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To capture various experimental results in the pseudogap regime of the underdoped cuprate superconductors
for temperature T < T ∗, we propose a four-component pair density wave (PDW) state, in which all components
compete with each other. Without random field disorders (RFD), only one of the PDW components survives.
If the RFD is included, this state could become phase separated and consist of short range PDW stripes, in
which two PDW components coexist but differ in magnitudes, resulting in charge density waves (CDW) and
a time-reversal symmetry breaking order, in the form of loop current, as secondary composite orders. We
call this phase-separated pair nematic (PSPN) state, which could be responsible for the pseudogap. Using a
phenomenological Ginzburg-Landau approach and Monte Carlo simulations, we found that in this state, RFD
induces short range static CDW with phase-separated patterns in the directional components, and the static CDW
is destroyed by thermal phase fluctuations at a crossover temperature TCO < T ∗, above which the CDW becomes
dynamically fluctuating. The experimentally found CDW with predominantly d-wave form factor constrains the
PDW components to have s ′ ± id-wave pairing symmetries. We also construct a lattice model and compute the
spectral functions for the PSPN state and find good agreement with ARPES results.
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I. INTRODUCTION

Since the discovery of the cuprate superconductors [1]
(SC), the pseudogap regime has attracted a lot of attentions
for its exotic properties [2] and the possible relation to the
high temperature d-wave superconductivity (dSC). Two main
types of theories are proposed for the pseudogap. One type
[3–6] suggests that pseudogap is a precursor to the dSC
phase with pre-formed Cooper pairs without global phase
coherence. However, mounting experimental evidences are
pointing otherwise that pseudogap is indeed another broken
symmetry state. The recent inputs mainly come from the
x-ray scattering experiments [7–15], which suggest the state
is characterized by the onset of incommensurate charge
density wave (CDW) with wave vectors at (±2Q,0) and
(0,±2Q), where Q decreases with increasing hole doping.
This finding is in accord with earlier scanning tunneling
microscope [16–20] (STM) and nuclear magnetic resonance
[21,22] (NMR) experiments. There are some early theoretical
studies to explain the pseudogap in terms of CDW [23,24].
The phase diagram is however much richer. Other orders
associated with different broken symmetries are also detected
in the pseudogap, e.g., the time reversal symmetry breaking
(TRSB) order detected in polar Kerr rotation [25,26] (PKR)
and polarized neutron diffraction [27–30] (PND) experiments
and the nematic order [13,31–34] that breaks the C4 lattice
rotational symmetry. This complicated zoo of orders poses a
natural question of whether we can unify these into a common
origin and understand the pseudogap in a coherent manner.
Among the various theories proposed, pair density wave
(PDW) order, which is a spatially modulating SC state similar
to Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states [35,36],
previously studied in different contexts for the cuprates [37–
46], is suggested to be responsible for the pseudogap. Recent
works [47,48] by Lee and Agterberg et al. have successfully
explained many features of the pseudogap. In the PDW theory,
the CDW is induced by the PDW as a secondary composite

order, accounting for the STM and x-ray scattering results.
Moreover, the PDW can also induce a loop current (LC) order
[48–50] to account for the TRSB order observed in PKR
[25,26] and PND [27–30] experiments. Nonetheless, the PDW
order also explain several ARPES features [12,51–55], namely
the kF -kG misalignment, antinodal gap closing from below,
and the Fermi arcs.

Hinted by these successes, the PDW order might hold the
key to understand the pseudogap of hole doped cuprates.
However, several issues have surfaced. Most noticeably, the
charge density waves observed in STM [19,20,56] and REXS
[13] are short ranged. STM further show that these density
waves form a domain structure and are directional within each
domain. The same conclusion is also drawn from REXS. While
these results are obtained in no magnetic field, the high field
experiments, on the other hand, reveal that the CDW with the
same in-plane wave vector is long ranged and unidirectional
[21,57–59]. As a first step to understand this onset of long
range CDW state at high field [22,58,59], it is essential to
explain why the CDW observed in weak field is short ranged.

Experiments however impose stronger constraints, besides
the possible order parameters, on theories. Each set of
experiments reveals a specific doping dependent temperature
scale, but not all these temperature scales can fall into a
single simple curve in the phase diagram. This challenges
the belief that the pseudogap can be ascribed to a single
origin. We shall mention those that are relevant in the current
paper. The electronic transport giving rise to linear resistivity
[60,61] defines Tρ that is believed to capture a quantum
critical point associated with corresponding order parameter,
and it is commonly taken as the definition of the pseudogap
temperature scale T ∗ ≡ Tρ . ARPES measurements define
TARPES ∼ T ∗, below which unusual quasiparticle spectrum
is revealed. Moreover, REXS [7,9,11–15] also found the
fluctuating CDW correlation below T ∗, but RIXS [8,10] and
STM [17] reveal a lower temperature scale TCO < T ∗ for static
charge order. It is found that TCO has a maximum at some
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FIG. 1. Bare Fermi surface. The PDW pairing centers ±Qx,y/2
are at the intersections with the Brillouin zone boundary. The blue
lines are for the quasiparticle spectral function scans in Figs. 9
and 10.

doping but T ∗ decreases as doping increases. A valid theory
would be able to explain the emergence of these temperature
scales within the pseudogap. Similar to TCO , we note that for
TRSB order, there are also two distinct temperature scales
found in PND [27–29] (see also Ref. [30]) and PKR [25,55]
(see also Ref. [26]) experiments. The PND experiments found
that below TM ∼ T ∗ an intraunit cell (IUC) TRSB magnetic
order exists, while the PKR experiments, which also detect
TRSB, reveal a strictly lower temperature scale TK < TM

but doping dependence of TK shows a similar trend as TM .
However, we shall address the issue of TK elsewhere.

Motivated by these issues, we study the effect of random
field disorders [62,63] (RFD) in a four-component PDW
(PDW4) model [44,46,47] (see also Ref. [64] for the study
of a CDW model). Intuitively, RFD does nothing more than
inducing the PDW short range [65]. But we will show below
that in order to explain the experimental results coherently,
inclusion of RFD would lead us to consider a PDW state
of different nature unexplored before, thus it is not straight-
forward to generalize existing PDW results to our case. We
consider four PDW components �±Qx,y

at wave vectors ±Qx

and ±Qy and all the components compete with each other.
The pairing centers ±Qx/2 and ±Qy/2 are located at the
intersections of the Fermi surface and the Brillouin zone
boundary as shown in Fig. 1. We imagine that the PDW orders
present below a characteristic temperature T ∗ that decreases
as doping increases, as shown in Fig. 2. T ∗ terminates inside
the dSC phase at a quantum critical point δc, which controls
a quantum critical region [66–68] with special properties
like linear electronic resistivity [60] (see also Ref. [61]). We
first use Ginzburg-Landau (GL) formulation and Monte Carlo
simulations to study the interplay of PDW, CDW and RFD
in real space. A PDW with ±Q components would induce
a secondary composite CDW order with wave vector 2Q

[41,44–46], which is then coupled to the RFD [65]. With
the ±Q PDW components competing with each other and
the presence of RFD, it is possible to induce a TRSB loop
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δcδ0

FIG. 2. Schematic phase diagram for hole doped cuprates, where
δ is the doping and T is temperature. T ∗ is the characteristic tempera-
ture for the pseudogap, in which we propose the phase-separated pair
nematic state is responsible for. TN is the critical temperature for the
antiferromagnetic order near zero doping. Focusing at a doping δ0 at
underdoped regime, Tc is the critical temperature for the dSC, TCO is
for the presence of short range static CDW.

current order compatible with the CDW. We also show that
there exists a crossover temperature scale TCO (see Fig. 2)
for the short range static CDW order and argue that the
PDW superconductivity is absent due to SC phase fluctuations.
Moreover, RFD induces a domain pattern, or phase separation,
on the directional PDW components at ±Qx and ±Qy . We
shall dub this state of short range PDW with four competing
components the phase-separated pair nematic (PSPN) state.
Next, we argue that the predominantly d-wave form factor
CDW observed in STM constrains the PDW to be a bond order
with s ′ ± id-wave pairing symmetry. Using this input together
with a lattice model and the GL functional, we compute the
quasiparticle spectral functions under the influence of thermal
fluctuations and find good agreement with ARPES.

In this study, we make several assumptions. We consider
only the cuprate families that show CDW of decreasing
wave vectors with increasing doping, as seen in recent x-ray
scattering experiments [10,12,14]. In this study, we have
neglected the cuprate families like LSCO and LBCO that show
CDW wave vectors scaling with doping [38] and the CDW
form factor appears to be s ′ wave [69], though PDW has also
been suggested to play a role [40,43,44,65]. We shall focus
on the experimental results in weak magnetic fields, because
some recent experiments [21,22,57–59] reveal that the CDW
order observed in high field and low temperature could be
of a different nature than the one obtained in weak field. In
the following, we neglect the dSC for simplicity and only
consider the PDW order and its possible induced composite
orders at a specific doping δ0 in the phase diagram (Fig. 2). It
is suggested that the d-wave superconductivity competes with
the CDW [70–73]. Lastly, the origin of the PDW in cuprate is
not the focus of the present paper, but some previous studies
show that PDW could be originated from strong correlations
[47,74].

There is another line of theory that consists of PDW as
an important player. Its starting point is a spin-fluctuation
scenario, captured within the spin-fermion model [75]. PDW
and CDW with d-wave form factors can emerge naturally from
this semimicroscopic model [76–79] (see also Ref. [80]), and it
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TABLE I. Acronym list for the phrases commonly used in the
paper.

