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Coflow turbulence of superfluid 4He in a square channel: Vortices trapped on a cylindrical attractor
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We perform a numerical simulation of the dynamics of quantized vortices produced by coflow in a square
channel using the vortex filament model. Unlike the situation in thermal counterflow, where the superfluid
velocity vs and normal-fluid velocity vn flow in opposite directions, in coflow, vs and vn flow in the same
direction. Quantum turbulence in thermal counterflow has been long studied theoretically and experimentally,
and its various features have been revealed. In recent years, an experiment on quantum turbulence in coflow has
been performed to observe different features of thermal counterflow. By supposing that vs is uniform and vn

takes the Hagen-Poiseuille profile, which is different from the experiment where vn is thought to be turbulent,
we calculate the coflow turbulence. Vortices preferentially accumulate on the surface of a cylinder for vs � vn by
mutual friction; namely, the coflow turbulence has an attractor. How strongly the vortices are attracted depends on
the temperature and velocity. The length of the vortices increases as the vortices protruding from the cylindrical
attractor continue to wrap around it. As the vortices become dense on the attractor, they spread toward its interior
by their repulsive interaction. Then, the superfluid velocity profile induced by the vortices gradually mimics the
normal-fluid velocity profile. This is an indication of velocity matching, which is an important feature of coflow
turbulence.
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I. INTRODUCTION

Quantum turbulence is one of the most important issues
in low-temperature physics and has been studied for more
than half a century [1]. Superfluid 4He is the most typical
system in which quantum turbulence is realized. Quantum
turbulence can be created in pipe flow of superfluid 4He
in several ways. The typical case is thermal counterflow,
in which the superfluid velocity and normal-fluid velocity
have opposite directions. Many experimental and theoretical
studies of thermal counterflow have been accumulated [2].
There is another case of pipe flow, namely, coflow, where
the superfluid velocity and normal-fluid velocity have the
same direction, but it has seldom been studied. A recent
experiment on coflow observed features that differed from
those of thermal counterflow [3]. The motivation of the present
paper is to find numerically some remarkable behavior of
vortices characteristic of coflow.

The hydrodynamics in superfluid 4He is described mainly
by a two-fluid model and quantized vortex [4]. The liquid state
of 4He exists in two phases: a high-temperature phase called He
I and a low-temperature phase called He II. According to the
two-fluid model, He II below a λ point of 2.17 K is regarded as
an intimate mixture of a viscous normal fluid and an inviscid
superfluid. The density and velocity of the normal fluid are
denoted by ρn and vn, whereas those of the superfluid are
denoted by ρs and vs , respectively. The total density ρ = ρn +
ρs is almost independent of temperature below the λ point.
However, the relative proportions of the normal fluid and the
superfluid, ρn/ρ and ρs/ρ, depend strongly on the temperature.
The velocity fields are independent unless quantized vortices
are relevant.

The idea of quantized circulation, which was considered by
Onsager [5] and confirmed by Vinen [6], mentions that in He II,
the circulation of superfluid flow is quantized by the quantized

circulation κ = h/m4, where h is Planck’s constant, and m4 is
the mass of a 4He atom. The elementary excitations forming
the normal fluid are strongly scattered as vortex lines appear at
finite temperatures. Thus, if there is a relative velocity between
the normal fluid and the quantized vortices, a frictional force
called a mutual friction force works between them [7]. The
mutual friction term is taken into account in the dynamics of
the two fluids, so the two fluids become coupled.

We briefly review the history of quantum turbulence to
clarify the context of our research. Quantum turbulence
manifests itself as a tangle of vortex lines [8] and can be
generated in many ways. Thermal counterflow is the first type
of turbulent flow that was studied in detail, in a series of
pioneering papers by Vinen; it is explained by a two-fluid
model [9–12]. A channel is prepared with one end connected
to a He II bath and the other end closed. A heat current is
applied to the closed end of the channel; then the normal
fluid will flow from the warm side to the cool side, while the
superfluid will flow in the opposite direction to conserve the
total mass:

∫
(ρnvn + ρsvs)dS = 0, (1)

where the integral is performed over the cross section of
the channel. Thus, a relative velocity vns = |vn − vs | occurs
between the two fluids, where the overline denotes the spatial
average over the channel cross section. When the counterflow
velocity exceeds a critical value, a self-sustaining tangle of
quantized vortices appears, forming superfluid turbulence.
Measurements [11] show that the vortex line density (VLD) L

follows the relation

L1/2 = γ (vns − v0), (2)
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where γ is a parameter depending on the temperature, and v0

is a critical velocity that determines whether the vortex tangle
remains or vanishes. In typical experiments, v0 is much smaller
than vns , so v0 is usually negligible.

