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Theory of NMR 1/T1 relaxation in a quantum spin nematic in an applied magnetic field
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There is now strong theoretical evidence that a wide range of frustrated magnets should support quantum
spin-nematic order in an applied magnetic field. Nonetheless, the fact that spin-nematic order does not break
time-reversal symmetry makes it very difficult to detect in experiment. In this article, we continue the theme
begun in Phys. Rev. B 88, 184430 (2013), of exploring how spin-nematic order reveals itself in the spectrum
of spin excitations. Building on an earlier analysis of inelastic neutron scattering [Phys. Rev. B 91, 174402
(2015)], we show how the NMR 1/T1 relaxation rate could be used to identify a spin-nematic state in an applied
magnetic field. We emphasize the characteristic universal features of 1/T1 using a symmetry-based description
of the spin-nematic order parameter and its fluctuations. Turning to the specific case of spin-1/2 frustrated
ferromagnets, we show that the signal from competing spin-wave excitations can be suppressed through a
judicious choice of nuclear site and field direction. As a worked example, we show how 31P NMR in the square
lattice frustrated ferromagnet BaCdVO(PO4)2 is sensitive to spin-nematic order.
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I. INTRODUCTION

In the quantum spin-nematic state, a set of spin-quadrupole
moments order, breaking spin-rotation symmetry but not
time-reversal symmetry [1–16]. While a number of theoretical
models clearly demonstrate spin-nematic order, finding exper-
imental evidence for such a state has proved difficult. This is
largely due to the absence of time-reversal symmetry breaking,
which means that the order parameter does not couple to the
usual probes of magnetism. For example, there are no Bragg
peaks in elastic neutron scattering and no splitting of spectral
lines in nuclear magnetic resonance (NMR) experiments.

Recently, we proposed that one way to detect the spin-
nematic state would be via inelastic scattering of neutrons
[16,17]. This is based on the finding that excitations of
the quadrupolar order parameter drive a small spin-dipole
fluctuation [15]. This can couple to dynamic probes of
magnetism, and we predicted that a ghostly Goldstone mode
excitation should be visible in neutron-scattering experiments.

Here, we consider another dynamic probe of magnetic
fluctuations, the NMR 1/T1 relaxation rate, and we show how it
could be used to identify spin-nematic order. This could prove
useful either as a complement to inelastic neutron-scattering
experiments or in conditions where neutron scattering is not
possible, e.g., in the presence of strong magnetic fields or when
only small crystals are available.

The main result is shown in Fig. 1. At a thermal phase
transition between the spin-nematic state and the partially
polarized paramagnet, there is a steplike increase in 1/T1 and
a sharp cusp. When combined with other considerations, this
could provide strong evidence for the existence of spin-nematic
order.

While the result shown in Fig. 1 is a universal feature
of spin-nematic order, we couch most of the discussion in
this article in terms of frustrated, spin-1/2 ferromagnets in
an applied magnetic field. The reason for this is that these
appear to be one of the most promising places to search for the
spin-nematic state experimentally [16,18–23].

The simplest theoretical model that supports spin-nematic
order in spin-1/2 systems is

HS=1/2
J1−J2

=J1

∑
〈ij〉1

Si .Sj + J2

∑
〈ij〉2

Si .Sj − h
∑

i

Sz
i , (1)

where 〈ij 〉1 counts first-neighbor bonds and 〈ij 〉2 second-
neighbor bonds. These bonds could, for example, live on
a one-dimensional (1D) chain [5], a two-dimensional (2D)
square lattice [9], or a three-dimensional (3D) bcc lattice [22].

FIG. 1. Prediction for the NMR 1/T1 relaxation rate [see Eq. (19)]
close to a continuous phase transition from a partially polarized
paramagnet (PM) to an antiferroquadrupolar (AFQ) ordered state. The
contribution from long-wavelength fluctuations of the quadrupolar
order parameter is shown. To fully determine the NMR relaxation due
to magnetic processes, this should be combined with the contribution
from gapped transverse excitations of the partially polarized moment
(see Sec. IV). There is a steplike jump in 1/T1 on crossing the critical
temperature, and a sharp cusp at TQ, but no critical divergence. In
contrast, 1/T1 in a canted antiferromagnet shows divergent behavior
at the critical temperature (see Appendix A).

2469-9950/2016/93(18)/184419(11) 184419-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.184430
http://dx.doi.org/10.1103/PhysRevB.88.184430
http://dx.doi.org/10.1103/PhysRevB.88.184430
http://dx.doi.org/10.1103/PhysRevB.88.184430
http://dx.doi.org/10.1103/PhysRevB.91.174402
http://dx.doi.org/10.1103/PhysRevB.91.174402
http://dx.doi.org/10.1103/PhysRevB.91.174402
http://dx.doi.org/10.1103/PhysRevB.91.174402
http://dx.doi.org/10.1103/PhysRevB.93.184419


ANDREW SMERALD AND NIC SHANNON PHYSICAL REVIEW B 93, 184419 (2016)

FIG. 2. Two-sublattice, bond-centered spin-nematic state, of the
type found to be the ground state of quasi-1D, spin-1/2 frustrated
ferromagnets in a magnetic field [11,19,21,32,33]. For example, this
has been proposed as the ground state of LiCuVO4 close to saturation
[19,34,35]. The probability distribution for the moment on each bond
is shown as a blue surface. The orthogonal “directors” associated with
this type of nematic order are shown as red cylinders. Green spheres
represent magnetic atoms.

In the case of one dimension, it has been shown that
for ferromagnetic J1, HS=1/2

J1−J2
has dominant quadrupolar

correlations for a wide parameter range close to saturation
[5,24–31]. These can lead to distinctive 1D critical behavior
in the 1/T1 relaxation rate [18,20]. The addition of a weak
interchain coupling can then stabilize a long-range-ordered
quadrupole state [11,19,21,32,33] (see Fig. 2). The material
LiCuVO4 is thought to be a realization of this model, and it
may show spin-nematic order close to saturation [19,34,35].
However, high-field NMR measurements have not yet detected
evidence for such a state, and they have shown that, if such a
state does exist, it is limited to a very narrow field range [35].
The material PbCuSO4(OH)2 (linarite) is also believed to be a
realization of this model, and it may have a multipolar phase
at high field [36,37].