Acronym Full phrase

ARPES Angular resolved photoemission spectroscopy
BZ Brillouin zone
CDW Charge density wave
dSC d-wave SC
IUC Intraunit cell
LC Loop current
MC Monte Carlo
NMR Nuclear magnetic resonance
PDW Pair density wave
PDW2 Two-component PDW
PDW4 Four-component PDW
PKR Polar Kerr rotation
PND Polarized neutron diffraction
PSPN Phase separated pair nematic
REXS Resonant inelastic x-ray scattering
RIXS Resonant elastic x-ray scattering
RFD Random field disorder
SC Superconductor/superconductivity/superconducting
SM Supplemental material (Ref. [98])
STM Scanning tunneling microscopy
TRSB Time reversal symmetry breaking

can also capture a number of important properties and features
observed in the experiments. In particular, a unidirectional
CDW/PDW mixed state [77,78] obtained from the model
can account for the ARPES spectrum, TRSB order, CDW
order, and breaking of C4 symmetry. Although these results
are similar to those of the PSPN state we discuss here, we
note that in the spin-fermion model, PDW and CDW orders
form a “supervector” stemming from an approximate SU(2)
symmetry near the intersection points of the Fermi surface
and magnetic Brillouin zone (the “hot-spots”), while here the
PSPN state has the PDW as the main character and the CDW
plays only a parasitic role [47,48]. As we will show below, this
parasitic CDW plays a crucial part in explaining the distinct
temperature scales observed in the pseudogap, namely T ∗ and
TCO . Here we wish to consider the parasitic CDW induced by
the PDW only and see how far this perspective can proceed.

The paper is outlined as follow: In Sec. II, we will first
briefly review the two-component PDW state, followed by the
discussion of the interplay between the four-component PDW
state and RFD in Sec. III. In Sec. IV, we constrain the PDW
pairing symmetries from the CDW experiments. In Sec. V, we
present the results for the quasiparticle spectral functions and
compare with the ARPES experiments. Due to the number of
acronyms, we provide an acronym list in Table I for the phrases
commonly used to facilitate the reading.

II. BRIEF REVIEW ON TWO-COMPONENT PDW (PDW2)

In this section, we briefly review and discuss the model
of two-component PDW (PDW2) and the effect of RFD. The
main focus of the paper is to study the PDW with four compo-
nents and relate to the experimental results in the pseudogap
regime of the cuprates. In order to do that, it is beneficial to first

discuss the PDW2 system [38,40,43–46,65], from which we
can easily generalize the results to the four component case.
Firstly, we will introduce the PDW order parameters consisting
of two components and the corresponding GL functional. Also
it is possible to induce a CDW from the PDW2, provided
that both of the PDW components are nonvanishing. Next, we
imagine that the CDW are coupled to the charged impurities,
which are modeled by the coupling between CDW and RFD
in the GL functional. For a moment, we shall consider only
the subproblem of the CDW coupled to RFD, which can
be cast into the random field XY model [81,82]. (Actually
the random field XY model and variants have been taken as
minimal models of a broad class of condensed matter systems
with quenched disorders, such as flux-line arrays in dirty
type-II superconductors [83], charge density waves [84], and
smectic liquid crystals in random environments [85–87].) In
the model, the XY phases (CDW smectic phase) are coupled
to the RFD. It is found [81,82] that in 2D the RFD, no matter
how weak, always induces topological defects at long scales,
leading to short range (exponential) correlations in the CDW.
Without disorder, the model reduces to a pure XY model,
and it allows a Berezinsky-Kosterlitz-Thouless (BKT) phase
transition [88,89] from a low temperature phase with power
law correlation to a high temperature phase with exponential
correlation. With finite RFD, the low temperature “phase”
readily has exponential correlation, and the residue of the phase
transition is a crossover [81], below which only short range
static CDW order exists. Now we return to the full model
containing PDW2, CDW, and RFD, which has been studied
before in Ref. [65]. From the results of the random field XY
model, we readily conclude that the CDW has exponential
correlation. This also implies the absence of long range PDW
order, since long range PDW would have induced CDW with
long range correlation, contradicting the fact that the system
with RFD only has short range CDW. Besides, we also expect
a crossover temperature for the short range static CDW at low
temperature. To this end, we will review the topological defects
[45,90–92] arising in the PDW2 system (Sec. II A) and the
RFD induced crossover (Sec. II B). We also present numerical
evidence to show the presence of these topological defects in
the PDW2 system with finite RFD in Sec. II C and lay the
foundation for later numerical studies of the four-component
PDW systems.

We first consider PDW2 state and its order parameter, which
generally is

�(R) = �+Q(R)e+iQ·R + �−Q(R)e−iQ·R , (1)

where �±Q(R) ∈ C. In particular, if �±Q(R) = �0/2 are
equal and homogeneous in space, then the PDW order �(R) =
�0 cos Q · R shows modulation of wave vector Q in real space.
This state induces a CDW order at wave vector 2Q, such that
ρ2Q(R) ∼ �∗

−Q(R)�+Q(R).
In order to discuss the influence of random field disorders on

the PDW and CDW state, we write down the Ginzburg-Landau
(GL) functional (density) for PDW2 [46,65]:

F�
2 = +α�|�|2 + γ �

1 |�|4 + γ �
3 |�+Q|2|�−Q|2

+κ�
⊥ |∂x�|2 + κ�

‖ |∂y�|2 , (2)
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where � = (�+Q,�−Q)T . In general, the system could admit
nematicity and κ�

‖,⊥ would differ. The other part of the GL
functional involves the CDW and is given by

F
ρ

2 = −H ∗ρ2Q + c.c. + κ
ρ

⊥|∂xρ2Q|2 + κ
ρ

‖ |∂yρ2Q|2 , (3)

where H (R) = hrmsh(R)eiη(R) is the local complex random
field, h(R) are Gaussian-distributed random variables with
mean 0 and standard deviation 1, η(R) ∈ [0,2π ) are uniformly
distributed random phases, and hrms � 0 controls the (root
mean square) random field disorder strength. The random
field term models randomly distributed nonmagnetic charged
impurities that pin down the CDW modulations. Notice that
the RFD couples to the CDW, which reflects the charge
modulations of the PDW, but not directly to the PDW. In the
following, we assume that the PDW always induces a CDW
ρ(R) ∼ ρ2Q cos 2Q · R such that

ρ2Q = �∗
−Q�+Q . (4)

In this case, the total GL functional can be expressed in terms
of �±Q only as

F2 = F�
2 + F

ρ

2

F
ρ

2 = −H ∗�∗
−Q�+Q + c.c.

+ κ
ρ

⊥|∂x(�∗
−Q�+Q)|2 + κ

ρ

‖ |∂y(�∗
−Q�+Q)|2 . (5)

We note that γ �
3 controls whether �±Q components compete

with each other. In this section, we shall consider γ �
3 < 0 such

that two �±Q components coexist and induce a 2Q-CDW, even
in the absence of random field disorder H (r) = 0. The case
γ �

3 > 0 will be discussed in Sec. III.

A. Topological defects

Here we briefly discuss the possible topological defects
[41,45,90,91] in the PDW2 system (in the absence of RFD).
Assuming γ �

3 < 0, then we have |�+Q| ≈ |�−Q|. We thus
write �±Q(R) = 1

2�0e
iθ±Q(R), where we assume the amplitude

fluctuations are small compared to those of the phases θ±Q.
The PDW order is now

�(R) = �0e
iϑ cos(Q · R + ϕ) , (6)

where the superconducting phase is ϑ = 1
2 (θ+Q + θ−Q) and

the PDW smectic phase is ϕ = 1
2 (θ+Q − θ−Q). Deep in the

PDW2 phase in 2D, the amplitude fluctuations are negligible;
the system can be effectively described by an anisotropic XY
model in terms of the ϑ and ϕ [45,90–92]. The PDW2 system
possesses three types of topological defects labeled by (nv,nd ):
(1) pure SC 2π -vortices with (±1,0), (2) 2π -dislocations with
(0,±1), and π -vortex-π -dislocation defect, or simply half-
vortex, with (± 1

2 ,± 1
2 ). The labels (nv,nd ) are related to the

topological singularities (topological “charges”) in ϑ(R) and
ϕ(R), defined by ∮

d 
� · ∇ϑ = 2πnv,∮
d 
� · ∇ϕ = 2πnd . (7)

Due to the single-value conditions in the original θ±Q(r) fields,
nv,d can take half-integer or integer values, and it leads to

three types of defects in the system. Moreover, starting with
a PDW2 at low temperature, owing to (thermal) proliferation
of different defects, the system restores broken symmetries
and yields various phases [45,91,92]. A pure CDW phase
is accessed when the SC 2π vortices are proliferated and a
charge-4e SC phase is obtained through the proliferation of 2π

dislocations. To attain a nematic phase one needs to proliferate
the half-vortices. We note that since the PDW order modulates
half as many as its induced CDW, the PDW half-vortex,
manifested as a 2π dislocation in the CDW, is accompanied
by a half SC flux �0/2, which can be experimentally verified
[65].

B. PDW2 with RFD

It is well known that the random field disorder destroys
CDW long range order for dimension d � 4 [62,63]. Con-
sider the RFD term −H ∗�∗

−Q�+Q + c.c. ∝ − cos (η − 2ϕ)
in Eq. (3), the CDW smectic phase 2ϕ tends to align with the
RFD phase η. Treating the random field as a perturbation, the
energy gain due to disorder potential ∼Ld/2 dominates over
the elastic energy cost of adjusting to disorder ∼Ld−2. As a
result, long range CDW is inhibited beyond a length scale ξL,
known as the Larkin length. This argument implies the absence
of long range PDW order if the CDW is induced by the PDW.

