from our calculations, we get reasonable
agreement with the observations.
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I. INTRODUCTION

Recent observations of skyrmions [1] in magnetic solids
have raised considerable interest in this new magnetic state.
The skyrmion state is a novel, vortexlike spin structure
that carries a characteristic topological charge S, which is
S = ±1 for skyrmionic state and S = 0 for ferromagnetic
and spin spiral states [2]. Materials with skyrmionic textures
are anticipated to produce unconventional spin-electronic
functions such as the topological Hall effect [3]. Experiments
have confirmed their existence in chiral magnets with B20
crystal structures such as MnSi, MnGe, Fe1−xCoxSi, etc. when
subjected to small magnetic fields [4,5]. Competition between
magnetic exchange, Dzyaloshinskii-Moriya (DM) interaction,
and Zeeman coupling to the external magnetic field stabilizes
this unique magnetic arrangement [6–8]. While the exchange
coupling tries to align the spins parallel or antiparallel, the
DM coupling tries to align them perpendicular. It has the
form �D · (�Si × �Sj ), where �D is the DM coupling parameter
and �Si,�Sj are the spins at sites i,j . For the DM interaction
to be present, in addition to strong spin-orbit coupling and
magnetism, the system should have no inversion symmetry,
making certain class of materials special [9,10].

MnSi, which is a prime example of an itinerant magnet,
develops a helical magnetic order below the transition tem-
perature Tc = 29.5 K with a saturation magnetic moment
of 0.4 μB /Mn. Interestingly, the measured magnetic moment
in this system is much lower than the value of 1.4 μB /Mn
calculated by the Curie-Weiss theory [11]. A mixed valence
state of Mn-d orbitals [12] and spin fluctuations originating
from Fermi surface nesting [13] are proposed as possible
explanations for this discrepancy. The spin spiral has a large
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periodicity λh ≈ 180 Å and is aligned along the cubic space
diagonal 〈111〉. When a perpendicular magnetic field is applied
to the thin films of MnSi just below the ordering temperature, a
new magnetic phase (called the A phase) develops that exhibits
skyrmionic textures [4].

Theoretical studies using density functional theory (DFT)
incorrectly predicts a moment of 1.0 μB /Mn [14] and appli-
cation of Hubbard U has been found to lead to a low moment
solution [8]. Exchange interactions in bulk and thin films of
MnSi were studied in order to explain the ferromagnetism
observed in thin films of MnSi/Si(100) [15]. Hopkinson et al.
considered the electrons in the magnetic ground state of
MnSi to be of dual character [16], leading to both the local
moment and itinerant conduction electrons that mediate the
magnetic interaction through RKKY type interaction [17].
More recently, using a classical spin model with DM terms [18]
and symmetry analysis [19], components of DM vectors with
respect to the crystal structure were determined.

In this paper, we present results of first principles cal-
culations and construct an effective model Hamiltonian to
understand the ground state configuration and DM interaction
of MnSi. While it is possible to estimate magnetic interaction
parameters using first principles methods [20], the model
developed in Part III provides an intuitive picture of the
underlying interactions and is complementary to such calcu-
lations. We start with the centrosymmetric FCC structure and
analyze the changes brought about by the structural distortion.
The DFT band structure is used to derive parameters for a
tight-binding model, which are in turn used to construct a
model for DM interaction in the solid.

II. FIRST PRINCIPLES CALCULATIONS

Calculations within density functional theory are performed
using the Vienna ab initio simulation package [21], within

2469-9950/2016/93(19)/195101(8) 195101-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.195101


K. V. SHANAVAS AND S. SATPATHY PHYSICAL REVIEW B 93, 195101 (2016)

x

z y

Mn

Si

FIG. 1. Crystal structure of MnSi in (a) FCC and (b) B20
phases. The Mn and Si occupy equivalent positions. The unit cell
is represented by the blue cube. Bonding along the (111) direction
(dotted lines) in (c) FCC and (d) B20 structures are also shown. Three
different kinds of bonds in B20 phase are marked in Angstrom. In
the B20 structure, the Mn4Si4 cubes are alternately elongated and
compressed along the (111) direction as indicated in (d).

the projector augmented wave method. We use local density
approximation with a plane wave energy cutoff of 500 eV
and k-space sampling on a 12×12×12 Monkhorst-Pack grid.
All structural relaxations are carried out till Hellman-Feynman
forces became less than 0.01 eV/Å. Effects of Hubbard U are
studied with Coulomb-corrected DFT+U calculation using
the all electron code WIEN2K [22] with the gradient corrected
functional [23].