In two dimensions, a J1 − J2 model on the square lattice has
been shown to support spin-nematic order for a wide range of
parameters close to saturation [9,10,12–14,16,38] (see Fig. 3).
The addition of weak interlayer coupling can stabilize this
phase at finite temperature [23]. This model is approximately
realized in a number of quasi-2D materials, including the
vanadates Pb2VO(PO4)2 [39–43], SrZnVO(PO4)2 [41,42,44],
and BaCdVO(PO4)2 [41,45].

The NMR 1/T1 relaxation measures fluctuations of the
internal magnetic field at a nuclear site, and these arise
predominantly from fluctuations of the neighboring electronic
spins. As a consequence, 1/T1 can be expressed in terms of the
imaginary part of the dynamic susceptibility of the electronic
spin system [46–48], with the most general form [49]

1

T1(hext)
= lim

ω→0

γ 2
N

2N
kBT

∑
q,α,β

Fαβ(q,hext)
Im{χαβ(q,ω)}

�ω
,

(2)

where γN is the nuclear gyromagnetic ratio, ω is the NMR
frequency, hext is the externally applied magnetic field, α

and β label spin components, and Fαβ(q,hext) is a form

FIG. 3. Two-sublattice, bond-centered spin-nematic state, of the
type found to be the ground state of square-lattice, quasi-2D,
spin-1/2 frustrated ferromagnets in a magnetic field [9,12–14,16,38],
reproduced from Ref. [16]. For example, this has been proposed
as the ground state of BaCdVO(PO4)2 close to saturation [16]. The
probability distribution for the moment on each bond is shown as a
blue surface. The orthogonal “directors” associated with this type of
nematic order are shown as red cylinders. Green spheres represent
magnetic atoms.

factor describing the coupling between nuclear and electronic
spins.

In the spin-nematic state, fluctuations of the quadrupolar
order parameter drive spin-dipole fluctuations, and these
couple to 1/T1 relaxation. The characteristic behavior of 1/T1

is shown in Fig. 1, and we argue below that measurement
of such a feature could provide good evidence for spin-
nematic order. However, spin-dipole fluctuations associated
with the quadrupolar Goldstone mode are not the only driver
of 1/T1 relaxation. In spin-1/2 frustrated ferromagnets, the
spin-nematic state is expected to appear close to saturation,
and therefore it coexists with a partially polarized moment.
Transverse fluctuations of this partially polarized moment can
have a small gap, and therefore they contribute significantly to
1/T1 at temperatures comparable to the spin-nematic ordering
temperature. The danger is that these transverse fluctuations
could swamp the contribution of the quadrupolar Goldstone
mode to relaxation. Thus it would be useful to have a way
of suppressing this effect, and we show how the 1/T1 form
factor can be used to “filter out” transverse fluctuations of the
polarized moment.

The remainder of this paper is organized as follows.
In Sec. II, the spin-nematic state in frustrated spin-1/2
ferromagnets is reviewed, with particular attention to the
dispersion of magnetic excitations. Section III contains the
main result, namely the 1/T1 response due to fluctuations
of the quadrupolar order parameter. Section IV considers the
main competing contribution to 1/T1, transverse fluctuations
of the partially polarized moment, and it shows how these can
be suppressed by the NMR form factor. Section V shows a
worked example of form-factor suppression, which is relevant
to P NMR in the material BaCdVO(PO4)2. Section VI studies
the low-T power-law behavior of 1/T1 in a spin-nematic state.
Finally, in Sec. VII we discuss the likelihood of observing the
1/T1 features shown in Fig. 1, and how characteristic these are
of the spin-nematic state.

184419-2



THEORY OF NMR 1/T1 RELAXATION IN A QUANTUM . . . PHYSICAL REVIEW B 93, 184419 (2016)

II. MAGNETIC EXCITATIONS OF THE
SPIN-NEMATIC STATE

To determine the NMR 1/T1 relaxation rate, it is first
necessary to understand the nature of the spin-nematic state.
The aim of this section is to provide an overview of what is
currently known, in particular about the magnetic excitations,
as this is what is probed by 1/T1 relaxation. We focus
on antiferroquadrupolar (AFQ) order in spin-1/2 frustrated
ferromagnets close to saturation, since this appears to be
the context in which spin-nematic order is most likely to
be realized experimentally (see the discussion below HS=1/2

J1−J2

[Eq. (1)]).
A typical Hamiltonian in which theory shows the existence

of spin-nematic order is given by HS=1/2
J1−J2

[Eq. (1)]. An
AFQ state is found to exist for ferromagnetic J1, competing
antiferromagnetic J2, and magnetic fields close to saturation
[5,9,22].

A schematic phase diagram is shown in Fig. 4. At zero mag-
netic field and low temperature, there is a magnetically ordered
phase. For the example of HS=1/2

J1−J2
[Eq. (1)] on the square

lattice, this is the columnar antiferromagnet with ordering
vector q = (π,0) or q = (0,π ). Increasing the magnetic field
causes the spins to cant toward the field direction, and in the
presence of small anisotropies there can be spin-flop transitions
between different magnetically ordered states. However, the
details of the low-field phases are not pertinent to the current
discussion. The important feature is that close to saturation
there is a spin-nematic state, which is typically found to be a
two-sublattice, bond-centered AFQ phase (see Fig. 3).

The best way to understand the spin-nematic state is to
first consider the saturated paramagnet [9,11,16,23]. In the
saturated paramagnet, all excitations are gapped. As the field
is lowered toward the saturation value, there is a gap that
closes, and the associated excitation condenses, forming an

FIG. 4. Schematic phase diagram for spin-1/2 frustrated ferro-
magnets in a magnetic field. A spin nematic (SN) is typically found
in theoretical models just below the saturation field, hsat [9,11–
14,16,21,32,33,38]. At lower fields, a (set of) antiferromagnetically
ordered state(s) is stabilized, e.g., a canted antiferromagnet or a spin-
density-wave (SDW) state. Typically, one would expect transitions
from the partially polarized paramagnet (PM) to the SN to be second
order, while the transition between the SN and canted AFM is likely
to be first order. The dotted black line shows the path of a 1/T1

experiment.

ordered state. In spin-1/2 frustrated ferromagnets, it can
happen that bound-magnon pairs condense, and this results
in the formation of a quadrupolar state (see Fig. 5).