This picture only considers continuous elastic deformation
of the uniform state, but not topological defects, which
are nonperturbative in nature. Indeed, via numerical studies
[81,82], it is shown that these topological defects always
exist for any RFD strength in 2D. In the absence of these
defects, the CDW correlation decays in power law, admitting
a genuine phase transition to a high temperature phase with
exponentially decaying correlation. In 2D, however, at a length
scale ξV > ξL, the equilibrium system is always unstable to a
proliferation of the static topological defects and thus the CDW
correlation decays exponentially for any RFD strength.

In 2D, these CDW topological defects manifest as 2π

dislocations. Retracking back to the PDW, it means a PDW
half-vortex exists exactly at the CDW 2π dislocation [65]. Pro-
liferation of these half-vortices destroys the long range PDW
and lead to a nematic phase. These topological defects are
pinned and static (over thermal average) at low temperature,
while they can diffuse driven by thermal fluctuations at higher
temperature. The presence of these defects results in short
range correlations in PDW and CDW [65]. Instead of a genuine
phase transition, we thus expect a crossover temperature TCO ,
below which short range static charge order can be observed,
and above which most of the charge order is destroyed by the
defect diffusion (except domains that are pinned strongly by
the RFD). Here only an argument is given; we shall provide
numerical evidence in Sec. III.

C. Numerics: Monte Carlo study of PDW2 with RFD

In order to gain more intuition on the interplay of PDW,
CDW and RFD in a PDW2 system, we perform Monte Carlo
study on the corresponding lattice GL functional [65],

F2,lattice = F�
2,lattice + F

ρ

2,lattice (8)
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with

F�
2,lattice = + α̃�

∑
is

|�sQ(i)|2 + γ �
1

∑
i

(∑
s

|�sQ(i)|2
)2

+ γ �
3

∑
i

|�+Q(i)|2|�−Q(i)|2

− 2κ�
⊥

∑
is

Re[�sQ(i + x̂)�∗
sQ(i)] − 2κ�

‖
∑

is

Re[�sQ(i + ŷ)�∗
sQ(i)]

F
ρ

2,lattice = − 2hrms

∑
i

Re[h(i)e−iη(i)�∗
−Q(i)�+Q(i)] − 2κ

ρ

⊥
∑

i

Re[�−Q(i + x̂)�∗
+Q(i + x̂)�∗

−Q(i)�+Q(i)]

− 2κ
ρ

‖
∑

i

Re[�−Q(i + ŷ)�∗
+Q(i + ŷ)�∗

−Q(i)�+Q(i)] + 2(κρ

‖ + κ
ρ

⊥)
∑

i

|�−Q(i)�+Q(i)|2

on a square lattice. Here α̃� = α� + 2κ�
‖ + 2κ�

⊥ and the
summation is over site i and sign s = ±. x̂ and ŷ are shifts
by one lattice constant in the corresponding directions in real
space. The random fields h(i)eiη(i) are Gaussian distributed
at each site. If we choose γ �

3 < 0, we can safely set the
amplitudes |�±Q| as constants for the system at low enough
temperature and only be concerned about the phase fields
θ±Q(i). This essentially reduces to a random field XY model
[65], on which we perform the Monte Carlo (MC) simulations
with Metropolis algorithm of single-site phase rotations. The
initial PDW phases θ±Q are initialized randomly at a high
enough temperature, which is then slowly lowered to the
desired one. This simulated annealing process lets the system
be better equilibrated at the final temperature. At the final
temperature, we measure the thermal averaged phases of �±Q

and ρ2Q = �∗
−Q�+Q at each site. For simplicity, we choose

κ‖ = κ⊥.
In Fig. 3, the results are shown for a typical RFD

configuration. Due to their single-value conditions, we show
the θ±Q fields instead of the ϑ and ϕ fields. The choice of
parameters deserves some comments. Restricting to γ �

3 < 0
(i.e., coexisting �±Q), the phase diagram for F2,lattice turns out
to be simple. In Ref. [65] it is found that there are only two
phases: the fully disordered phase with the presence of all types
of topological defects and the PDW glass phase, in which no
CDW dislocation of 2π winding is allowed (only 4π defects
are permitted). The parameters in Fig. 3 correspond to the fully
disordered phase due to the presence of 2π defects. The PDW
glass phase is interesting in its own right, but we shall only
consider the fully disordered phase here. Back to Fig. 3, several
observations are in order. First, the CDW phase 2ϕ(i) forms
“domains.” This is consistent with our previous discussion that
a few sites bare strong random fields and the CDW phases near
these sites would align along with these strong random fields
under the influence of the stiffness terms κ�,ρ . Next is the
existence of 2π dislocations (2π windings) in the CDW phase
[Figs. 3(c) and 3(d)]. We note that these defects occur near the
domain boundary since by doing so the system can lower its
energy better than pure continuous elastic deformation [81].
These dislocations come in pairs of opposite windings, which
is expected in the system with periodic boundary condition
and zero total winding.

We note that this simulated method can be utilized to
find the ground state of the system, but what we have found
might not be the true ground state and it is not our main

object to do so. Indeed, the system shows glassy behavior
that it can be trapped in some local energy minimum. This
can be understood in terms of the phase relation 2ϕ =
θ+Q − θ−Q that although the CDW dislocations are largely
determined by the RFD configuration, a CDW 2π dislocation
can manifest itself as a 2π vortex in either PDW component
�±Q [see Figs. 3(a) and 3(b)]. This “selection” depends on the
initial configurations and the simulated annealing process (for
instance, the temperature intervals during cooling and the MC
steps for each temperature). Different selection would give a
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FIG. 3. Monte Carlo results for PDW2 system in F2,lattice [Eq. (8)].
The phases of the average orders (a) 〈�+Q〉, (b) 〈�−Q〉, and
(c) 〈ρ2Q〉 are shown. Here we choose γ �

3 < 0 such that we can
consider the phases and their fluctuations only and assume constant
order magnitudes. In (a) and (b), several defect pairs with opposite
windings are present in 〈�±Q〉. Due to the fact that the CDW is
induced by the PDW, these defect pairs also manifest in the 〈ρ2Q〉
[see (c)]. As an example, panel (d) shows a 2π CDW smectic phase
winding around a counterclockwise path of a CDW 2π dislocation
(see the inset) located near 
R = (53,60). Parameters (in meV):
κ�

‖,⊥ = 5, κ
ρ

‖,⊥ = 1, hrms = 4, α�,γ �
3 < 0, and γ �

1 > 0. System size:
96 × 96 with periodic boundary condition. Simulated annealing is
performed from a high temperature to the final temperature at 10 K.
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slightly different total energy, but it is understood that in 2D,
the interplay of PDW, CDW, and RFD always produces a short
range PDW and CDW state with the presence of topological
defects.

III. PHASE-SEPARATED PAIR NEMATIC (PSPN) STATE

In this section, motivated by the STM and REXS experi-
mental results, we introduce a four-component PDW (PDW4)
state with phase separation in directional components, which
is dubbed as a phase-separated pair nematic (PSPN) state.
Experimentally, STM results [19,56] reveal that the presence
of short range CDW within the pseudogap regime. These CDW
orders are directional and have wave vectors 2Qx and 2Qy . It
is also shown that these two CDW components compete with
each other in real space and form a domain structure, or phase
separation pattern. This picture is also supported by the REXS
[13] showing that the results are more consistent with stripy
CDW domains. Viewing this in terms of PDW (Section II),
within each domain, the directional CDW with 2Qa (a = x,y)
is actually induced by a PDW2 with components �±Qa

, and
this subsystem can be described by the PDW2 model Eq. (8).
However, for the global system with �x and �y domains (�a

denotes �±Qa
components), we have to generalize to a PDW4

model [40,41,43–48]. Moreover, in order to reproduce the
phase separation pattern, we shall consider strong competition
in the directional components �a [γ �

2 > 0, see Eq. (10)
below].

On the other hand, TRSB order is detected in the pseudogap
by PKR [25,54] and PND [27–29]. The experiments seem to
support that the loop current (LC) order [49] is responsible
for the TRSB order. A natural question would be whether
we can explain this TRSB order within the PDW4 model.
Interestingly, Agterberg et al. [48] proposed that the LC
order can arise from a PDW theory as a secondary composite
order. However, it is readily discovered that within the PDW4
model the LC order is incompatible with the induced CDW
in a PDW state with spatially homogeneous components
�Q. One way to resolve this issue is to introduce an eight-
component PDW model, as done by Agterberg et al. [48],
while another feasible way, as will be demonstrated below, is
to include RFD and to relax the assumption that the state
has homogeneous PDW components.

In the PDW4 model, another relevant parameter is γ �
3

[see Eq. (10) below] controlling whether the �+Qa
and �−Qa

components compete. If the components �±Qa
are assumed

to be spatially independent, from the known results on the
possible PDW4 ground states [41,48], we are constrained
to choose γ �

3 < 0 such that �+Qa
and �−Qa

can coexist.
Otherwise, no CDW ρ2Qa

= �∗
−Qa

�+Qa
can be induced,

contradicting the experimental results discussed above. By
introducing disorders in the form of RFD, we break the
translational invariance and allow the PDW components �±Qa

to be spatially inhomogeneous. We will demonstrate that in
this setting, the parameter range γ �

3 > 0 (for competing �+Qa

and �−Qa
) should also be taken into account. Inclusion of

RFD and the parameter choice of γ �
2 ,γ �

3 > 0 lead to two
important consequences: (i) generating a phase separation in
ρ2Qx,y

(induced by �x,y) that is consistent with that observed in
the experiments and (ii) resolving the incompatibility issue of
CDW and LC orders within the PDW4 model. Furthermore,
we show that in the PDW4 model there is also a crossover
temperature TCO < T ∗ to account for the short range static
CDW within the pseudogap. For temperature TCO < T < T ∗,
the induced CDW is dynamically fluctuating. The simulation
result also suggests that the PDW superconductivity is absent
owing to strong SC phase fluctuations, complying with
nonsuperconducting pseudogap. These results constitute the
properties of the PSPN state.