A. Crystal structure

MnSi crystallizes in the B20 phase [6], which has a cubic
cell with a lattice constant of a = 4.56 Å and point group
symmetry of P 213. This phase can be understood by starting
from the rock-salt FCC structure in which each Mn and Si
atoms have six neighbors and equal bond lengths as shown
in Fig. 1(a) with bond angles of 135◦. A pairing type trigonal
distortion along the body diagonal, in which successive MnSi
units compress and elongate, leads to the B20 structure [24]. As
a consequence, each Mn and Si atom has seven neighbors and
three types of bond lengths in the B20 phase [25] as indicated
in Fig. 1(d). The distortion also breaks inversion symmetry.

Although the Bravais lattice remains simple cubic, the
symmetry is reduced to four threefold axis in the FCC
phase. Both Mn and Si atoms occupy the 4(a)-type sites with
point group symmetry C3, with position coordinates (u,u,u),
( 1

2 + u, 1
2 − u,ū), (ū, 1

2 + u, 1
2 − u), and ( 1

2 − u,ū, 1
2 + u).

The internal atom-position parameters are uMn = 0.137 and
uSi = 0.845.

Despite extensive studies, it is not clear from a local bonding
picture, why MnSi and other transition metal monosilicides
prefer the B20 structure. A Fermi surface nesting driven insta-

FIG. 2. (a) Contour plot of the total energy as a function of
positional parameters uMn and uSi. Endpoints of the line joining the
two minima correspond to B20 structure while its center corresponds
to FCC. (b) Variation of energy along the line connecting B20
structures.

bility has been ruled out to be a factor, as several compounds
with different band fillings exist in same structure [24]. The
energy landscape of MnSi shown in Fig. 2, reveal that the FCC
structure is metastable. For the range of uMn and uSi studied, the
two minima marked with circles correspond to B20 structure
with parameters (0.16,0.86) and (0.34,0.64) related by a lattice
translation. The FCC phase lies in between at (0.25, 0.75) and
the three points can be joined by a straight line with a slope
of duSi/duMn = −0.82. Variation of energy along this line
shows the familiar double well structure as shown in Fig. 2(b)
with an energy difference of 1.94 eV per molecule which is in
agreement with earlier studies [14].

B. Electronic structure of the FCC phase

To simplify the analysis of the electronic structure of MnSi,
we start with that of the FCC phase. The primitive cell of
FCC lattice contains two octahedrally coordinated atoms. The
nonmagnetic band structure along with the orbital character
and symmetry properties is plotted in Fig. 3. In agreement with
earlier studies, Si-s bands lie below −8 eV [14,24]. The five
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FIG. 3. DFT band structure and density of states for the FCC phase of MnSi. First panel shows nonmagnetic band structure with orbital
weights indicated by colored circles: red for Si-s, green for Si-p, and blue for Mn-d . The numbers stand for the symmetry characters of the
bands as listed in Table I. Second and third panel shows ferromagnetic band structures for spin and up and down channels and the corresponding
total density of states is shown in the fourth panel. The partial density of states for Mn-t2g , eg , and Si-p states are shown in the last two panels.

bands close to the Fermi level at the � point originate from Mn-
d, with hardly any splitting between the eg (3z2 − r2,x2 − y2)
and t2g (xy,xz,yz) levels. Si-p bands couple strongly with d

bands at generic k points and split across −3 eV to −7 eV and
3 eV to 7 eV.

From the symmetry characters [26] marked in Fig. 3 and
listed in Table I, one can understand which bands are allowed
to interact at the special points. It shows that d-p orbital
overlap is forbidden by symmetry only at � and X points. As
a consequence, a singlet band in �15 manifold develops strong
d character along �1 − L3 and �5 − X5′ directions; while a
singlet d band from �25′ develops strong p character along
�1 − L1 and �1 − X4 directions, which indicate strong d-p
mixing along these directions, in agreement with electronic
structure calculations. Detailed symmetry representations are
given in Table I. Mn-s bands are absent from the band
structure, indicating s0d7 configuration for Mn and s2p2 for
Si. Calculated Bader charges using optimized charge densities
also confirm this picture.