The order parameter of the spin-nematic state is a rank-2,
symmetric, traceless tensor [3],

Q
αβ

ij = Sα
i S

β

j + S
β

i Sα
j − 2

3
δαβSi · Sj , (3)

with α,β = x,y,z. The creation of a bound-magnon pair in the
saturated state can be described by [9]

S−
i S−

j |sat〉 = [(
Sx

i S
x
j − S

y
i S

y
j

) − i
(
Sx

i S
y
j + S

y
i S

x
j

)]|sat〉
= [

Q
x2−y2

ij − iQ
xy
ij

]|sat〉, (4)

where |sat〉 is the fully saturated state, and

Q
x2−y2

ij = (
Qxx

ij − Q
yy
ij

)
/2. (5)

Thus it can be seen that condensation of bound-magnon pairs
leads to nonzero components in the order-parameter tensor
Q

αβ

ij [Eq. (3)]. This order parameter lives on the bonds, and
it is associated with triplet pairing of the underlying spin-1/2
moments.

In the saturated paramagnet, it is possible to exactly
calculate the excitation spectrum of HS=1/2

J1−J2
[Eq. (1)] [16].

In Fig. 5, which is reproduced from Ref. [16], the dispersion
is shown for a square-lattice model at the saturation field, hsat.
It can be seen that there is a gapless mode at q	 = (0,0), and
this is associated with bound-magnon pairs. For h < hsat, this
mode becomes the Goldstone mode of the spin-nematic state,
and it is primarily associated with rotation of the quadrupole
moment in the plane perpendicular to the field. However, the
dynamics of this quadrupole rotation mixes a small spin-dipole
character into the wave function [15,16].

In Fig. 5, one can also observe a set of one-magnon
excitations, which describe transverse fluctuations of the
polarized moment. At h = hsat, these excitations are gapped
for all q, but the gap is very small at qX = (π,0). The
condensation of magnons at this wave vector is a competing
instability of the saturated paramagnet, but it is preceded by
the condensation of bound-magnon pairs. If it were the leading

FIG. 5. Magnetic dispersion in the J1 − J2 model [Eq. (1)] on the
square lattice at the saturation field, hsat, reproduced from Ref. [16].
The parameters used are J1 = −3.6 K and J2 = 3.2 K, and the path
through the Brillouin zone is q	 = (0,0) → qX = (π,0) → qM =
(π,π ) → q	 . A dashed white line shows the gapless dispersion of
two-magnon bound states, while a dashed red line shows the gapped
dispersion of one-magnon transverse excitations of the polarized
moment. The color scheme shows the imaginary part of the dynamic
spin susceptibility perpendicular to the magnetic field.
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instability, then a canted antiferromagnet would form, with
ordering vector qX = (π,0). In the spin-nematic state, this band
of one-magnon excitations remains gapped, and it is very little
changed with respect to the saturated paramagnet.

One way to understand the excitation spectrum within the
spin-nematic state in two dimensions is via a lattice gauge
theory [12–14]. This takes into account the highly entangled
nature of the bond-nematic state, and it shows that it is
analogous to the resonating valence-bond state, only with
singlets replaced by triplets. This can be used in principle to
describe all the different excitations of the spin-nematic state.
However, it has not been fully developed in the presence of a
magnetic field.

Here we follow Refs. [15–17] and instead consider a
continuum theory of the quadrupolar order parameter. This
can be used to describe the Goldstone mode excitations, and
it has the advantage of bringing the universal properties to
the fore. We complement this by separately considering the
one-magnon excitations. These remain gapped throughout the
spin-nematic state, and they can be well approximated by
considering the dispersion at saturation.

III. 1/T1 RELAXATION DUE TO FLUCTUATIONS
OF SPIN-NEMATIC ORDER

First we consider the NMR 1/T1 relaxation due to dipolar
fluctuations associated with the spin-nematic Goldstone mode
(see Fig. 5). We study in particular the critical region, close
to a second-order thermal phase transition between the spin-
nematic and partially polarized paramagnetic states (see the
dotted line in Fig. 4). We find that while there is no divergence
of 1/T1 at the critical point, it does display a steplike increase
and a sharp cusp, as shown in Fig. 1.

In conventional antiferromagnets, the order parameter is
dipolar in nature. At the critical point, the correlation length
diverges, and there is an associated critical slowing down
of spin fluctuations. This leads to a divergence in 1/T1

[50–53] and the theory underpinning, which is summarized
in Appendix A.

For an AFQ in an applied magnetic field, the order
parameter is quadrupolar in nature and is confined to the plane
perpendicular to the field direction. For a field applied in the z
direction, it is given by

Q⊥(r) =
(

Q
x2−y2

A (r) − Q
x2−y2

B (r)

Q
xy
A (r) − Q

xy
B (r)

)
, (6)

where Q
x2−y2

μ (r) is the spatial average of the bond-based

operator Q
x2−y2

ij [Eq. (5)] over bonds in the μ ∈ {A,B}
sublattice, and similarly for Q

xy
μ (r) [Eq. (3)]. The average

is taken over a region of space much larger than the lattice
constant and at least comparable to the correlation length, ξ .

Symmetry constrains the associated Landau theory to be

HLan
AFQ = αt̃

2
Q2

⊥ + u

4
Q4

⊥ + · · · , (7)

where α > 0, and t̃ = (T − TQ)/TQ is the reduced temper-
ature. A second-order phase transition at t̃ = 0 between the
AFQ and the partially polarized paramagnet is thus allowed
by symmetry, and this is what we consider here. While it is

possible that the transition can be driven to be weakly first
order by fluctuations, this will not qualitatively change the
conclusions.