We consider the PDW4 system on a square lattice. We shall
assume that the two new components �±Qx

are related to the
PDW2 components �±Q with Q = Qy by a π/2 rotation. By
construction, we require that Qx �= Qy . The order parameter
is given by

�(i) =
∑
as

�sQa
(i)eisQa ·xi . (9)

We write down the lattice PDW4 GL functional [46] by
generalizing the PDW2 case,

F4,lattice = F�
4,lattice + F

ρ

4,lattice (10)

with

F�
4,lattice = − 2κ�

‖
∑
ias

Re
[
�sQa

(i + a‖)�∗
sQa

(i)
] − 2κ�

⊥
∑
ias

Re
[
�sQa

(i + a⊥)�∗
sQa

(i)
]

+ α̃�
∑
ias

∣∣�sQa
(i)

∣∣2 + γ �
1

∑
i

(∑
as

∣∣�sQa
(i)

∣∣2

)2

+ γ �
2

∑
i

(∑
s

∣∣�sQx
(i)

∣∣2

)(∑
s

∣∣�sQy
(i)

∣∣2

)

+ γ �
3

∑
ia

∣∣�+Qa
(i)

∣∣2∣∣�−Qa
(i)

∣∣2 + 2γ �
4

∑
i

Re
[
�+Qx

(i)�−Qx
(i)�∗

+Qy
(i)�∗

−Qy
(i)

]
F

ρ

4,lattice = − 2hrms

∑
ia

Re
[
ha(i)e−iηa (i)�∗

−Qa
(i)�Qa

(i)
] − 2κ

ρ

‖
∑

ia

Re
[
�−Qa

· �∗
+Qa

(i + a‖)�∗
−Qa

· �+Qa
(i)

]
− 2κ

ρ

⊥
∑

ia

Re
[
�−Qa

· �∗
+Qa

(i + a⊥)�∗
−Qa

· �+Qa
(i)

] + 2(κρ

‖ + κ
ρ

⊥)
∑

ia

∣∣�−Qa
(i)�+Qa

(i)
∣∣2

,
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where we have implicitly replaced ρ2Qa
→ �∗

−Qa
�+Qa

and
�∗

−Qa
· �+Qa

(i) denotes �∗
−Qa

(i)�+Qa
(i) for brevity. Here the

summation is over a = x,y, and α̃� = α� + 2κ�
‖ + 2κ�

⊥ . The
notation a‖ = a and a⊥ = ŷ (x̂) if a = x̂ (ŷ). The rest is similar
as in the PDW2 case, except that now we have four PDW
components at ±Qx,y and allow coupling (γ �

2 term) between
the directional components. Notice that each 2Qa-CDW is
coupled to a different random field disorder hae

iηa .
In the absence of RFD hrms = 0, the ground state of the

PDW4 functional is mainly controlled by γ2 and γ3. As
in the PDW2 case, the sign of γ �

3 controls whether two
components �+Qa

and �−Qa
(a = x,y) coexist (γ �

3 < 0) or
compete (γ �

3 > 0) with each other. While the sign of γ �
2

dictates the coexistence (γ �
2 < 0) or competition (γ �

2 > 0)
of |�x |2 and |�y |2 components, where |�a|2 = ∑

s |�sQa
|2.

In the literature, the main concern is on the latter. (There
is also a similar debate [93,94] on the pure CDW model.) In
Refs. [43–45], the authors propose a PDW theory with γ �

2 > 0
and γ �

3 < 0 such that in a clean 2D system, the ground state is a
(unidirectional) striped PDW with either �x or �y component.
On the other hand, Ref. [47] suggests a bidirectional PDW
state with γ �

2 ,γ �
3 < 0 that the �x,y components coexist.

Experimentally, x-ray scattering measurements [13,15] reveal
the CDW with only wave vectors 2Qx and 2Qy but not
±2Qx ± 2Qy . If the PDW, as well as the induced CDW, is
bidirectional, then it is likely that the ±2Qx ± 2Qy CDW
components would be observed [93] (see, however, Ref. [47]).
Here we propose another parameter choice γ �

2 ,γ �
3 > 0 such

that all four components �sQa
compete with each other and

constitute the PSPN state. We shall show that it can generate,
besides the CDW orders, a LC order [49] accounting for the
polar Kerr effect and the intraunit cell time-reversal symmetry
breaking order observed respectively in the PKR and PND
experiments.

The (phenomenological) LC order emerged from PDW
order �±Qa

is defined as [48]

la = ∣∣�+Qa

∣∣2 − ∣∣�−Qa

∣∣2
. (11)

This order parameter is translational invariant (hence giving
rise to an IUC order observed in PND), odd under either
time reversal symmetry and parity, and invariant under their
product. (We note that from a pure CDW order, one can
also construct a similar composite TRSB order [95,96]) Since
this LC order is originated from the PDW, its characteristic
temperature is the same as T ∗, which is indeed observed in
the PND [27–29]. At first sight, in the PDW4 model this order
la is incompatible with the CDW order ρ2Qa

. If we restrict
ourselves to spatially independent order, then a finite la would
require γ �

3 < 0, which leads to one of the �+Qa
and �−Qa

components to vanish, and eventually the induced CDW order
ρ2Qa

= 0. This is the reason why the authors in Ref. [48]
turn to an eight-component PDW theory. For details of the
eight-component theory, the readers shall refer to the reference.
Here we will demonstrate that if we relax the assumption of
spatial homogeneity of the order parameters and introduce
RFD, finite orders in both la and ρ2Qa

are actually compatible
within the PDW4 model.

Before diving into the numerics, we shall first consider a
simplified model to understand the interplay of (short range)

0 1
√

2
|Δ+Q |

1

√2

|Δ
−

Q
|

(a)

Θ

min
F4,local

0 π/4 π/2
Θ

F
4,

lo
ca

l

εl

(b)

FIG. 4. (a) Schematic density plot of F4,local [Eq. (12)] as a
function of |�±Q| for γ �

3 > hrms > 0. (b) Plot of F4,local as a function
of � defined in (a) along the white dashed line with

∑
s |�sQ|2 =

− α�

2γ �
1

= 2. F4,local has two minima separated by an energy barrier εl .

At either minimum, the induced CDW ρ2Q and LC order l are both
finite.

CDW and LC order with the RFD. The simplified “on-site”
model is given by

F4,local = +α�
∑

s

|�sQ|2 + γ �
1

(∑
s

|�sQ|2
)2

+ γ �
3 |�+Q|2|�−Q|2 − 2hrms|�−Q�+Q| (12)

such that we can ignore the phase degrees of freedom. Here
we have already assumed γ �

2 > 0 and only one pair of �±Q

exists locally. We further assume that the CDW smectic phase
is already aligned with the local pinning field such that the RFD
term reduces to the present form. Now we notice that although
γ �

3 > 0 would suppress one of the �±Q components, but the
RFD term (hrms > 0) induces a finite CDW order ∼|�−Q�+Q|
such that both �±Q �= 0. This competition, provided with the
suitable parameters (see Fig. 4), can result in a local state with
both nonvanishing ρ2Q and l. We shall briefly remark that the
effect of RFD on the eight-component PDW theory [48], in
which the incompatibility issue of CDW and LC order is solved
by introducing extra competing PDW components. If RFD is
introduced, then using a similar argument as above, it is likely
that extra CDW components other than those of wave vectors
2Qx and 2Qy can be induced. While currently there is no
experimental evidence showing these extra CDW components.
On the other hand, in Fig. 4 we notice an interesting feature that
the two minima are separated by an energy barrier εl . One may
define a temperature scale TK ∼ 〈εl(i)〉i as the spatial average
of the energy barriers, which characterizes the stiffness of the
state to (thermally activated) relative amplitude fluctuations
between |�+Qa

| and |�−Qa
|. For T < TK , the energy barrier

hinders the relative amplitude fluctuations, and this results in
finite LC order. For T > TK , the thermal fluctuations overcome
the energy barriers and the system now consists of fluctuating
LC order domains with different signs leading to a thermal
average 〈∑a la〉 ∼ 0 for TRSB order. This argument might
explain the disparity between the temperature scales for TRSB
order measured in PKR and PND, in which the one measured
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in PKR is strictly lower than that in PND (see Introduction).
The elaborated study however will be pursued elsewhere.

Now back to the entire system described by F4,lattice

[Eq. 10] with RFD hrmsh(R)eiη(R), we focus on those sites with
particularly strong pinning strengths. At one of these sites, to
gain the pinning energy, the CDW smectic phase would align
with the RFD phase η (see Sec. II B). The PDW and CDW
stiffness terms would induce a finite region of approximately
the same smectic phase around the strong disorder site. Now if
we are restricted to the parameter choice discussed above and
take the directional PDW into account, we would then expect
a phase separated domain pattern, in which the directional
PDW, together with the induced directional CDW and LC
orders, presents due to the “nucleation” around these strong
disorders. The phase separated orders discussed above can be
regarded as imposing phase separation patterns on the PDW2
orders. This indicates that the correlations of the PDW and
CDW orders are bounded by those in PDW2, and thus the
resultant state also has PDW and CDW with the short range
exponential correlations. Analog to the PDW2 case, we also
expect a crossover temperature for the short range static CDW
in the state. Owing to the phase separation pattern and the local
nematicity originated from PDW superconductivity, we shall
call this the phase-separated pair nematic (PSPN) state. Below
we will demonstrate that the PSPN state can result from the
PDW4 GL functional with RFD [Eq. (10)] via MC simulation
study.