Spin polarized density of states (DOS) in Fig. 3 shows that
there is a small exchange splitting of the order of 1 eV in
the FCC phase. The effect of crystal field is much larger, at
about 3 eV. Since the splitting at � point is negligible, this
indicates that the crystal field potential is highly k dependent.
Comparing the band structure and partial DOS shows that most
of the contribution to the peaks in density comes from states
that are close to the zone boundary.

To estimate strengths of orbital overlaps, we constructed
a tight-binding model with five Mn-d and three Si-p atomic
orbitals as basis [27,28]. Nearest neighbor Mn-Mn, Mn-Si,
and Si-Si electronic hopping matrix elements are included.
We used the DFT nonmagnetic band structure in Fig. 3 to fit
the parameters of this 8×8 model Hamiltonian, which yield the
onsite energies (in eV) ε(eg) = −1.4,ε(t2g) = −0.8, εp = 1.5,
and hopping parameters, Vddσ = −0.35, Vddπ = 0.15, Vppσ =
1.3, Vppπ = −0.15, Vpdσ = 1.0 and Vpdσ = −0.9.

C. Electronic structure of the B20 phase

As a consequence of the B20 distortion, the primitive cell
becomes the same as the conventional cell with four formula
units (f.u.) and the electronic structure becomes more complex
with four times the number of bands. Still, several interesting
features can be observed in the band dispersions shown in
Fig. 4. Firstly, the reduced symmetry in the B20 phase lifts
the degeneracy of bands at generic k points, however, around
R the bands are similar to the FCC phase, as the threefold
axis along (111) is preserved after the distortion. The Mn-d
bands form three groups with the lower group of eight bands
having predominant eg character, the middle group of eight
bands and the top four bands with t2g character. Another effect
of distortion is opening of a narrow gap between the top four
bands and the rest of Mn d bands, just above the Fermi level.
In FeSi, which has four more electrons per unit cell than
MnSi, this gap leads to semiconducting behavior for both spin

TABLE I. Irreducible representations of the O5
h point group spanned by atom-centered orbitals in the MnSi FCC structure. Points � and

� are the midpoints of � − L and � − X, respectively.

L � � � X

Mn-s L1 �1 �1 �1 X1

Mn-p L2′ + L3′ �1 + �3 �15 �1 + �5 X4′ + X5′

Mn-d L1 + 2L3 �1 + 2�3 �12 + �25′ �1 + �2 + �2′ + �5 X1 + X2 + X3 + X5

Si-s L2′ �1 �1 �1 X1

Si-p L1 + L3 �1 + �3 �15 �1 + �5 X4′ + X5′

Si-d L2′ + 2L3′ �1 + 2�3 �12 + �25′ �1 + �2 + �2′ + �5 X1 + X2 + X3 + X5
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FIG. 4. The bands of nonmagnetic MnSi in FCC (left) and B20
(right) phases in the four-molecule unit cell. Fermi energy is located
at 0 eV. The labels mark dominant band character.

channels [24]. Spin polarized band structure and partial density
of states of MnSi in the B20 structure are given in Fig. 5.
Four bands above Fermi level has dominant Mn-d character
indicating that one hole (per Mn atom) exists in the up-spin
channel while two holes exist in the down-spin channel. The
narrow gap just above the Fermi level in the spin-up channel
leads to a half metallic density of states, resulting in an integer
magnetic moment of 1 μB .

Partial DOS shows substantial contributions from both eg

and t2g characters across the entire energy range of d states
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FIG. 5. Spin polarized band structure and partial density of states
in the B20 phase of MnSi. In the partial DOS, blue and red lines
correspond to eg and t2g states, respectively.
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FIG. 6. Level splitting for Mn d states in MnSi, as inferred from
the DFT results, Figs. 4 and 5. In the trigonal distortion, the structure
is expanded (or compressed) uniformly along the cube diagonal
direction (111), while in the B20 structure, the cubes are alternately
compressed and expanded along the same direction (see Fig. 1). The
“eg/t2g” characters for the B20 structure indicated on right shows the
approximate character of the orbitals, referring to the cubic basis.