To calculate the dynamic spin susceptibility, we first
consider the static Ginzburg-Landau functional, and then we
add dynamics in a phenomenological manner. The Ginzburg-
Landau functional is given by [6,54]

HGL
AFQ ≈

∫
d3r

[
αt̃

2
Q2

⊥ + K

2
(∇Q⊥)2 + u

4
Q4

⊥ + 1

2χQ
z

(lz)2

]
,

(8)

where K is a generalized elastic constant, χQ
z is the quadrupo-

lar susceptibility, lz is a canting field describing spin-dipole
fluctuations parallel to the applied magnetic field [15,17], and
an irrelevant coupling hlz has been ignored. The coupling u

is now assumed to be positive, consistent with a continuous
phase transition. For simplicity, we have assumed that the AFQ
state is isotropic in three dimensions. While this is clearly not
the case for quasi-1D and quasi-2D materials, it is a simple
exercise to introduce spatial anisotropies into the model, and
we have checked that it does not make a qualitative difference
to predictions for 1/T1.

Close to the transition, the correlation length scales as
ξ ∝ t̃−ν , and in mean-field theory ν = 1/2. However, since
the order parameter does not produce an internal magnetic
field, this critical divergence of the correlation length does not
drive a divergence of the 1/T1 relaxation rate. Instead it is
the small dipolar fluctuations, lz, dynamically generated by
rotations of the quadrupoles, that couple to 1/T1. These are
not critical, and they are completely suppressed at the ordering
vector [15].

It is useful to separate longitudinal and transverse fluctua-
tions, and this can be achieved by writing

Qx2−y2

μ = η
[
(nx

μ)2 − (
ny

μ

)2]
, Qxy

μ = 2ηnx
μny

μ, (9)

where nμ(r) = (nx
μ,n

y
μ,0) is a unit vector aligned with the

nematic directors (see Fig. 2) and nA(r) · nB(r) = 0. This
results in

HGL
AFQ ≈

∫
d3r

[
αt̃

2
η2 + K

2
(∇η)2 + u

4
η4

+ ρd(η)

2
[(∇nA)2 + (∇nB)2] + 1

2χQ
z

(lz)2

]
, (10)

with the director stiffness, ρd(η) = η2K .
Dynamics can be added to the static Ginzburg-Landau

model [Eq. (10)] according to the theory of dynamic critical
phenomena in stochastic models [55–59] (see Appendix A
for a similar treatment of the canted antiferromagnet). The
longitudinal fluctuations of the order parameter are not
conserved, and they obey a purely dissipative equation of
motion,

∂t δη(r,t) ≈ −	K(ξ−2 − ∇2)δη(r,t) + ζη(r,t), (11)

where δη(r,t) = η(r,t) − 〈η〉 and the mean-field approxima-
tion u → 0 and ν = 1/2 has been assumed. The phenomeno-
logical parameter 	−1 sets the rate of damping, and ζη is a
white noise term with a correlation function

〈ζη(r,t)ζη(r′,t ′)〉 = 2	kBT δ(r − r′)δ(t − t ′), (12)
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which describes interactions between the long-wavelength
fluctuations of interest and short-wavelength excitations. It
follows that the correlation time is given by τη(q) ≈ 	−1χq,
with χq = K−1(ξ−2 + q2)−1. Approaching TQ, τη(0) diverges
as τη(0) ∝ ξz with mean-field dynamical exponent z = 2.

To calculate the critical behavior of 1/T1 in a canted
antiferromagnet, it is sufficient to model the dynamics of
the longitudinal order-parameter fluctuations. This is because
these fluctuations couple to the nuclear-spin lattice, leading
to a critical divergence in 1/T1. However, the AFQ order
parameter is time-reversal invariant, and therefore its longi-
tudinal fluctuations do not couple to NMR relaxation. As a
consequence, it is necessary to consider the long-wavelength
“flavor-wave” excitations of the AFQ ordered moment. These
are the generalization of spin waves in the antiferromagnet,
and they are described by the fields nμ and lz [15].

The nμ fields can be parametrized as [15,17]

nA = (
√

1 − φ2,φ,0), nB = (−φ,
√

1 − φ2,0), (13)

and we make the linear approximation
√

1 − φ2 ≈ 1. The
coupled equations of motion are

∂tφ(r,t) ≈ lz(r,t)

�χQ
z

+ γρd∇2φ(r,t) + ζφ(r,t),

(14)

∂t l
z(r,t) ≈ ρd

�
∇2φ(r,t) + λ

χQ
z

∇2lz(r,t) + ζl(r,t).

If only the first term in each equation is taken into account, they
describe the coherent motion of flavor waves and are equivalent
to the nonlinear sigma model description of the AFQ dynamics
[15,17]. The phenomenological parameters γ and λ set the
relaxation time scales for the fields φ and lz. The auxiliary
fields ζφ and ζl parametrize the damping of long-wavelength
fluctuations by interaction with short-wavelength excitations,
and they obey the correlation functions

〈ζφ(r,t)ζφ(r′,t ′)〉 = 2γ kBT δ(r − r′)δ(t − t ′),
(15)

〈ζl(r,t)ζl(r′,t ′)〉 = 2λkBT ∇2δ(r − r′)δ(t − t ′).

Fluctuations of the total magnetization commute with HGL
AFQ

[Eq. (10)], and therefore the q = 0 component of lz is
conserved.

Solving the linearized equations of motion, Eq. (14), results
in a dispersion,

ω±
q ≈ ±vq − iDq2

2
, v =

√
ρd

χQ
z

, D = λ

χQ
z

+ ρdγ, (16)

where the first term in ω±
q describes the coherent motion of

the quadrupoles, and the second term is dissipative.
Fluctuations of the spin-dipole moments can be

parametrized by

δSz(r,t) = lz(r,t) + [〈η〉 + δη(r,t)]lz(r,t) + · · · . (17)

As far as 1/T1 relaxation is concerned, the first term gives a
negligible contribution. This is because 1/T1 probes the spin
susceptibility at ω → 0 [cf. Eq. (2)], and at low energies the lz

term is suppressed by the fact that lz(q = 0,t) is a conserved
quantity.