A. Numerics: Monte Carlo study of PSPN

To better illustrate our points, we perform the MC simu-
lations similar to the PDW2 case. We consider the case of
γ �

2,3 > 0 as we discussed above and choose α� and γ �
1 such

that the average |�sQa
| ∼ 1. We divide the MC study into

two stages. In the first stage, in order to capture the effects
of γ �

2,3 on the resultant state, we allow updates (Metropolis
algorithm, single site) on both the amplitudes and phases of
the PDW order parameters. We start with a random phase
configuration with |�sQa

| = 1 and perform the simulated
annealing process to let the system better equilibrate at the
final temperature. For later comparison to experimental data,
the simulation is performed with a typical RFD configuration.
We then obtain a state at low temperature, resembling the
ground state for a given set of parameters. In the second
stage, we are interested in the effect of thermal fluctuations
on the orders, in particular the phase fluctuations induced by
proliferation of topological defects (see Sec. II A). Analog to
the studies of BKT transition [88,89] (see also random field
XY model [65,81]), we shall assume that the system is deep
in the state obtained in stage one. We thus utilize the averaged
amplitudes as input (i.e., the amplitudes are kept fixed during
the MC) and only perform MC simulations with phase updates
(Metropolis algorithm, single site) for various temperatures. To
be consistent, α� and γ �

1 used in stage one should be chosen
to suppress the the total PDW amplitude fluctuations but still
permit sufficient acceptance rates for sampling states with
various relative PDW amplitudes. Besides, directional CDW
with wave vectors 2Qx,y requires that γ �

2 is dominated over
γ �

3 , while in order to induce finite orders in both CDW and LC
order, γ �

3 and hrms should be comparable (see Fig. 4). We shall

set γ �
4 = 0 such that the phases of the directional PDW are not

coupled [97].
In Fig. 5, we show the simulation results in stage one for a

typical RFD configuration for PDW4. Several observations are
followed. Owing to a large γ �

2 > 0, the two components �x,y

compete with each other, and it results in phase separation
for �x,y , as well as ρ2Qx,y

. (Recall that �a denotes directional
PDW components �±Qa

) Within each domain of �x,y and
ρ2Qx,y

, the phases (arg �±Qa
and arg ρ2Qa

) have similar domain
structures as in the PDW2 case, except that there are regions of
vanishing amplitude in which the phases are not well defined.
There are still topological defects in the domains, but the
number is not well constrained due to the regions of vanishing
amplitude. Experimentally, CDW dislocations of 2π windings
are indeed observed in STM [19], and they could trap the half
SC fluxes for a PDW state (see Sec. II A), provided that the SC
phase is strongly pinned. One can probe these half fluxes by
SQUID microscopy and test the proposed PDW theory. Next,
we notice both ρ2Qa

and la have finite magnitude locally, in
accord with our discussion on the simplified model Eq. (12).
Also, as discussed, the PDW and CDW orders are expected
to be short ranged and decay exponentially [65,81] (see
Fig. 1 in the Supplemental Material [98] (SM) for numerical
evidence and more discussions), due to the random phases
and the presence of topological defects. The LC order la are
inhomogeneous and have random signs. This selection of the
local sign is related to the initial configuration and simulated
annealing process. We also note that the amplitudes |�sQa

|
are inhomogeneous, to accommodate both nonvanishing ρ2Qa

and la . Again, the simulation might be trapped at some local
energy minimum and unable to attain the true ground state,
but the main purpose is to illustrate the effect of RFD and
the simultaneous presence of la and ρ2Qa

for our choice of
γ �

3 > 0.
We then move on to stage two to study the effect of the

thermal phase fluctuations on the PDW and CDW orders. As
discussed, owing to the pinning of the RFD, the PDW and
CDW orders are short ranged, and we expect a crossover
temperature TCO for the static CDW. To determine TCO ,
we plot the temperature dependent local CDW order ρ̄ local,
as well as local order �̄local for PDW, in Fig. 6. The local
orders decay in a continuous fashion as temperature increases.
At low temperature, the local charge orders with significant
amplitude are still present, as shown in Fig. 7(a), due to the
strong pinning effect of the RFD and correlation effect of the
stiffness terms κ�,ρ . At high enough temperature, the local
charge orders are almost absent [Fig. 7(b)], as the thermal
phase fluctuations have overcome the pinning effect from
RFD and stiffness terms. We can view this as the thermally
activated diffusion of the topological defects (dislocations) of
the CDW. Moreover, although the amplitudes are kept fixed
as the averaged values taken from Fig. 5, we notice that as a
manifestation of the strong phase fluctuations, the domains
of well-defined CDW smectic phase at high temperature
[Fig. 7(b)] shrink considerably. We shall roughly identify
the crossover temperature for the short range static CDW
TCO = 150 K by setting the threshold ρ0 = 0.2 [99]. In this
sense, Figs. 7(a) and 7(b) actually correspond to the spatial
variations of the directional CDW for T < TCO and T > TCO ,
respectively.
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FIG. 5. Monte Carlo results of the PSPN state in the presence of RFD for the averaged order parameters in (a) x- and (b) y-directions, using
GL functional F4,lattice Eq. (10). We plot the spatial dependent (I and II) PDW components 〈�±Qa

〉, (III) CDW 〈ρ2Qa
〉 and (IV) LC order 〈la〉.

The PDW and CDW orders are phase separated in the directional components. Also the PDW and CDW phases arg〈�sQa
〉 and arg〈ρ2Qa

〉 form
a domain pattern, similar to the PDW2 case. Moreover, finite CDW and LC orders are induced in the system. In order to capture the effects of
γ �

2,3 > 0, we allow updates on both amplitudes and phases of the PDW order parameters �sQa
. Parameters (in meV): α� = −100, γ �

1 = 25,
γ �

2 = 20, γ �
3 = 5, γ �

4 = 0, κ�
‖,⊥ = 10, κ

ρ

‖,⊥ = 1, hrms = 2. System size: 96 × 96 with periodic boundary condition. Simulated annealing is
performed from a high temperature to the final temperature at 10 K.
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FIG. 6. Melting of short range PDW and CDW in the PSPN
state in the presence of RFD by performing MC simulations on
GL functional F4,lattice [Eq. (10)]. As a function of temperature,
the averaged local PDW and CDW orders, defined as �̄local =
1
N

∑
i

√∑
sa |�sQa

(i)|2 and ρ̄ local = 1
N

∑
ia |ρ2Qa

(i)|, are plotted,
where N is the total number of sites. Notice that the plotted values are
rescaled by their maximal possible values. In order to study the effect
of the phase fluctuations, the amplitudes of the PDW components
|�sQa

| are taken from the averaged results in Fig. 5 as input and kept
constant during the simulations, while only the phases arg �sQa

are
updated. We set the threshold ρ0 = 0.2 [97] for the local CDW order
to define the crossover temperature TCO for the short range static
CDW orders. Parameters are the same as in Fig. 5.

Next we discuss whether the PDW superconductivity can
survive the thermal phase fluctuations. Figure 8 shows the MC
results for the magnitudes and phases of the averaged PDW
orders 〈�sQa

〉 at T = 50 K and 190 K. At T = 50 K < TCO

[Fig. 8(a)], there are PDW domains with almost vanishing
amplitudes, in contrast to the same area in Fig. 7(a), in
which charge orders of significant amplitude still remain.

This difference is because of the strong pinning on the CDW
smectic phase by the RFD, while PDW superconducting
phases ϑa ≡ 1

2 (θ+Qa
+ θ−Qa

) are not (here θsQa
≡ arg �sQa

are the phase fields of the PDW components, see also Sec. II A).
Since the PDW smectic phases ϕa ≡ 1

2 (θ+Qa
− θ−Qa

) are also
pinned indirectly by the RFD through the induced CDW below
TCO , this suggests that the fluctuations in the SC phases ϑa in
the domains are strong. We note that the phase fluctuations are
stronger than the PDW2 case due to the phase separation pat-
tern [97]. The thermal fluctuations can “invade” the orders at
the boundaries and destroy them more severely than the system
without phase separation. At T = 190 K > TCO [Fig. 8(b)],
the thermal fluctuations are severe and the PDW local order
is mostly wiped out, as evident from the vanishing averaged
PDW order parameters and the considerable shrinkage in the
PDW domains of well-defined phases. It is well known that
dynamic vortices in a superconductor dissipate supercurrent,
leading to a finite resistance (known as the flux flow resistance,
see, e.g., Ref. [100]). In this regard, the results in Fig. 8 hint that
the PDW superconductivity is absent owing to strong thermal
fluctuations in the superconducting phase irrespective of the
crossover temperature TCO and appear to be consistent with
the known fact that the pseudogap is nonsuperconducting.