−3 to 1 eV, indicating that there is strong mixing between the
states. Since B20 distortion is a modified trigonal field with
alternate elongation and compression of the MnSi cubes along
the (111) direction, we arrive at the level diagram shown in
Fig. 6, where the cubic crystal field in the FCC structure splits
the d states into doubly degenerate eg and triply-degenerate t2g

states. The trigonal distortion splits the t2g levels further into
a doublet (t±) and a singlet (t0). A convenient form for these
states was proposed by Pryce and Runciman, viz. [29,30],

t0 = 1√
3

[(xy) + (yz) + (xz)]

t+ = − 1√
3

[(xy) + ω(yz) + ω2(xz)]

t− = 1√
3

[(xy) + ω−1(yz) + ω−2(xz)] (1)

e+ = − 1√
2

[(3z2 − r2) + i
√

3(x2 − y2)]

e− = 1√
2

[(3z2 − r2) − i
√

3(x2 − y2)],

where ω = e2iπ/3. Actually, a small but nonzero mixing
between t± and e± exists in the trigonal structure [30], but
it affects the t+/e+ and the t−/e− states equally, so that the
double degeneracies (Fig. 6) in the trigonal structure are not
broken. The B20 distortion removes all degeneracies of d

orbitals as indicated in Fig. 6. The “eg” hole at the Fermi
energy has minority spin character with a strong admixture
of the t2g orbitals, but as seen from the DOS, Fig. 5, the eg

character is dominant for both the majority-spin electron as
well as the minority-spin hole, leading to the simplified level
structure presented in Fig. 6.

The electronic configuration inferred from the band struc-
ture above is: p1

↑e2
g↑t2

2g↑ and p1
↓e1

g↓t2
2g↓, which leads to a |d7p2〉

nominal configuration and a net magnetic moment of 1μB

in the DFT calculations. However, the band counting shows
only that there are five electrons per MnSi formula unit in the
spin up channel, contributed from Mn-d and Si-p, while it is
four such electrons in the spin down channel. Since there is
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FIG. 7. Effect of Hubbard parameter U on the (a) magnetic
moment and (b) density of states of the B20 phase from GGA+U

calculations. Spin of Mn ions remains close to 1 μB till U = 4 eV and
drops to 0.2 μB above 6 eV. The DOS is calculated for U = 6.8 eV.

a strong mixture of Si-p and Mn-d orbitals and they form a
joint band, it is difficult to infer the number of electrons in
the p and d orbitals, and a configuration like p1+x

↑ (eg↑t2g↑)4−x

and p
1+y

↓ (eg↓t2g↓)3−y , where x and y are fractions of one,
is consistent with the band structure. This is especially so
since it is impossible to partition charges between atoms in a
solid in a unique manner. This all fits together with the mixed
valence nature of the Mn ion, viz., d6 and d7, derived from the
x-ray absorption data [12]. Such spin fluctuation has also been
suggested from recent ARPES measurements that indicate a
nested Fermi surface [13].

Coulomb corrected GGA+U results. We note that, in spite
of the difficulty of partitioning the charges among the atoms
as discussed above, the net magnetic moment per unit cell is
still 1 μB (the integer number coming from the half-metallic
band structure), while the experimental value is 0.4 μB . Our
Coulomb-corrected DFT+U calculations (Fig. 7) show that the
Mn-d charge remains more-or-less the same irrespective of the
strength of the U value used. This is because the Fermi energy
falls in the manifold of the Mn-d states with the Si-p states
lying far away in energy, so that it is energetically unfavorable
to move electrons between these orbitals. However, there is a
shift of charge between the spin-up and spin-down channels
and, unlike the DFT results, the bands are no longer half-
metallic, which yields a net magnetic moment less than 1 μB .
The actual value depends on the magnitude of the Hubbard U

and the calculated spin moment agree with the measured value
of 0.4 μB for U ≈ 6 eV, which is a reasonable value for the
on-site Coulomb repulsion for the 3d electrons and consistent
with the earlier DFT+U calculations [8].

z

y
A0

A′
k

B′

B0

A B

p

θ

FIG. 8. A typical superexchange path between two Mn atoms
through an intermediate Si atom. Interaction is mediated by the
hopping of the two electrons indicated by the black dots occupying
the orbitals A0 and B0. A′ and B′ are the remaining four d orbitals
on each Mn (other than A0 and B0).