To determine 1/T1 [Eq. (2)], it is first necessary to calculate
the imaginary part of the dynamical spin susceptibility. At

FIG. 6. Feynman diagram used to calculate the dynamic spin
susceptibility [Eq. (18)] close to the critical point of the antifer-
roquadrupolar (AFQ) spin-nematic state. The upper line (red) is
associated with longitudinal fluctuations of the order parameter, Q⊥
[Eq. (6)], while the lower line (black) is associated with dipolar
fluctuations that are driven by the dynamics of Q⊥.

leading order, this is given by the diagram shown in Fig. 6,
resulting in

kBT

�ω
Im

{
χzz

ηl (q,ω)
}

≈ 2(glμB)2 �(kBT )2

(kBTQ)3

∫
d3k

(2π )3

∫
dω′

2π

× 	

	2χ−2
k + (ω′)2

γρ2
d(k + q)4 + λ(ω + ω′)2(k + q)2

|(ω + ω′ − ω+
k+q)(ω + ω′ − ω−

k+q)|2 .

(18)

Physically, this equation describes a longitudinal fluctuation
of the quadrupole order parameter, which then cants, resulting
in a spin-dipole fluctuation. For this process to occur, it is
necessary that τη � τl , where the correlation time for the lz

field is given by τl(q) ≈ 2χQ
z /λq2 in the paramagnet. Close to

the critical point, this is equivalent to requiring χQ
z 	K/λ � 1.

Substituting Eq. (18) into Eq. (2) results in a relaxation rate,

1

T AFQ
1

≈ γ 2
N

(glμB)2

8π5
FQ�

(kBT )2

(kBTQ)3

∫
dk1dk2dω

	k2
1

	2χ−2
k1

+ ω2

× k2
2

(
γρ2

dk
4
2 + λω2k2

2

)
(
(ω − vk2)2 + D2k4

2
4

)(
(ω + vk2)2 + D2k4

2
4

) , (19)

where the form factor, FQ = Fαβ(qnem,hext) [Eq. (2)], is
assumed constant at the nematic ordering vector, qnem.

A numerical integration of this expression for an isotropic,
3D AFQ state results in the temperature dependence shown
in Fig. 1. It can be seen that there is a steplike increase
in 1/T AFQ

1 [Eq. (19)] on crossing the critical point at TQ.
This is accompanied by a sharp cusp, but there is no critical
divergence.

IV. 1/T1 RELAXATION DUE TO TRANSVERSE
FLUCTUATIONS

Fluctuations of the AFQ Goldstone mode are not the
only excitations contributing to 1/T1, and we consider here
relaxation due to transverse fluctuations of the partially
polarized moment. From the perspective of detecting the
existence of spin-nematic order, the danger is that these could
swamp the signal from the AFQ Goldstone mode excitations.
To reduce this danger, we show how their contribution to 1/T1
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could be suppressed by a careful choice of nuclear site and/or
magnetic-field direction.

In saturated, spin-1/2, frustrated ferromagnets, there is
typically more than one competing instability on lowering the
field [9,16,22,23]. The “losing” instabilities remain gapped at
the saturation field, hsat, but this gap can be small. An example
of this is shown in Fig. 5, where for HS=1/2

J1−J2
[Eq. (1)] on

the square lattice there are one-magnon modes at q = (π,0)
and q = (0,π ) with very small gaps. At temperatures large
compared to these gaps, the contribution of these excitations
to 1/T1 can be significant.

In the saturated state, the spectrum of transverse fluctuations
of the polarized moment can be calculated exactly [16]. We
make the assumption that this band of excitations is not
modified significantly at the zero-temperature phase transition
between the saturated state and the spin-nematic state, and
similarly at the thermal phase transition between the AFQ and
the partially polarized paramagnet. This assumption seems
reasonable, since the critical physics is associated with the
two-magnon band, and the one-magnon excitations remain
gapped in the AFQ state.

Following Ref. [49], the relaxation rate due to the one-
magnon transverse excitations can be calculated as

1

T
1−mag

1

= F1−mag
(gμB)2

�γ 2
NV 2

cell�
5
1

2π3v̄6
s

�

(
kBT

�1

)
, (20)

where �1 is the gap to one-magnon excitations, v̄s denotes the
spatially averaged spin-wave velocities close to this gapped
mode, the form factor F1−mag is assumed to be finite, and

�(x) = x2Li1(e−1/x) + 5x3Li2(e−1/x)

+ 12x4Li3(e−1/x) + 12x5Li4(e−1/x), (21)

with Lim(z) = ∑∞
l=0 zl/ lm the mth polylogarithm of z.

Close to TQ, one typically expects that kBT � �1, and
therefore one can make the approximation

1

T
1−mag

1

≈ F1−mag
6(gμB)2

�γ 2
NV 2

cell

π3v̄6
s

(kBT )5. (22)

In the context of identifying spin-nematic order, the contri-
bution to the 1/T1 relaxation rate from transverse fluctuations
is unwanted, since it could potentially mask the signal due to
the Goldstone mode fluctuations. Fortunately, it is possible to
suppress the effect of transverse fluctuations by careful choice
of nucleus and magnetic-field direction. The form-factor tensor
Fαβ(q,hext) [Eq. (2)] acts as a filter of spin fluctuations [48,49],
and it can therefore be used to filter out the low-energy,
transverse fluctuations of the partially polarized moment.

Denoting the wave vector at which one-magnon excitations
have a minima as q1, it is sometimes possible to choose the
field direction such that the form factor close to q1 is given by

F1−mag(q1 + δq,hext) ∝ δq2. (23)

In such a situation, there is no contribution to the relaxation
rate from fluctuations at q1, and fluctuations at wave vectors
close to q1 are suppressed according to δq2. As a consequence,
the contribution of one-magnon processes to the relaxation rate

reads [49]

1

T
1−mag

1

∝ T 7 (24)

for kbT � �1. In special situations it may be possible to have
higher powers of δq in Eq. (23), and therefore even larger
suppressions of 1/T1.

In Sec. V, we show a worked example of a nuclear
environment in which the low-energy, one-magnon excitations
are filtered out by the form factor, but the Goldstone mode
fluctuations are not. The environment we consider is relevant,
for example, to P NMR in BaCdVO(PO4)2, and experiments
of this type have already been performed in the magnetically
ordered, low-field regime [60]. We expect that this situation
is relatively common, especially when the symmetry of the
nuclear environment is high.