A scheme for understanding quantum turbulence in terms
of the vortex dynamics was considered by Vinen. By assuming
homogeneous turbulence, he estimated the vortex growth
using a dimensional analysis and modeled the decay process
phenomenologically [11]. He showed that the dynamics of the
vortex tangle is described by Vinen’s equation,

dL

dt
= χ1vnsL

3/2 − χ2L
2, (3)

where χ1 and χ2 are temperature-dependent parameters. If
the vortex tangle is in a steady state, dL/dt = 0, resulting in
Eq. (2).

Schwarz investigated counterflow quantum turbulence us-
ing the vortex filament model and dynamical scaling [13]. The
observable quantities obtained in his calculation agree with
the experimental results for vortex tangles in the steady state.
However, his simulation could sustain the steady vortex tangle
only through an artificial mixing procedure. Adachi et al.
argued that this is the result of using the localized induction ap-
proximation (LIA), in which the interaction between vortices is
neglected [14]. By performing the full Biot-Savart calculation,
they overcame the difficulty and successfully obtained a steady
state consistent with the experimental results.

The above studies were performed by assuming homo-
geneous turbulence. However, the visualization experiment
performed by Marakov et al. shows that the normal-fluid
profile in a pipe is actually nonuniform because of the
boundary of the channel [15]. By taking account of the
boundary’s effect on quantum turbulence, Baggaley et al.
introduced the Poiseuille profile as the normal-fluid velocity
in two parallel plates [16,17]. This simulation found that
vortices are distributed inhomogeneously and that the physical
quantities have a spatial dependence. Yui et al. introduced
the Hagen-Poiseuille profile as the normal-fluid velocity in a
square channel and found inhomogeneous turbulence with a
superfluid boundary layer [18].

In contrast to the research activity related to thermal
counterflow, coflow turbulence induced by a mass flow has
not attracted much attention. In recent years, Varga et al.
performed an experiment on coflow driven mechanically by
a bellows through a square channel [3]. This experiment
observed features different from those of thermal counterflow.
For example, the VLD is proportional to the 3/2 power of
the velocity and is independent of temperature. These results
indicate that the VLD does not obey Eq. (2) and that the
dynamics of coflow cannot be explained by Eq. (3). Numerical
studies of coflow could find other characteristic features that
differ from those of thermal counterflow turbulence, in addition
to the above observations. Note that the normal fluid flow as
well as the superfluid flow is thought to be turbulent in the
experiment [19].

Our simulation [20] shows that vortices are localized on
the surface of a cylinder for vs � vn. That is, our system
has an attractor for vortices. Then, the superfluid velocity
profile induced by the vortices gradually mimics the normal-
fluid velocity profile. This is nothing but velocity matching.

Velocity matching is an important feature of coflow and
appears experimentally and theoretically in various situations.
Experiments in coflow were performed in many ways in
addition to the method used by Varga et al. [3]. For example,
coflow is induced by spinning disks or propellers, towing a
grid or sphere, and rotating cylinders (Taylor-Couette flow).
These experiments [21–25] showed that at low velocity, the
two fluids are independent; however, at high velocity, they
appear to be coupled and behave as a single Navier-Stokes
fluid with density ρ = ρn + ρs and the viscosity of the normal
fluid. One interpretation is that the superfluid velocity field
is driven to match the normal-fluid velocity field through
the mutual friction. A simulation of coflow performed by
Samuels showed velocity matching [26]. However, this study
used some approximations and simplifications. We obtain an
indication of velocity matching without these approximations
and simplifications.