We conclude this section by comparing these results with
experiments. First, RIXS [8,9,11] and STM [17] reveal traces
of the crossover temperature TCO for static charge order
inside the pseudogap. RIXS uses hard x-rays to measure the
static order of a given structure. Similarly STM measures the
static electronic orders. TCO’s found in these probes show
a similar trend that is peaked at some doping. Comparing
with our results, we identify the order to be the short range
CDW. REXS measurements however use soft x-rays, that
are sensitive to fluctuating orders, and they can detect the
fluctuating CDW up to a higher temperature T ∗, at which
the PDW orders vanish. Next, a smectic modulation measure
OQ

s (r,e) in STM [18,19,56] signifies relative strength of the
local smectic (directional) electronic orders. As discussed at

(a)

(b)

FIG. 7. Spatial variations of CDW in the PSPN state at two temperatures: (a) T = 50 K < TCO and (b) T = 190 K > TCO . In the same
MC simulations of Fig. 6 using GL functional F4,lattice [Eq. (10)], we show the results for the averaged directional CDW 〈ρ2Qa

〉. The noticeable
difference for these two temperatures is the vanishing small magnitudes of the averaged CDW at T = 190 K due to the strong thermal
fluctuations in the smectic phases for T > TCO .
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(a)

(b)

FIG. 8. Spatial variations of PDW components in the PSPN state at two temperatures: (a) T = 50 K < TCO and (b) T = 190 K > TCO . In
the same MC simulations in Fig. 6 using GL functional F4,lattice [Eq. (10)], we measured the PDW order parameters 〈�±Qx,y

〉. At T = 50 K,
some domains of directional PDW are wiped out owing to strong fluctuations in SC phases. At T = 190 K, the fluctuations are stronger and
most of the PDW orders are destroyed. These results suggest the absence of PDW superconductivity irrespective of TCO .

the section overview, these results point to a phase-separated
directional PDW state. We found that using our model of
PDW4 and RFD together with suitable parameters, we can
reproduce the phase separation pattern for the directional CDW
(see Fig. 3 in SM [98] for more details). We note that the REXS
result [13] also supports such a phase separation picture for
the directional CDW.

IV. CONSTRAINT FROM CDW WITH PREDOMINANTLY
D-WAVE FORM FACTOR

Before the discussion of the spectral functions of the PDW
system, we shall first figure out the pairing symmetry of
the PDW. Both STM [20,56] and REXS [15] experiments
strongly indicate that the CDW order within the pseudogap

has a predominantly d-wave form factor. If we insist that the
CDW order is only originated from the corresponding PDW
order, then we need to understand how this CDW form factor
would constrain the pairing symmetry of the PDW.

Here we propose that the PDW has a s ′ ± id-symmetry.
First we write down the definition of a generic SC order
parameter at sites ri and rj

�(r1,r2) =
∑
Q

(∑
k

�Q(k)eik(r1−r2)

)
eiQ

r1+r2
2

≡
∑
Q

�Q(r)eiQ·R , (13)

in which we allow multiple components with different mod-
ulation wave vectors Q, which determine the modulation
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in the average coordinate R = 1
2 (r1 + r2), and their (orbital)

pairing symmetries involving relative coordinate r = r1 − r2

are described by the form factor �Q(k). We can similarly
define the order parameter for charge modulations [20] by a
simple replacement � → ρ. We note that the definition above
only describe the order parameters of the PDW components
�Q spatially uniform in the average coordinate (i.e., �Q

is independent of R). If we want to include (slow) spatial
variation in �Q, we can add a spatial varying factor by
the substitution �Q(r) → �Q(R)fQ(r) with the form factor
encoded in fQ(r). In this section, we shall consider spatially
uniform case only.

The pairing symmetry factor for +Qx is assumed to be

�+Qx
(k) = �s

(
k2
x + k2

y

) + �de
iφ

(
k2
x − k2

y

)
, (14)

where �s,d ∈ R, φ ∈ [0,2π ). It is clear that the first (second)
term is s wave (d wave). Here �s,d and φ will be constrained
by the CDW dominating d-wave form factor shown in the
experiments. Time reversal symmetry requires that �−Q(k) =
�∗

+Q(−k). By the relation ρ2Qa
(r) = �∗

−Qa
(r)�+Qa

(r), the
CDW form factor can be shown as (see Appendix)

ρ2Qx
(k) = (

�2
s + e2iφ�2

d/2
)(

k2
x + k2

y

)2︸ ︷︷ ︸
s-wave

+ (2eiφ�s�d )
(
k2
x + k2

y

)(
k2
x − k2

y

)︸ ︷︷ ︸
d-wave

+ (
e2iφ�2

d/2
)(

k4
x − 6k2

xk
2
y + k4

y

)︸ ︷︷ ︸
g-wave

(15)

up to an overall factor. The STM experiment [20,56] reveals
that the s-wave component is much smaller than the d-wave
one, while the REXS experiment [15] shows that a pure d-wave
CDW cannot fully reproduce the experimental data. Inspired
by these experimental facts, we simply choose the s-wave
component �2

s + 1
2e2iφ�2

d to vanish, leaving only the d-wave
and g-wave components. This particular choice requires eiφ =
±i and �d/�s = √

2. Explicitly we take

�sQa
(k) = �0

[(
k2
x + k2

y

) + is
√

2
(
k2
x − k2

y

)]
, (16)

where �0 ∈ C. Here �+Qa
and �−Qa

transform to each other
under time reversal symmetry and we simply choose �sQx

↔
�sQy

related by a π/2 rotation. In the experiments, the d-wave
form factor also indicates that the charge orders are located at
the oxygen site. Therefore, in the (single band) model on a
square lattice, we shall consider the (nearest neighbor) bond
order between the lattice sites (with Cu atoms) to mimic this
experimental fact, and we restrict ourselves to the s ′ ± id-wave
pairing symmetry

�sQa
(k)

�0
= (cos kx + cos ky) + is

√
2(cos kx − cos ky). (17)

A detailed derivation of the induced CDW form factor for
Eq. (17) is given in Appendix, in which we show that the
above consideration remains valid in the lattice scenario.

V. QUASIPARTICLE SPECTRAL FUNCTIONS AND ARPES

In this section, we study the spectral functions of PDW
systems and compare the results with the ARPES experiments.
Many exotic properties are observed in ARPES. Early studies
have revealed that the Fermi surface in the pseudogap forms the
so-called Fermi arcs [12,51], disconnected segments of gapless
quasiparticle excitations near the nodes. Near the antinodes,
the spectrum is gapped, while the quasiparticle peak is very
broad or even ill-defined [2]. Recently, it is found [54,55] that
by comparing the data above and below T ∗, the quasiparticle
spectra have the feature of kF -kG misalignment near the
antinodes, where kF is the Fermi momentum for T > T ∗ and
kG is the back-bending momentum for T < T ∗. This feature
cannot be explained by conventional SC pairing, otherwise we
would expect kF = kG. Moreover, away from the antinode, the
spectral gap is closed from below [55,101,102]. While from a
calculation [47] for a model with pure CDW, an order observed
in STM and REXS, shows that the spectral gap is closed from
above and it fails to capture this ARPES feature. On the other
hand, PDW models [47,48] can successfully capture the kF -kG

misalignment and the feature of the gap closing from below,
suggesting that PDW plays an important part in the pseudogap
phenomenology.

To compute the spectral functions, we introduce a lattice
Hamiltonian with PDW pairings [Eq. (18)] taking into account
the spatial variations in the PDW order parameters, pairing
symmetry and thermal (phase) fluctuations. In order to study
separately the effects of the RFD induced random phases,
phase separation, and the thermal fluctuations, we will consider
four PDW systems: (i) uniform PDW2 with s ′ ± id-wave
pairing symmetry, (ii) s ′ ± id-wave PDW2 with random
phases induced by RFD, (iii) s ′ ± id-wave PDW4 with phase
separation in pairing amplitudes �x,y but no random phase,
and lastly (iv) PSPN state with thermal fluctuations in the
PDW phases θsQa

, originated from a s ′ ± id-wave PDW4 state.
For the former three systems, it is sufficient to compute the
spectral functions by feeding a static PDW configuration into
the Hamiltonian [Eq. (21)]. But for the last one, it is needed
to incorporate disorder average and thermal fluctuations
through a sequence of MC generated PDW configurations
[Eq. (22)].

Actually there are similar studies on the effect of thermal
fluctuations on the spectral features. In Ref. [103], the
authors studied the thermal averaged spectral functions for
cuprates within a spin liquid scenario, where the order
parameter fluctuates between a d-wave superconductor and
a nearby staggered-flux state related by SU(2) rotations.
While in Ref. [104], the authors studied the fluctuating
d-wave superconductor scenario, in which the SC phases are
strongly disordered due to vortex proliferation. These studies
also appear to reproduce the Fermi arc feature observed in
ARPES.

We first write down the real space Hamiltonian H = H0 +
H� with

H0 = −
∑
iδσ

tδc
†
i+δσ ciσ + H.c. − μ

∑
iσ

c†iσ ciσ

H� =
∑
ia

�∗(i + a,i)(ci+a↑ci↓ − ci+a↓ci↑) + H.c., (18)
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where �(i + a,i) is the nearest neighbor singlet (bond) pairing
with a = x̂,ŷ. The parameters are taken from Ref. [12] that
(with lattice constant a0 = 1) the nearest neighbor hopping
t1 = 0.4 eV, the next nearest neighbor hopping t2/t1 = −0.2,
and the third nearest neighbor hopping t3/t1 = 0.05. The
PDW order parameters in momentum space �±Qa

(k) describe
pairing with total momentum ±Qa and the pairing centers
are at ±Qa/2. In order to explain the ARPES results, we
follow Ref. [47] and choose the pairing centers at the Brillouin
zone (BZ) boundary that ±Qx/2 = ±(π,Q0/2) and ±Qy/2 =
∓(Q0/2,π ) related by a π/2 rotation (see Fig. 1). In this study,
we take the chemical potential μ/t1 ≈ −0.758 (corresponding
hole doping ≈0.117) such that the electronic band intersects
with the BZ boundary exactly at the aforementioned pairing
centers with Q0 = π/4. The resultant PDW has a period of 8a0

and corresponding CDW with period 4a0. As (hole) doping
increases, the corresponding CDW modulation 2Q0 decreases
by choice [47], and this trend is in accord with the results
observed in x-ray experiments [10,12,14].