V. WORKED EXAMPLE: 31P NMR IN BaCd VO(PO4)2

In Sec. III of this article, we developed a theory of NMR
1/T1 relaxation rates in a quantum spin-nematic, showing how
quadrupolar fluctuations lead to characteristic structure in 1/T1

at the onset of spin-nematic order (cf. Fig. 1). In Sec. IV, we
addressed the role of completing dipolar fluctuations, and we
argued that, for an appropriate choice of nucleus and field
orientation, these would largely decouple from 1/T1. In this
section, we develop a worked example of NMR in a material
that is a candidate for spin-nematic order, and we use this
to demonstrate how the orientation of a magnetic field can
be used to suppress the contribution of dipolar fluctuations
to 1/T1. This analysis closely follows in spirit Ref. [17,49],
which contain a detailed discussion of the role of form factors
in measurements of 1/T1.

The material we consider is the quasi-two-dimensional
Mott insulator BaCdVO(PO4)2. BaCdVO(PO4)2 [41,45] is
one example of a broader family of magnetic insulators in
which spin-1/2 V 4+ ions form square-lattice planes. This
family of materials, which includes the vanadylphosphates
Pb2VO(PO4)2 [39,42,45,61] and SrZnVO(PO4) [42,45], and
the closely related oxometalates Li2VOSiO4 and Li2VOGeO4

[62–68], have been widely modeled in terms of a spin-1/2
J1 − J2 Heisenberg model [see Eq. (1)], in which first- and
second-neighbor interactions on a square lattice compete (see,
e.g., [45]). For ferromagnetic first-neighbor interaction J1,
the model is known to support bond-centered quantum spin-
nematic order, with the two-sublattice antiferroquadrupolar
structure shown in Fig. 3 [9]. The tendency toward spin-
nematic order is particularly strong in an applied magnetic
field, approaching saturation [9,10,23].

Published parameters [45] place BaCdVO(PO4)2 in a
highly frustrated region of the J1 − J2 phase diagram, where
spin-nematic order competes with one-magnon instabilities
at q = (π,0) and q = (0,π ) (see Refs. [9,10,12–14,16,23]).
This implies that, close to saturation, there will be a gapped
spin-wave excitation at this wave vector, as shown in Fig. 5,
in addition to excitations of any spin-nematic order. Both will
contribute to NMR 1/T1.

In what follows, we explore what can be learned about
spin-nematic order, of the type proposed for BaCdVO(PO4)2,
from NMR experiments carried out on a nucleus at the

184419-6



THEORY OF NMR 1/T1 RELAXATION IN A QUANTUM . . . PHYSICAL REVIEW B 93, 184419 (2016)

FIG. 7. Local environment of a nuclear site (orange sphere) in
a square-lattice, spin-1/2 frustrated ferromagnet. For example, this
could be a P nuclear spin in BaCdVO(PO4)2. 1/T1 relaxation occurs
due to coupling between the nuclear moment and a square plaquette
of neighboring electronic spins (associated with green spheres). (a)
Transverse excitations of the partially polarized moment at (π,0)
(shown by black arrows) are gapped in the spin-nematic state but can
still give a large contribution to the relaxation rate. By applying
the polarizing and NMR fields in the c direction, this unwanted
contribution can be suppressed. (b) Two-sublattice, bond-centered
AFQ order exists in the plane perpendicular to the magnetic field.
This can be parametrized in terms of a set of directors (red), and
the blue surface shows the probability distribution for the spin
moment associated with the bond. Fluctuations of the quadrupole
order parameter result in small spin-dipole fluctuations, and this can
contribute to the 1/T1 relaxation rate.

center of a square-lattice plaquette, as shown in Fig. 7. To
a good approximation, this is the environment of P atoms
in BaCdVO(PO4)2 [41,45], and we note that 31P NMR
has already been carried out on BaCdVO(PO4)2 at low
magnetic field [60]. As discussed in Sec. I, spin-nematic
order in BaCdVO(PO4)2 cannot lead to splitting of NMR
lines, of the type used to diagnose collinear antiferromagnetic
order in Li2VOSiO4 [63,64]. Nonetheless, fluctuations of the
spin-nematic order parameter will contribute to the 1/T1

measured at the P nuclear site. And we will argue that, for
a suitable choice of field orientation, the contribution to 1/T1

from dipolar spin fluctuations at this nuclear site is greatly
suppressed, revealing the telltale fluctuations of spin-nematic
order.

We start by assuming that the P nuclear spin interacts via a
transferred hyperfine interaction with the electronic spins on
the four neighboring magnetic atoms (see Fig. 7), in keeping
with earlier analysis of 29Si NMR in Li2VOSiO4 [63,64]. The
internal magnetic field at the P nuclear site is given by

hint(t) =
∑

i

Ai .mi(t), (25)

where Ai is the nuclear-electron coupling tensor and mi(t) is
the magnetic moment associated with the ith magnetic ion of
the square plaquette. The form factor for 1/T1 relaxation is
given by [49]

Fαβ(q,hext) = ∑
γ,δ

[
R

xγ

hext
Rxδ

hext
+ R

yγ

hext
R

yδ

hext

]
Aγα

q Aδβ
−q, (26)

where Rhext is a rotation matrix relating the direction of the
external magnetic field to the crystallographic coordinate axes,
and

Aαβ
q =

∑
i

eiq.riAαβ

i . (27)

The symmetry environment of a square plaquette is D4h

(see Fig. 7), and it follows that the nuclear electron coupling
tensor is given by

Aq = 4

⎛
⎜⎝

Aaacacb −Aabsasb 0

−Aabsasb Aaacacb 0

0 0 Acccacb

⎞
⎟⎠, (28)

where

ca = cos
qa

2
, cb = cos

qb

2
,

sa = sin
qa

2
, sb = sin

qb

2
. (29)

For a field applied parallel to the c axis, the relevant form
factor is

Fcc(q,hc) = 16
(
Acc)2

cos2 qa

2
cos2 qb

2
. (30)

Close to the wave vector q = (π,0), this can be approximated
by

Fcc((π + δqa,δqb),hc) ≈ 4(Acc)2δq2
a . (31)

This form factor is zero at q = (π,0), and therefore fluctuations
at this wave vector do not contribute to the 1/T1 relaxation
rate. Fluctuations close to (π,0) do contribute to the NMR
relaxation, but with a suppression factor of δq2

a . An equivalent
analysis applies in the vicinity of q = (0,π ).