In this paper, we perform a numerical analysis of coflow
in a square channel. Although the normal flow in the above
experiment seems turbulent, in this paper we assume that the
normal flow is laminar in order to focus on the low-velocity
condition. The Reynolds number Re of the normal component
calculated in our simulation is 350 � Re � 1100. It is smaller
than the critical Reynolds number, which characterizes the
transition from laminar to turbulent flow and is about 2000 in
typical cases [27]. Therefore, the normal-fluid profile might be
regarded as laminar. We use the Hagen-Poiseuille profile for
the normal-fluid profile because our simulation includes the
effect of boundaries in a square channel.

The contents of this paper are as follows. Section II clarifies
the formulation of the model and the equation of motion. In
Sec. III, we show the characteristics of coflow turbulence by
using the full Biot-Savart law and some physical parameters.
In Sec. IV, we investigate velocity matching in which the
superfluid velocity profile matches the normal-fluid velocity.
Section V presents the conclusion and describes future
work.

II. FORMULATION

In this section, we describe the formulation and numerical
analysis of a vortex filament model [28]. A quantized vortex
is defined by a filament passing through the fluid and has a
definite direction corresponding to its vorticity. This approxi-
mation is suitable in He II because the core size of the quantized
vortex is much smaller than any other characteristic length
scale. Except in the core region, a superfluid velocity field has
a classically well-defined meaning and can be described by
ideal fluid dynamics. Then, the velocity produced at a point r
by a filament is given by the Biot-Savart expression:

vs,ω(r) = κ

4π

∫
L

(s1 − r) × ds1

|s1 − r|3 . (4)

The filament is represented in parametric form as s = s(ξ,t),
where s1 refers to a point on the filament, and the integration
is performed along the filament. Attempting to calculate the
velocity vs,ω at a point r = s on the filament makes the integral
diverge as s1 → s. To avoid this, we divide the velocity ṡ
of the vortex filament at the point s into local and nonlocal
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terms:

ṡ = βs′ × s′′ + κ

4π

∫ ′

L

(s1 − s) × ds1

|s1 − s|3 . (5)

Here, the prime denotes derivatives of s with respect to
the coordinate ξ along the filament, and β takes a value
proportional to the quantum circulation. The first term refers to
the localized induction field arising from a curved line element
acting on itself. The second term represents the nonlocal field
obtained by performing the Biot-Savart integral along the
rest of the filament and all other filaments in the system.
When a solid boundary exists, the velocity in the direction
perpendicular to the wall must vanish, so the image vortex
is described by reflecting the vortex filament into the surface
and reversing its direction. The velocity produced by an image
vortex is denoted by vs,b. If a velocity applied by an external
field exists, it is denoted by vs,a . At zero temperature, the
vortex filament moves with the total superfluid velocity

vs = vs,ω + vs,b + vs,a. (6)

At finite temperatures, the mutual friction due to the interaction
between the vortex core and the normal fluid is taken into
account. The velocity of a point s is then given by

ṡ = vs + αs′ × (vn − vs) − α′s′ × [s′ × (vn − vs)], (7)

where α and α′ are the temperature-dependent coefficients.
By using the LIA, in which the second term in Eq. (5) is

neglected, we can understand the role of mutual friction. By
neglecting the term with α′, we obtain

ṡ = βs′ × s′′ + vs,a + αs′ × (vn − vs,a − βs′ × s′′). (8)

The third term causes a curved vortex to balloon outward
or collapse inward. As discussed by Schwarz [28], when the
relative velocity vns = vn − vs,a flows against βs′ × s′′, the
mutual friction always shrinks the curved vortex locally. On
the other hand, vns flowing along βs′ × s′′ yields a critical
radius of curvature Rc. When the local radius of curvature R

at a point on the vortex is smaller than Rc, the curved vortex
shrinks locally, whereas the curved vortex balloons out when
R > Rc.

In this study, we prescribe uniform flow for vs,a and
the Hagen-Poiseuille profile up for vn. When the normal
fluid flows along the x direction, the x component of vn is
represented by

up(y,z) = u0

∞∑
m=1,3,5,...

(−1)
m−1

2

×
[

1 − cosh(mπz/2a)

cosh(mπb/2a)

]
cos(mπy/2a)

m3
, (9)

where u0 is a normalization factor, and a and b are the half-
channel widths along the y and z axes, respectively [29].