In order to incorporate spatial nonuniform pairing order
parameters, we generalize Eq. (13) to

�(r1,r2) = �̄
∑
Q

�Q(R)fQ(r)eiQ·R , (19)

where R = 1
2 (r1 + r2) is the average coordinate, r = r1 − r2

is the relative coordinate, and fQ(r) describes the pairing
symmetry in real space, given by [Eq. (17)]

fsQa
(r) =

{
1 + is

√
2 , r = ±x̂

1 − is
√

2 , r = ±ŷ
. (20)

Here the spatial dependent pairing order parameters �Q(R) ∈
C will be taken from the results of the MC simulations with
spatial mean magnitude 〈|�Q(R)|〉R = 1. We shall assume
that the orders are sufficiently smooth, and we can take
the interpolation value �Q(R) = 1

2 (�Q(r1) + �Q(r2)) as the
bond order parameters [105]. Finally, an overall scaling �̄

is added to control the “gap” size. In the following, we
compute the quasiparticle spectral functions in momentum
space corresponding to the Hamiltonian Eq. (18) according to

A{�}(k, ω) = − 1

π
Im〈k| 1

ω + i0+ − H{�}
|k〉, (21)

provided that the pairing order parameters {�} = {�sQa
} are

given. Here |k〉 = 1√
N

∑
i e

ik·xi|xi〉 is the single-particle wave
vector with momentum k in the first BZ.

A. PDW2

We start with the uniform s ′ ± id-wave PDW2 system
[Eq. (8), γ �

3 < 0 ]. In particular, we choose to add the �±Qy

PDW orders, and the results of selected momentum line scans
(see Fig. 1) are shown in Fig. 9(a). More line scans are shown
in Fig. 5 of the SM [98]. We first notice that the Fermi surface
is gapped at both the antinodal regions (kx,y = π scans),
despite that we have only added the PDW pairings centered at
±Qy/2. The spectra near the nodal regions (kx,y = π

2 scans)
are gapless and resemble the bare spectra without the PDW
pairing, except the existence of some gap structures away
from the Fermi energy. These results constitute the Fermi

arcs observed in the ARPES experiments [12,51]. Within the
PDW picture, these Fermi surface segments are due to poor
pairing condition near the Fermi surface. However, the “gap,”
defined as the energy gap at the back-bending momentum kG

below the chemical potential, is not monotonically decreasing
from the antinodes [compare Fig. 5(a-IV) and (a-V) in the SM
[98]]. This is however inconsistent with the ARPES [52,53].
Next, the band structures near two antinodes are different.
Near ±Qx/2 [Fig. 9(a-III)], the spectrum resembles closely
a conventional band structure gapped by an order parameter
such that the lower band edge at ∼ − 0.2 eV is left below the
Fermi energy. Near ±Qy/2 [Fig. 9(a-I)], where the PDW order
is centered, we notice the so-called kF -kG misalignment of the
band gap, where kF is the Fermi momentum of gapless bare
bands (white dashed lines) at high enough temperature. This
misalignment observed in the ARPES experiments imposes a
strong constraint on theories. Although this uniform PDW2
state can explain several important features observed in
ARPES, more satisfactory results could be obtained for the
systems we will consider below.

Next we turn to the s ′ ± id-wave PDW2 system with RFD
induced random phases. We set the amplitude |�±Qy

(R)| to
be constant and use the averaged phases in Fig. 3 obtained
by MC simulation as input to compute the spectral functions.
The results with the same line scans are shown in Fig. 9(b).
The spectra are similar to those in the uniform PDW2 state,
except a noticeable difference that the coherent peaks are more
broadened near the pairing centers ±Qy/2 than at the other
antinodal region ±Qx/2 [compare Fig. 9(b-I) and 9(b-III)].
Near the nodal regions, the spectra are largely unaltered by the
random phases, except some minor spreading of the spectral
weights. So the main effect of random phases is broadening
of the coherent peaks near the pairing centers, and the band
structure induced by the PDW orders is largely preserved.

B. Phase-separated PDW4

We now discuss the s ′ ± id-wave PDW4 state with the
�x,y-phase separation [Eq. (10), γ �

2,3 > 0]. Firstly, we notice
that the PDW2 spectra in Fig. 9, especially near the antinodes,
do not preserve the fourfold rotational symmetry, while this
symmetry appears to be unspoiled in the ARPES results. In
the following, we show that the RFD induced phase separation
pattern for PDW4 can help to resolve this discrepancy, namely
approximately preserving the fourfold rotational symmetry
while still maintaining all the spectral features obtained in
PDW2.

Here the PDW orders exists at all four momenta ±Qx,y .
We take the averaged �x,y amplitudes with phase separation
in Fig. 5 as input to calculate the spectral functions. Also
focusing on the effect of phase separation, we set the PDW
phases as spatial independent (i.e., constant). The results of
line scans kx,y = π are shown in Fig. 10(a), and more scans
are presented in Fig. 6 of the SM [98]. PDW orders now exist
at all four pairing centers ±Qx,y/2; the phase separated orders
result in spectrum broadening near both antinodal regions.
The effect of amplitude fluctuations in PDW4 is similar to that
of phase fluctuations in PDW2 above in terms of spectrum
broadening, except it affects both antinodal regions. The nodal
Fermi surface is again gapless with minor peak broadening
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FIG. 9. Spectral functions at two line scans (see Fig. 1) in BZ. Panel (a) shows the PDW2 system without adding random phases and panel
(b) shows the PDW2 with static random phases taken from Fig. 3. The PDW orders �±Qy

are added at two pairing centers ±Qy/2. The white
dashed lines represent the bare bands. Both systems show the kF -kG misalignment in the ky = π plots as seen in subplots (a-I) and (b-I), where
kF is the Fermi momentum of the bare band and kG is the back bending momentum. But the spectra in the system with random phases are
more broadened. We take Q0 = π/4, �̄ = 0.125 eV, t1 = 0.4 eV, t2/t1 = −0.2, t3/t1 = 0.05, and μ/t1 ≈ −0.758. System size: 96 × 96 with
periodic boundary condition. More line scans are provided in the Supplemental Material [98].

FIG. 10. Spectral functions for (a) phase-separated PDW4 without thermal fluctuations, (b) PSPN state with thermal fluctuations at
T = 50 K < TCO , and (c) PSPN state at T = 190 K > TCO are plotted at kx,y = π . The PDW orders �±Qx,y

are added at four pairing centers
±Qx,y/2. In panel (a), we take the averaged PDW amplitude results |�±Qx,y

| from Fig. 5 as input and the PDW phases are homogeneous and
constant. The spectra closely resemble superposition of two PDW2 spectra with either �±Qx

or �±Qy
and the fourfold rotational symmetry is

approximately preserved. In panels (b) and (c), we have performed the thermal and disorder averages at the stated temperatures. We note that
the spectrum superposition feature revealed in (a) remains. In all cases, the kF -kG misalignment feature is intact, though the broadening is more
severe in the two high temperature cases. The parameters are the same as in Fig. 9. More line scans are provided in the Supplemental Material
[98].
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[Figs. 6(a-VII) and 6(a-XIV) in the SM [98]]. Next we observe
that the spectra appear as a superposition of those from a
PDW2 with �±Qx

orders and another one with �±Qy
orders

(see Fig. 7 in the SM [98] for a detailed discussion) and thus
approximately preserve the fourfold rotational symmetry. This
is an intriguing result since the RFD induces directional PDW
domains breaking the local fourfold rotational symmetry. We
note that the spectra at kx,y = π [Fig. 10(a)] actually agree with
the ARPES results [54,55] better than the PDW2’s [Fig. 9(a-I)],
in which the lower band edge near ∼ − 0.2 eV is missing. We
also note that the dispersion approaches the Fermi level from
below when moving from antinodes towards the nodal regions
[see Figs. 6(a) and 8 in the SM [98]], consistent with ARPES
results [55,101,102]. Near the end of the gapless Fermi arc
(see Fig. 8 in the SM [98]), the dispersion is not particle-hole
symmetric but bends downward and loses spectral weight,
qualitatively consistent with the ARPES results by Yang et al.
[101,102]. The same data, as well as some antinodal features,
has also been nicely captured by the phenomenological YRZ
model [102,106–108]. We have also performed a similar
calculation on the PDW4 with coexisting �x,y (γ �

2 < 0); the
spectrum does not have the superposition feature and fails to
reproduce the ARPES results due to the strong interference
effect of the Qx and Qy PDW orders.