Form-factor suppression of the one-magnon excitations is
only useful if the form factor remains finite at the wave vector
associated with the fluctuations of spin-nematic order. Here
we show that this is indeed the case.

The AFQ order parameter lives on the bonds of the square
lattice (see Figs. 3 and 7), and therefore spin fluctuations
associated with rotations of the order parameter are also
bond-centered. The internal magnetic field at the nuclear site
can be expressed as

hint(t) =
∑
〈ij〉

Bij · mij (t), (32)

where mij (t) is a bond-centered magnetic moment and Bij

is the nuclear-bond coupling tensor. Bij can be related to Ai

according to Bij = (Ai + Aj )/2. As a consequence, one finds

Bq = 4

⎛
⎜⎝
Aaacacb 0 0

0 Aaacacb 0

0 0 Acccacb

⎞
⎟⎠. (33)

For a field applied in the c direction, the spin-nematic
directors lie in the ab plane and spin fluctuations are parallel
to the c direction and at q ≈ 0. The relevant form factor is
therefore

Fcc((0,0),hc) = 16(Acc)2. (34)

This is finite, and therefore there is no form-factor suppression
of the Goldstone mode contribution to 1/T1.

It follows that 31P NMR in BaCdVO(PO4)2 is sensitive
to spin-nematic order. Following the analysis in Sec. III, the
relevant contribution to 1/T1 should be particularly marked
near the transition from the polarized paramagnet into the
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spin-nematic state, where it leads to a sharp cusp, and the
steplike jump in 1/T1, as illustrated in Fig. 1.

This analysis demonstrates that it is possible to use the
orientation of a magnetic field to select between quadrupolar
and dipolar fluctuations in measurements of 1/T1. And, while
we have considered the concrete example of 31P NMR in
BaCdVO(PO4)2, the underlying principle of using a form
factor to select between different fluctuations is much more
general. Exactly how this filtering effect works depends on the
nuclear site chosen. A good rule of thumb is that the higher the
symmetry of the nuclear environment, the more likely it will
be that a field direction can be found for which fluctuations of
spin-nematic order come to the fore.

VI. 1/T1 RELAXATION AT LOW TEMPERATURE

For completeness, we have also calculated the spin-lattice
relaxation rate at low temperatures (see Appendix B). We
consider the case T � �1, where the contribution from
one-magnon excitations is exponentially suppressed, and,
therefore, only the Goldstone mode fluctuations contribute
significantly to 1/T1.

The low-temperature relaxation rate in the spin-nematic is
controlled by the long-wavelength excitations of the quadrupo-
lar order parameter. These can be described by a sigma model,
as detailed in Refs. [15–17]. We restrict our focus to the
Goldstone mode excitation characteristic of the AFQ state.

Spin-dipole fluctuations are associated with time deriva-
tives of the field, and, in three dimensions and for T � TQ,
this leads to (see Appendix B)

1

T AFQ
1

≈ F
9ĨhT�V 3

cell

256π5

(
meff

s

)2
γ 2

N

(kBT )7

χ
Q,z
h v9

, (35)

where ĨhT ≈ 146.5, (meff
s )2 = √

3(gμB)2|〈Q⊥〉|/2, χQ,z
h is the

susceptibility associated with the Goldstone mode, and v is its
velocity [69].

We note that relaxation due to excitation of acoustic
phonons also has a 1/T1 ∝ T 7 behavior [70], but it could in
principle be distinguished through its (lack of) magnetic-field
dependence. In practice, observation of this type of power-law
behavior is likely to be very challenging, because of the slow
relaxation.

VII. DISCUSSION AND CONCLUSION

In this article, we have studied the behavior of the 1/T1

relaxation rate in a quantum spin-nematic state close to
saturation. We have concentrated on extracting the universal
features, and the main result is shown in Fig. 1. We find that the
most distinctive feature occurs at the thermal phase transition
between the spin-nematic state and the partially polarized
paramagnet, where 1/T1 shows a steplike feature and a sharp
cusp, but no critical divergence.

The underlying physical mechanism for relaxation is a
small spin-dipole fluctuation driven by the dynamics of the
antiferroquadrupolar (AFQ) order parameter. This creates a
fluctuating internal magnetic field at the nuclear site, which
couples to the nuclear spin lattice. Since the spin-dipole
fluctuations are suppressed on approaching the AFQ ordering

vector, they do not experience critical slowing down, and
therefore there is no divergence in 1/T1 at the critical point.

There are two obvious questions that arise:
(i) How feasible is it to measure a 1/T1 relaxation rate with

the form shown in Fig. 1?
(ii) If measurement proves possible, how characteristic are

these features of the spin-nematic state?
To answer the first question, we have studied the 1/T1 re-

laxation rate arising from transverse excitations of the partially
polarized moment. In spin-1/2 frustrated ferromagnets close to
saturation, these one-magnon excitations often have a gap that
is small compared to the ordering temperature, �1 � TQ. As a
result, there is a contribution to the relaxation rate that goes as
1/T1 ∝ T 5. From our approach, it is not possible to determine
in a quantitative way how this compares to the contribution
to 1/T1 from fluctuations of the AFQ Goldstone mode, since
there are a number of phenomenological parameters. However,
knowing the power law that governs this type of relaxation
should make it possible to fit the one-magnon contribution
and subtract it from the experimental data. Furthermore, we
show that by careful choice of nuclear site and magnetic-field
direction, it is possible to suppress the one-magnon contribu-
tion by using the form factor as a filter. As a consequence, the
one-magnon relaxation rate goes as 1/T1 ∝ T 7, and in special
circumstances it may be possible to suppress it even further.

To address the second question, we suggest that measure-
ment of the steplike feature in the 1/T1 relaxation rate shown
in Fig. 1 would be strongly suggestive of spin-nematic order,
especially when taken in conjunction with other information,
and we set out the reasons for this below. However, unlike
inelastic neutron scattering, where it is in principle possible to
measure the Goldstone mode associated with AFQ order [16],
1/T1 does not provide direct evidence for the spin-nematic
state.