To characterize the dynamics of vortices, we introduce some
statistical values. The VLD is given by

L = 1

�

∫
L

dξ, (10)

where the integral is performed along all vortices in the sample
volume �. The anisotropy parameter [13] is defined as

I = 1

�L

∫
L

[1 − (s′ · r̂p)2]dξ, (11)

where r̂p represents the unit vector parallel to the flow
direction. When the vortex tangle is completely isotropic,
I = 2/3. When the tangle consists entirely of curves lying
in the plane normal to the flow direction, I = 1.

The simulation is performed under the following condi-
tions. We discretize the vortex lines into a number of points
held at a minimum spatial resolution of ξ = 8.0 × 10−4 cm.
Integration in time is achieved using a fourth-order Runge-
Kutta scheme with a time resolution of t = 1.0 × 10−4 s.
The computational box is 0.1 × 0.1 × 0.1 cm3 in size, and a

and b in Eq. (9) are 0.05 cm. We regard the velocity condition
of coflow as vs,a = v̄n, where v̄n is the spatially averaged
normal fluid velocity. Periodic boundary conditions are used
along the flow direction x, whereas solid boundary conditions
are applied to the channel walls. The effects of reconnection
are artificially applied whenever two vortices approach more
closely than ξ . The initial state consists of eight randomly
oriented vortex rings of radius 0.023 cm [Fig. 3(a)].

III. NUMERICAL SIMULATION OF
COFLOW TURBULENCE

In this section, we present the results of our simulation
under the Hagen-Poiseuille flow expressed by Eq. (9). First,
we show that in the coflow dynamics, vortices are attracted
to a cylindrical region and exhibit polarization. Second,
we discuss why and how the vortices have this attractor.
Finally, by introducing a statistical value to classify the vortex
configuration, we realize that the vortex configuration of
coflow has parameter dependence.

A. Dynamics

The coflow dynamics differs in some ways from the thermal
counterflow dynamics. To characterize the coflow dynamics,
we show the statistical values and typical snapshot of the
dynamics in Figs. 1 and 2, respectively. As shown in Fig. 1(a),
the VLD just increases, not reaching any steady state. However,
as we explain later, the VLD of coflow should have a steady
state like that of thermal counterflow. On the other hand,
the anisotropic parameter I shown in Fig. 1(b) becomes
steady at I � 0.85. This shows that the vortices in coflow
are strongly anisotropic because I is larger than the isotropic
value, I = 2/3. The snapshots in Figs. 2(a) and 2(b) show that
most vortices are localized in a cylindrical region and polarized
along the flow direction [20]; that is, the vortices appear to be
trapped by an attractor [30]. The properties of the attractor are
discussed in Sec. III B.

The time development of the vortices can be characterized
by two stages. As shown in Fig. 1(a), the VLD increases rapidly
in the first stage, 0 s � t < 0.4 s, and then it increases slowly
in the second stage, 0.4 s � t ; the mechanism by which the
vortices multiply is different in the two stages. In the first stage,
shown in Fig. 3, the initial vortices expand and make many
reconnections, which create numerous small vortices. All
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FIG. 1. Time development of the VLD (a) and the anisotropic
parameter (b) for T = 1.85 K and v̄n (= v̄s) = 1.2 cm/s. Inset in (a)
shows the time development of the VLD in the very early stage, 0 s
� t � 1.0 s.

these vortices repeat the process until they are trapped by the
attractor. Figure 2 shows a typical snapshot of the second stage.
Most vortices are localized in the attractor, and a few vortices
protrude from the attractor toward the walls. In the second
stage, there are mainly two mechanisms that slowly increase
the VLD. The first mechanism is “wrapping the attractor.” The
protruding vortices rotate around the attractor because of the
mutual friction. Then, the vortex edges on the attractor leave

(a) v → v(b)

FIG. 2. Snapshots of vortices at t = 20 s in Fig. 1: (a) viewed
along the flow direction and (b) viewed from the side of the flow
direction.

v

)b()a(

)d()c(

FIG. 3. Snapshots of the time development of the vortex tangle
in the first stage viewed along the flow direction (T = 1.85 K, v̄n =
1.2 cm/s): (a) t = 0 s, (b) t = 0.15 s, (c) t = 0.25 s, (d) t = 0.4 s.

traces on it, increasing the vortex length on the attractor. The
second mechanism is “spreading inside.” When the vortices
become dense on the attractor, their repulsive interaction
makes them spread toward the interior and increases the VLD.
The two mechanisms increase the VLD continuously. Because
reconnections occur much less frequently than in the first
stage, the VLD increases much more slowly than in the first
stage. Because the two mechanisms approximately maintain
anisotropy, the anisotropy parameter takes a steady value,
although the VLD continues to increase.