III. DZYALOSHINSKII-MORIYA INTERACTION

In this section, we turn our attention to the magnetic
interactions between the Mn moments. The helical spin
structure that develops at low temperatures and transforms
to the skyrmionic state upon application of a magnetic
field [4] is known to arise from the interplay of Heisenberg
exchange and DM interactions. Here, we examine the origin
of these interactions based on a simplified model Hamiltonian,
extracted from the density-functional results. For simplicity,
in the following we derive the magnetic interaction between
two Mn spins interconnected through the Si-p states shown
in Fig. 8. Downfolding the Hamiltonian into an effective
ground state model using perturbation theory, we can derive
the parameters J and �D for the above pair.

It is well known that in the weak coupling limit [31], a two
site, two particle Hubbard model with hopping parameter t

and Coulomb repulsion U , can be reduced to the Heisenberg
form Heff = J S1 · S2, where the exchange coupling is given
by J = 4t2/U . In the case of superexchange [32], where the
interaction takes place through an intermediate site (such as in
MnSi), the result is J = 4gt4, where

g = 1

�2

[
1

U
+ 1

�

]
(2)

and � = εp − εd is the bare charge transfer energy from
Mn-d to Si-p states. Further, when spin-orbit coupling is
present and inversion symmetry is absent, the transformation
yields additional terms such as �D · �S1 × �S2, where �D is the
Dzyaloshinskii vector [9]. To estimate the strength of D in
MnSi, we consider a typical Mn-Si-Mn bond shown in Fig. 8,
in which the inversion symmetry at the midpoint of the line
connecting two Mn atoms is broken by the bend through angle
θ . For this three site model, we write the Hamiltonian as
H = Hd

0 + H
p

0 + Ht + HSO, where

Hd
0 =

∑
jmσ

εd
md

†
jmσ djmσ + U

∑
jmσ,m′σ ′

njmσnjm′σ ′

H
p

0 =
∑
kσ

εpp
†
kσpkσ

Ht =
∑
jmkσ

Vjmk d
†
jmσ pkσ + H.c.

HSO = λ
∑

j

�Lj · �Sj . (3)
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The sum j runs over the two Mn sites, A and B, m and k run
over the five Mn-d and the three Si-p orbitals, respectively,
and the sum σ runs over the two spins. Here, Hd

0 and H
p

0 are
onsite terms for d and p sites, respectively, Ht is the Mn-Si
interaction Hamiltonian, and HSO is the spin-orbit coupling
within the d states. The onsite energies are εd

m and εp, U is
the Coulomb repulsion for the d orbitals, and Vjmk are the
hopping amplitudes between the Mn dm on the j th site and Si
pk orbitals. In the ideal B20 structure with uMn = 1/(4τ ) and
uSi = 1 − 1/(4τ ) where τ = (1 + √

5)/2. This makes all Mn-
Si bond lengths equal to a

√
3/(2π ) and all relevant Mn-Si-Mn

bond angles equal to 138.19◦ simplifying the analysis.
In our simplified model for MnSi, we consider the exchange

interaction to be mediated by the single Mn “eg” electron at the
Fermi energy (Fig. 6), residing on the A0/B0 orbital (Fig. 8).
The farther away an electron is from the Fermi energy, the less
effective it is in mediating the exchange interaction, thus in
our description only the electron closest to the Fermi energy
is kept. Moriya showed that treating spin-orbit coupling as
perturbation, HSO and Ht can be combined to an effective
hopping Hamiltonian [10] which allows “spin-flip” hopping
between Mn-d and Si-p states through parameters �Cjk:

HI =
∑

j=A,B

∑
k,σσ ′

[Vj0,kδσσ ′ + �Cjk · �τσσ ′]d†
j0,σ pk,σ ′ + H.c.,

(4)

where j0 corresponds to the electron A0/B0, �τσσ ′ are the Pauli
matrices, and

�Cjk = − λ

2εd

′∑
m

�Lj,0mVjm,k, (5)

where the prime indicates summation over the A′ or the B′
orbitals, εd is the energy difference between A0/B0 and other
d states, �Lj,0m are the matrix elements of the orbital angular
momentum operator between A0/B0 state and the remaining