C. PSPN state with (thermal) phase fluctuations

We are finally ready to discuss the spectral function results
for the PSPN state with phase fluctuations. This state stems
from the s ′ ± id-wave PDW4 state. In order to capture the
phase fluctuations of the PDW orders, it is insufficient to
compute only the static averaged configurations as in above.
Actually we need to compute the averaged qausiparticle
spectral function over thermal fluctuations, given by [104]

〈A(k,ω)〉 =
∑

{�} A{�}(k,ω)e− 1
kB T

F4,lattice∑
{�} e

− 1
kB T

F4,lattice
(22)

where for brevity {�} denotes {�sQa
}. This averaged spectral

function 〈A(k,ω)〉 is calculated by taking the thermal average
with {�sQa

} configurations generated by MC simulations of
the GL functional F4,lattice in Eq. (10). We then perform
the disorder average over 16 RFD configurations. We carry
out the numerical calculations at two temperatures T = 50 K
and T = 190 K, which are at opposite sides of the charge
order crossover temperature of TCO ∼ 150 K. Again, for each
RFD configuration, we take the amplitudes from the MC
results with both amplitude and phase updates and simulated
annealing process as in Fig. 5 as input and then carry out
the MC simulations on the PDW phases at the desired
temperatures. The results for 50 K and 190 K are, respectively,
presented in Figs. 10(b) and 10(c). The spectra are smoothened
compared to those without phase fluctuations, but the band
structures are largely unaltered compared with the PDW4
results without phase fluctuations [Fig. 10(a)]. Many important
features that we obtained previously remain intact even with
the presence of the phase fluctuations. Firstly, the “Fermi
arcs” remain. The spectra near the antinodes are severely
broadened. Compared with the PDW4 results without phase
fluctuations [Fig. 10(a)], the broadening mainly comes from

the �x,y-phase separation instead of the phase fluctuations.
The “gap” decreases monotonically away from the antinodes
owing to the phase fluctuation induced gap fillings and finally
becomes gapless near the nodal regions. Again away from
antinodes, the spectrum approaches the Fermi level from
below, in accord with ARPES experiments [55,101,102].
Secondly, the band structure superposition and the kF -kG

misalignment also survive the phase fluctuations. Moreover,
if we compare the results for 50 K and 190 K, we see that
the crossover temperature TCO does not induce a qualitative
change on the spectrum. The two major features mentioned
above still survive the depinning of the smectic phases across
TCO and can be regarded as definitive characteristics of the
PDW orders for T < T ∗. These results agree well with the
ARPES measurements [12,52–55,109,110], in which these
features are also shown in the pseudogap region below T ∗.
(We note that these ARPES features can also be captured to
some extent by alternative theories [78,111].) Comparison of
the result and the ARPES data is given in Fig. 9 of the SM [98].

By comparing the spectral results for different PDW
states, we notice two major effects of RFD. Firstly, in terms
of the phase separation pattern and the random phases, it
broadens the spectrum, as one would have expected from a
disordered system. The broadening is more severe near the
antinodes, which is also observed in ARPES data [2]. But
more importantly, RFD induces the phase separation pattern
for the directional orders, rendering the spectra approximately
obeying the fourfold symmetry, while still preserving many
experimentally observed features appeared in the directional
PDW2 state.

Lastly we argue that the superposition feature actually
support the proposal that the cuprate SC has stripe PDW
and CDW orders (γ �

2 > 0). Since without PDW order, the
fermionic spectrum in the CDW phase cannot reproduce the
ARPES results [47,55,101,102] that the spectrum approaches
from the Fermi level from below, we shall confine ourselves to
various scenarios of PDW theories. First, the pure PDW2 could
not reproduce the lower band edge of the ARPES spectrum
as we discussed above. Next, we have also checked that the
checkerboard PDW4 state with γ �

2,3 < 0 could not reproduce
the ARPES results. A third possibility is proposed in Ref. [47]
that the ARPES results actually constitute from a checkerboard
PDW4 orders decaying in the momentum space. It is proposed
that the PDW symmetry factor fsQa

(k) ∼ e−k2/ξ 2
decays away

from the pairing centers, and it can successfully explain the
kF -kG misalignment and the Fermi arcs. But the spectrum is
largely coming from the PDW2 states at the pairing centers
due to the exponential decaying SC symmetry factor, so it has
missed the ARPES feature at the lower band edge shown in
Fig. 10(a-I). Nevertheless, the stripe PDW does not necessarily
need to exist within the same layer. Actually, alternating
layers of x- and y-directional stripe PDW [40] would produce
a similar superposition spectra. But the phase separation
structure similar to those in Fig. 5 is indeed observed in STM
[19,56] and also supported by REXS [13], so it is perhaps
favored over the alternating layer scenario. It is hard to exhaust
all the possibilities, but it is intriguing to see the convergence of
the STM, REXS (indicating stripe CDW, induced by the stripe
PDW), and the ARPES (indicating stripe PDW) experimental
results towards a unifying theoretical framework.
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VI. CONCLUSIONS

In conclusion, the phase separated pair nematic (PSPN)
state derived from a four-component pair density wave (PDW)
model under the influence of random field disorders (RFD)
captures coherently a number of experimental results in
the pseudogap. We consider a parameter regime γ �

2,3 > 0
for the phenomenology of cuprates, in which all the PDW
components �±Qa

are competing with each other. The new
choice of parameter impedes the generalization of existing
PDW results to the present case, however, we show that in
terms of a phenomenological GL approach, the experimental
observed features obtained in the existing PDW theory are
retained if disorders are included. It is shown that CDW and a
time-reversal symmetry breaking (TRSB) order in the form of
loop current (LC) are induced as secondary composite orders.
The inclusion of disorders permits the state to be spatially
inhomogeneous (in terms of the PDW components), and this
readily resolves an issue concerning the incompatibility of
CDW and loop current order within a four-component PDW
model [48]. Nonetheless, the CDW is short ranged under the
influence of random field disorders, consistent with the STM
[19,20,56] and REXS [13] results, while the LC order can
account for the TRSB order observed in polar Kerr rotation
[25,26] and polarized neutron diffraction [27–30] experiments.
Furthermore, by a MC simulation, we show that random
field disorders can also induce a phase separation pattern
for the CDW, similar to that observed in STM. This PSPN
state also appears to capture other experimental features.
It explains a distinct temperature scale TCO < T ∗ for the
static (short range) CDW (see Sec. III). More importantly, it
accounts for the same pseudogap temperature T ∗ observed in
linear resistivity, ARPES (for the anomalous spectral features),
REXS (for the dynamically fluctuating directional CDW),
and polarized neutron diffraction (for the IUC TRSB order)
experiments. We also argue that the thermal superconducting
phase fluctuations lead to finite flux flow resistance, resulting
in a nonsuperconducting state regardless of TCO . To test
the proposed PDW theory, one may probe the half SC flux
trapped at the 2π -CDW dislocation (see Secs. II A and III A),
provided that the local SC phase is strongly pinned. In Sec. IV,
we constrain the PDW, from the observed CDW with a
predominantly d-wave form factor, to have s ′ ± id pairing
symmetries. In Sec. V, we show that a number of anomalous
features in ARPES, namely Fermi arcs, kF -kG misalignment,
and antinodal gap closing from below are retained in the PSPN
state, even with thermal fluctuations. Moreover, the PSPN
state is shown to have severe coherent peak broadening near
the antinodes (but not the nodes), which has been a puzzling
feature observed in ARPES [2]. The random field disorder
induced phase separation pattern helps to explain why the
ARPES spectrum still obey the fourfold rotational symmetry
approximately, while locally it has been broken as revealed
in STM. From above, we see that the random field disorders
assist in understanding the pseudogap for T < T ∗ in terms of
the PSPN state by resolving several issues in previous studies.
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APPENDIX: CDW FORM FACTOR INDUCED BY s′ ± i d
PDW ON A SQUARE LATTICE

From the definitions of PDW Eq. (13) with symmetry factor
Eq. (14)

f+Q(k) = (
k2
x + k2

y

) + α
(
k2
x − k2

y

)
f−Q(k) = f ∗

+Q(k)

(here α ∈ C) and its induced CDW

ρ(r, +2Q) = �∗(r, −Q)�(r, +Q) ,

we have

ρ(r,2Q) ∝
∑
k1k2

f+Q(k1)f+Q(k2)e−ik1re+ik2r

=
∑

p

ρ2Q(p)e−ipr ,

and

ρ2Q(p) =
∫ 2π

0
dθqf+Q(q + p/2)f+Q(q − p/2)

where θq = arg q, and we define k1 = q + p

2 and k2 = q − p

2 .
After some straightforward calculations, we have

ρ2Q(p) = 1

8π

[
(1 + α2/2)

(
p2

x + p2
y

)2

+ 2α
(
p2

x + p2
y

)(
p2

x − p2
y

)
+(α2/2)

(
p4

x − 6p2
xp

2
y + p4

y

)] + O(p2).

We note that the first term is clearly s-wave, while the second
(third) term is d-wave (g-wave) due to the identities cos 2θp =
p2

x−p2
y

p2
x+p2

y
and cos 4θp = p4

x−6p2
xp

2
y+p4

y

(p2
x+p2

y )2 . A less rigorous derivation

by the product of the basis functions

ρ2Q(p) ∼ (1 + α cos 2θp)2

= (1 + α2/2) + 2α cos 2θp + (α2/2) cos 4θp

would also give the same result.
Similarly, in the lattice case, we have symmetry factor

Eq. (17)

f (
k) = (cos kx + cos ky) + i
√

2(cos kx − cos ky).

Then

ρ(p,2Q) =
∑

q

[(−1 + 2
√

2i) cos k1x cos k2x

+ (−1 − 2
√

2i) cos k1y cos k2y

+ 3 cos k1x cos k2y + 3 cos k1y cos k2x].
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Then we substitute k1 = q + p

2 , k2 = q − p

2 and evaluate the
integrals

∑
q → ∫ π

−π
dqx

∫ π

−π
dqy , and we have

ρ(p,2Q) = +�lat
d (cos px − cos py)

+�lat
g (cos px + cos py),

where �lat
d = 4

√
2π2i and �lat

g = −2π2. In the continu-
ous case, after setting the s ′-wave component to zero, we

have

ρ2Q(k) = 2
√

2i�2
s

(
k4
x − k2

y

) − �2
s

(
k4
x − 6k2

xk
2
y + k4

y

)
.

The ratio of the d-wave to g-wave component is −2
√

2i, which
matches that of the lattice case �lat

d /�lat
g = −2

√
2i. We note

that although the induced CDW’s form factor has a “g-wave”
component, it manifests as s ′-wave ∼ cos px + cos py due to
the choice of nearest neighbor bond order and the square
lattice.
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