B. Attractor for vortices

In the previous section, we showed that vortices are
localized in a cylindrical region. The appearance of the
attractor is an important characteristic of the present system.
This section discusses why the attractor appears and what
determines the topological region.

We consider the situation in a circular pipe where the
normal-fluid profile is Poiseuille flow to understand analyt-
ically why and how the vortices are localized. For the sake
of simplicity, we assume that a vortex ring is placed with
cylindrical symmetry, namely, that a vortex ring moves along
the central axis of a circular pipe. The vortex ring is represented
in cylindrical coordinates as s = s(R,θ,z). Then, Eq. (8) is
reduced to

dz

dt
= β

R
+ vs,a (12)

and

dR

dt
= α

(
vn − vs,a − β

R

)
. (13)

Here, the dynamics of θ is irrelevant because this system is
axisymmetric. We focus only on the dynamics of R because the
motion of z is irrelevant to the localization. The normal-fluid
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FIG. 4. Region where mutual friction vanishes: the dark symbols
show the region where vs,a = vn, and the light symbols represent
vs = vn.

profile is prescribed to be the Poiseuille profile

vn(R) = Vn

[
1 −

(
R

D

)2]
, (14)

where D is the radius of the pipe, and Vn is the maximum
value of vn. By inserting Eq. (14) into Eq. (13), we obtain

dR

dt
= α

(
vs,a

[
1 − 2

(
R

D

)2]
− β

R

)
, (15)

where we use the condition v̄n = vs,a . The stationary state of
R is given by

R

[
1 − 2

(
R

D

)2]
= β

vs,a

. (16)

If the right-hand side of Eq. (16) is negligible, we have
only one solution for R > 0, namely, R = D/

√
2. When

the right-hand side of Eq. (16) is not negligible, we have
two solutions for R > 0. However, the smaller solution does
not correspond to the localized position because this state is
unstable. Vortices are localized at the larger solution because
this state is stable. Consequently, the cylindrical region of the
radius corresponding to the larger solution acts as an attracter
where the mutual friction vanishes for vortex rings [30].

However, in a square channel, the geometry of the attractor
is modified from a cylindrical region because the Hagen-
Poiseuille profile is not axisymmetric. We consider the region
where the mutual friction of Eq. (8) vanishes. First, if the term
βs′ × s′′ is negligible, the region of the attractor is given by the
condition vn = vs,a and shown by the light symbols in Fig. 4.
However, this region is modified to the result shown by dark
symbols by the term βs′ × s′′; the position around the corners
is shifted inward because the radius of curvature is small,
and the position around the sides is shifted outward because
it is large [28]. In this way, the appearance of the attractor
causes the vortex dynamics of coflow to differ from that of
nonuniform thermal counterflow [18] because the coflow has
a region where mutual friction does not work.

C. Parameter dependence of the vortex configuration

If we change the temperature T and the spatially averaged
velocity v̄ (= v̄n = v̄s), the vortex configuration also changes.

(a) v → v(b)

FIG. 5. Typical snapshots of vortices in the diffusive state: (a)
viewed along the flow direction and (b) viewed from the side of the
flow direction.

Consequently, the coflow dynamics has a critical velocity vc

that depends on the temperature. When |v̄| < vc, the vortices
are diffusive in all directions without localization, as shown
in Fig. 5. This diffusive state occurs because the effect of
vortex accumulation in the attractor is weak. In this state,
most vortices vanish eventually, leaving only several vortices
in the four corners of the channel. These vortices rarely
disappear even after sufficient time has passed. When |v̄| � vc,
vortices are localized or diffuse repeatedly. This state arises
from two competing effects. One is that the mutual friction
tends to accumulate vortices in the attractor, as described
in Sec. III B. The other is that the self-induced velocity
βs′ × s′′ preferentially removes vortices from the attractor.
If the effect of the mutual friction is stronger than that of the
self-induced velocity, vortices are localized and continue to
increase. Conversely, if not, vortices diffuse and eventually
vanish. In this competing state, we cannot determine easily
whether vortices are localized or diffuse, although we may be
able to determine this if we continue to calculate for a very
long time.