A0

A′

B0

B′

pVA0,k Vk,B0

VB0,k′

�Ck′,A

FIG. 9. One of the superexchange paths from Mn(A) to Mn(B)
through an intermediate Si that leads to the DM vector �D. If the
spin-flip hopping term �Ck′,A is replaced by standard hopping Vk′,A0,
then the interaction leads to the Heisenberg interaction J .

four d states at the j th site (see Fig. 9), and �Ckj = �C∗
kj . It is

now straightforward [33] to downfold the Hamiltonian into an
effective magnetic interaction between the Mn moments, with
the help of fourth order perturbation theory:

Heff = J �SA · �SB + �D · �SA × �SB (6)

where J and �D are given by,

J = 4g
∑
kk′

VA0,kVk,B0VB0,k′Vk′,A0

�D = 8ig
∑
kk′

VA0,kVk,B0[ �CB,k′Vk′,A0 + VB0,k′ �Ck′,A]. (7)

The remaining task is to evaluate the expressions Eq. (7)
for the present case. Since the eg electron has equal char-
acters from the DFT calculations, we will consider the
A0/B0 electronic wave function to be a linear combination
|A0〉 = |B0〉 = α1|3z2 − r2〉 + α2|x2 − y2〉 and take |α1|2 =
|α2|2 = 1/2. Now, the hopping integrals also become linear
combinations, VA0,k = ∑

l α
∗
l Vl,k , where l runs over 3z2 − r2

and x2 − y2, so that Eq. (7) immediately yields the result
for J ,

J = 4g
∑
kk′

∑
lmno

α∗
l αmα∗

nαoVl,kVk,mVn,k′Vk′,o. (8)

TABLE II. The hopping parameters V and �C for Mn-Si-Mn model depicted in Fig. 8. Here V ′
pdσ ≡ Vpdσ /2εd , V ′

pdπ ≡ Vpdπ/2εd , and only
leading terms in angle θ are kept.

A = 3z2 − r2 B = 3z2 − r2

VA0,x 0 VB0,x 0

VA0,y (
√

3Vpdπ − Vpdσ )θ VB0,y (
√

3Vpdπ − Vpdσ )θ

VA0,z −Vpdσ VB0,z Vpdσ

�Cx,A −i
√

3λV ′
pdπ ŷ �CB,x −i

√
3λV ′

pdπ ŷ

�Cy,A i
√

3λV ′
pdπ x̂ �CB,y i

√
3λV ′

pdπ x̂

�Cz,A −iλ(
√

3V ′
pdπ − 3V ′

pdσ )θx̂ �CB,z iλ(
√

3V ′
pdπ − 3V ′

pdσ )θx̂

A = x2 − y2 B = x2 − y2

VA0,x 0 VB0,x 0

VA0,y Vpdπθ VB0,y Vpdπθ

VA0,z (−Vpdπ + √
3Vpdσ /2)θ2 VB0,z (Vpdπ − √

3Vpdσ /2)θ2

�Cx,A iλV ′
pdπ ŷ �CB,x iλV ′

pdπ ŷ

�Cy,A iλV ′
pdπ x̂ �CB,y iλV ′

pdπ x̂

�Cz,A −iλ(V ′
pdπ − √

3V ′
pdσ )θx̂ �CB,z iλ(V ′

pdπ − √
3V ′

pdσ )θx̂
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The hopping matrix elements are easily evaluated using the
Harrison’s Tables, which are listed in Table. II for small θ ,
which is about 20◦ in MnSi. Plugging these in Eq. (8), we find

J = 4g|α1|4V 4
pdσ + O(θ ). (9)

To calculate the DM vector, we need to evaluate the matrix
elements of orbital moment vector �L, which is given in the
cubic basis {3z2 − r2,x2 − y2,xy,xz,yz} as:

�L = i

⎛
⎜⎜⎜⎜⎝

0 0 0 −√
3ŷ

√
3x̂

0 0 −2ẑ ŷ x̂

0 2ẑ 0 −x̂ ŷ√
3ŷ −ŷ x̂ 0 −ẑ

−√
3x̂ −x̂ −ŷ ẑ 0

⎞
⎟⎟⎟⎟⎠. (10)

The calculated effective spin-flip hopping parameters �C
[using Eq. (5)] are also listed in Table II. Again, we have
the identity �Cj,k = �C∗

k,j where j = A,B. A close inspection

of Table II and Eq. (7) shows that the dominant term in �D is
linear in θ and originates from the coupling of 3z2 − r2 orbitals
through the pz orbitals of the intermediate site. Keeping the
leading terms in the angle θ , the result is

�D = 8g|α1|4λ
εd

V 2
pdσ

(
3V 2

pdπ − 2
√

3VpdπVpdσ + 3V 2
pdσ

)
θx̂ .

(11)

As expected, the ratio, D/J ∼ O(λ/εd ), is proportional
to the spin-orbit coupling strength. As pointed out by
Moriya [10], the DM vector must also obey certain symmetry
properties in the crystal, such as being perpendicular to the
plane containing the bonds. Thus, the axial vector �D lies in
the direction of �rAp × �rAB , where �rAp and �rAB are vectors
connecting Mn(A) with Si and Mn(B), respectively [34]. Thus,
for the superexchange path shown in Fig. 8, �D is along x̂ in
agreement with Moriya’s symmetry rules. For all bonds in
the ideal B20 structure �D has the same magnitude and points
perpendicular to the plane containing the two Mn-Si bonds.
(In the real structure, the Mn-Si-Mn bond angles are somewhat
different between different triads, leading to slightly different
strengths of �D.) Note that between any two given Mn spins, �D
can be zero, if there are two symmetric superexchange paths
such that there is an inversion symmetry at the center of the
line joining the two spins.

As expected, the exchange coupling J has a term inde-
pendent of θ , while the lowest order term in �D is linearly
dependent on θ . This confirms that when inversion symmetry
is present (θ = 0) we will have a finite exchange coupling but

no DM coupling. We can estimate the magnitudes of J and
D using typical parameters obtained from the tight-binding
calculations: � ≈ 3 eV, U ≈ 6 eV, Vpdσ ≈ 1 eV, Vpdπ ≈
−0.9 eV, λ = 0.037 eV for the atom [35,36], εd ≈ 2 eV,
and θ ≈ 20◦ leads to the numerical values: J ≈ 55 meV
and D ≈ 6.1 meV, so that the ratio D/J ≈ 0.12. The helical
structure in MnSi is 180 Å long which is approximately
40 unit cells, which suggest k = D/J = 2π/40 ∼ 0.16 [37].
Considering the crudeness of our model, the agreement with
the experiments is reasonable.

IV. SUMMARY

Using first-principles and tight-binding methods, we stud-
ied the skyrmion compound MnSi both in the B20 and the
ideal, rock salt structure in order to gain insight into the
electronic structure and the origin of the Dzyaloshinskii-
Moriya interaction. The B20 structure is formed by the
alternate elongation and compression of the ideal MnSi cubes
along the (111) direction, which breaks the inversion symmetry
leading to the DM interaction. In both structures, strong
coupling between Mn-d and Si-p indicate a mixed valence
|d7p2〉 + |d6p3〉 state, as suggested by the x-ray absorption
data. The density-functional calculations show a half-metallic
band structure, which leads to an integer magnetic moment 1
μB per Mn ion. However, the Coulomb-corrected GGA+U

calculations redistributes the electrons between the majority
and minority spin channels, and for U ≈ 6 eV, the calculated
magnetic moment drops close to the experimental value of
0.4 μB . We derived expressions for the exchange and DM
interaction between the Mn atoms using a three-site model and
find that the leading term in J is independent of the bond angle
θ but depends on the fourth power of orbital overlap Vpdσ .
The magnitude of the DM interaction �D, however, depends
linearly on both the bond angle θ as well as the spin-orbit
coupling parameter λ, which leads to a vanishing �D in the
cubic phase, as expected. Our results provide insight into the
electronic structure of the B20 phase and will hopefully lead
to a deeper understanding of the skyrmion phase observed in
this structure.
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