We show the time development of the VLD for three states
in Fig. 6(a). When |v̄| > vc, which is 0.8 cm/s at T = 1.55 K,
the VLD continues to increase, as shown by the circular
symbols. When |v̄| � vc, the VLD is statistically steady, as
shown by the triangular symbols. When |v̄| < vc, the VLD
decreases, as shown by the square symbols. By changing T and
v̄, we classify the time development of the VLD into the above
three states and show the phase diagram in Fig. 6(b): circular
symbols denote the localized state described in Sec. III A,
triangular symbols denote the competing state, and square
symbols denote the diffusive state. This shows that the critical
velocity vc(T ) is a decreasing function.

We introduce a dimensionless variable Lin/Lout to show
quantitatively the parameter dependence of the vortex config-
uration:

Lin

Lout
=

∫
Lin

dξ∫
Lout

dξ
. (17)

Here Lin is obtained by integration along all the vortices Lin in
the cylindrical region between the central axis and a radius of
0.045 cm, and Lout is obtained by integration along all the other
vortices Lout in the region between a radius of 0.045 cm and
the wall. As the vortices are localized, Lin/Lout increases. The
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FIG. 6. (a) Typical development of L with T = 1.55 K for each
state. (b) Phase diagram for the critical velocity.

time development of Lin/Lout is shown in Fig. 7. When the time
average of Lin/Lout is taken, these values increase at higher
temperature and larger velocity. Consequently, this shows that
the vortices tend to be localized at higher temperature and
larger velocity, and diffusive for lower temperature and smaller
velocity.

Mutual friction causes the dependence of T and v̄ in
Figs. 6 and 7. The mutual friction depends on T and v̄

because the coefficient α depends on the temperature, and
increasing the averaged velocity makes the relative velocity
faster everywhere. If the temperature is lower and the velocity
is smaller, the velocity caused by mutual friction is dominated
by the self-induced velocity βs′ × s′′, and the vortices move
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FIG. 7. Time development of Lin/Lout for the parameters de-
scribed in Fig. 6(a).

almost freely. Consequently, whether the vortices are localized
or diffusive depends on the temperature and velocity.

IV. VELOCITY MATCHING

As noted in Sec. I, previous experiments [21–25] showed
that at low velocity, the two fluids are independent, whereas
at high velocity, they appear to be coupled and behave as a
single Navier-Stokes fluid with density ρ = ρn + ρs and the
viscosity of the normal fluid. One interpretation is that the
superfluid velocity field is driven to match the normal-fluid
velocity field through the mutual friction. Velocity matching is
one of the most important features of coflow. Our simulation
shows velocity matching from the vortex dynamics, which
previous experiments had not addressed.

The pioneer research on velocity matching was done by
Samuels [26]. He performed a numerical simulation using the
vortex filament model under the condition that the normal
fluid has a Poiseuille profile in a circular pipe and v̄s = v̄n,
where vs is described by Eq. (6). This research shows that the
coflow turbulence has a cylindrical attractor where vortices are
localized, namely, attractor, and the superfluid velocity profile
gradually mimics the normal-fluid velocity profile. However,
this research used some approximations and simplifications
because it was difficult to describe the formula for an image
vortex in a circular pipe. First, to generate vortices regularly in
an attractor, the initial arrangement of the vortices is simplified
as follows. A small half ring is placed on the boundary of the
pipe. The radius of the ring is smaller than the distance between
the attractor and the boundary. Once the dynamics starts, the
vortex becomes trapped on the attractor by mutual friction
and generates another small half ring attached at the boundary
by reconnection. This small half ring also follows the same
process, and this event repeats periodically. This process was
followed numerically, neglecting the image vortex. Second,
Samuels approximated the trapped vortices as a group of
perfect vortex rings that are polarized along the flow direction.
Then, the image vortex ring for the trapped vortex ring is
approximately represented by following form:

rimage = R2/rring, (18)

κimage = − R

rring
κ. (19)

Here rimage and κimage are the radius of curvature and the
circulation of the image vortex ring, respectively; R is the
pipe radius, and rring and κ are the radius of curvature and the
circulation of the vortex, respectively. Using Eqs. (18) and (19)
to describe the image vortex ring is a suitable approximation
only when the vortex ring is close to the boundary. Although
Samuels obtained velocity matching by using these processes,
this dynamics is not realistic.

We directly obtain an indication of velocity matching from
the vortex dynamics without imposing the approximations
and simplifications used by Samuels. The superfluid velocity
profile obtained using Eq. (6) in the localized state is shown
in Fig. 8; the velocity is high in the interior region, where
vortices are localized, and low in the exterior region. Figure 9
shows the cross section on y = 0 of Fig. 8. It shows that the
superfluid velocity profile gradually mimics the normal-fluid
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FIG. 8. Spatial dependence of the superfluid velocity profile on
x = 0 mm at t = 40 s with T = 1.95 K and v̄ = 1.0 cm/s.

velocity profile from the attractor toward the central axis of
the square channel. This behavior is induced by “spreading
inside” as described in Sec. III A. The velocity matching might
be completed if vortices filled the interior attractor. We cannot
follow the dynamics until the final stage because the vortices
are extremely dense.

Another difference between Samuels’ work [26] and ours
is the way that vs,a is handled. Samuels dynamically adjusted
vs,a to always satisfy the velocity condition v̄s = v̄n; because
|v̄s,ω| increases with time, |vs,a| should be reduced. On the
other hand, our study takes v̄n = vs,a without the “dynamical
adjustment.” Our approach would be acceptable by the
following reasons.

It is difficult and arbitrary to adjust |vs,a| in the numerical
simulation. Actually we have the same problem in the case
of thermal counterflow, where Eq. (1) should be satisfied.
Almost all simulations since Schwarz’s pioneering work [13]
fix vs,a and vn, although the development of the vortex tangle
increases |v̄s,ω| and eventually the condition Eq. (1) is broken
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FIG. 9. Normal-fluid velocity profile and time development of
superfluid velocity profile.

as shown in the recent simulation [18]. In order to keep
exactly the condition, we have to calculate vs,ω by the full
Biot-Savart integral at each time step and adjust vs,a , but it is
very difficult numerically. One way to avoid the difficulty is
to make the adjustment not at each step but at each several
steps, but this is more or less arbitrary. We have the same
difficulty in the case of coflow. Samuels did the adjustment
only by a too simplified method, not making the full Biot-
Savart integral [26]. The numerical simulation taking proper
account of the “dynamical adjustment” would be a future
work.

V. CONCLUSIONS

In this study, we investigated coflow turbulence with
nonuniform flow of a normal fluid using the vortex filament
model. The velocity profile of the normal fluid was prescribed
to be the Hagen-Poiseuille profile [29], although in the
experiment performed by Varga et al., it seems to be turbulent
[3].

The most important feature of coflow turbulence is that
it has a cylinder in which the normal-fluid velocity equals
the superfluid velocity. Vortices are localized on the surface
of the cylinder by mutual friction [20]; that is, the coflow
dynamics has an attractor [30]. How strongly the vortices
are attracted depends on the temperature and the velocity,
because the mutual friction also depends on them. Thus, a
critical velocity appears depending on the temperature. If
the velocity exceeds the critical velocity, the vortices grow.
On the other hand, if it is smaller than the critical velocity,
the vortices do not grow. When the velocity exceeds the
critical velocity, the VLD increases as the vortices protruding
from the attractor continue to wrap around it. When the
vortices become dense on the attractor, they spread toward
the interior of the attractor by their repulsive interaction.
Then, the superfluid velocity profile induced by the vortices
gradually mimics the normal-fluid velocity profile. This is
nothing but velocity matching, which is an important feature
of coflow turbulence. Velocity matching in coflow was studied
by Samuels [26]. However, his study was done under some
approximations and simplifications. We directly obtained an
indication of velocity matching from the vortex dynamics
without imposing these approximations and simplifications,
although our simulation was not performed to the final
state.

In this study, we suppose that the normal-fluid velocity
profile is laminar, which is different from the experiment [3],
where the normal-fluid velocity is thought to be turbulent;
therefore, our future work is to perform a calculation under
the condition that the normal-fluid velocity is turbulent.
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