First, one may imagine that a similar steplike feature could
appear in a magnetically ordered system with an anisotropy
driven gap. However, the absence of a critical divergence at
any temperature is a clear indication that there is no magnetic
long-range order. This could also be confirmed by the absence
of splitting of spectral lines in static NMR measurements.

Second, one could imagine a similar steplike feature
appearing in the saturated paramagnet, where it would be
associated with the gap to one-magnon excitations. One way
to definitively rule out this possibility would be to study the
evolution of this steplike feature with magnetic field. For
a saturated paramagnet, the size of the gap increases with
increasing magnetic field, and therefore the steplike feature
would move to higher temperature. For the spin-nematic state,
the critical temperature is expected to be either constant
or decreasing with increasing magnetic field (see Fig. 4),
and therefore the steplike feature would move to lower
temperature.

After ruling out these two possibilities, one can conclude
that there is a nontrivial state without spin-dipole order. In the
absence of other information, options include a valence-bond
solid state, with a 1/T1 step at the temperature at which
singlet to triplet excitations become energetically possible,
or a gapped spin liquid, with the 1/T1 step at a temperature
comparable to the gap. However, it will be possible in general
to rule out these possibilities from other considerations. For
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example, if there is good evidence that the first-neighbor
coupling, J1, is ferromagnetic, this would be incompatible
with a valence-bond solid state.

In conclusion, NMR 1/T1 measurements resembling Fig. 1,
combined with other considerations, would provide strong
evidence for the existence of a spin-nematic state. We end
with the hope that this analysis can help to motivate further
experiments on the many candidate materials for spin-nematic
order, and that this ghostly transition will, in time, be revealed
by its spectral features.
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APPENDIX A: THEORY OF NMR RELAXATION RATES
IN A CONVENTIONAL CANTED ANTIFERROMAGNET

For comparative purposes, we develop a critical theory of
the relaxation rate in a conventional canted antiferromagnet
(AFM), where 1/T1 is known to diverge for T → TN [50–53].
Spin excitations in the AFM can be described phenomenologi-
cally using time-dependent Ginzburg-Landau theory [55–59],
written in terms of the order parameter ms(r), and its associated
canting field lz(r),

HAFM ≈
∫

d3r

[
αt̃

2
ms

2 + K

2
(∇ms)2 + u

4
ms

4 + 1

2χ⊥
(lz)2

]
,

(A1)

where a term hlz is ignored as irrelevant. Here t̃ = (T −
TN)/TN, K is a generalized elastic constant, χ⊥ is the trans-
verse susceptibility, α > 0 and u > 0 are positive constants,
and magnetic field is applied parallel to the z axis. Length
scales are measured in units of the lattice spacing and energy
scales in units of kBTQ. Expanding

ms(r) = η(r)n̂(r) = [〈η〉 + δη(r)]n̂(r),

where n̂(r) is a 2D unit vector, results in

HAFM

≈
∫

d3r

[
αt̃

2
η2+ K

2
(∇η)2 + u

4
η4 + ρs(η)

2
(∇n̂)2 + (lz)2

2χ⊥

]
,

(A2)

where the spin stiffness is defined by ρs(η) = Kη2. The
Ginzburg-Landau theory predicts a diverging correlation
length ξ ∝ t̃−ν approaching the critical point, with mean-field
exponent ν = 1/2.

The critical divergence of ξ is accompanied by a critical
slowing down in fluctuations of AFM order. This can be
described by adding dynamics to the static Ginzburg-Landau
model, to capture the way in which the slow, long-wavelength
fluctuations of AFM order are damped by interaction with

short-wavelength fluctuations. Following Refs. [55–59], we
write

∂t δη(r,t) = −	K(ξ−2 − ∇2)δη(r,t) + ζ (r,t), (A3)

where time is measured in units of �/kBTQ, 	−1 sets the rate
of damping, u → 0, and ζ (r,t) is a (white) noise term with
correlation function

〈ζ (r,t)ζ (r′,t ′)〉 = 2kBT 	δ(r − r′)δ(t − t ′). (A4)

It follows that the correlation time is given by τη(q) ≈ 	−1χq,
with χq = K−1(ξ−2 + q2)−1. Approaching TQ, τη(0) diverges
as τη(0) ∝ ξz with dynamical exponent z = 2.

In the case of the antiferromagnet, fluctuations of the field η

are directly related to fluctuations of the spin-dipole moments,
since, for moments canted in the x − z plane, Sx(r,t) ∝
±η(r,t). Therefore, the dynamic susceptibility associated with
η controls the critical behavior of the 1/T1 relaxation rate. The
fluctuation-dissipation theorem allows the imaginary part of
the dynamic susceptibility to be calculated from Eqs. (A3)
and (A4) as

kBT

�ω
Im

{
χzz

η (q,ω)
} ≈ (glμB)2 kBT

(kBTQ)2

	

	2χ−2
q + ω2

, (A5)

where gl is the Landé g-factor.
Thus the dynamic susceptibility diverges approaching the

critical point for both q → 0 and ω → 0.
The mean-field behavior of the 1/T1 relaxation rate can be

calculated from Eqs. (2) and (A5) as

1

T AFM
1

≈ (glμB)2

4π2
γ 2

NF
kBT

(kBTQ)2

1

	K2
f (�ξ )ξ, (A6)

where a constant form factor,Fαβ (q,hext) → F , is assumed, �
is a momentum cutoff, and f (x) = [arctan x − x/(1 + x2)]/2,
where f (∞) = π/4. Approaching the critical point, Eq. (A6)
predicts 1/T1 ∝ ξ ∝ t̃−ν , i.e., the NMR 1/T1 relaxation rate
diverges with mean-field exponent ν = 1/2. More generally,
this can be written as [52]

1

T1
∝ ξz+2−d ∝ t̃ (d−2−z)ν, (A7)

where the exponents z and ν take on values appropriate
for an O(2) phase transition. However, experiment confirms
that mean-field theory is qualitatively correct in predicting a
divergence in 1/T1 [51–53].

APPENDIX B: NMR 1/T1 AT LOW TEMPERATURE
IN THE SPIN-NEMATIC STATE

Low-temperature measurement of the NMR 1/T1 relax-
ation rate could also be used to identify the spin-nematic
state. Here we show that at low temperature the relaxation
rate follows a 1/T1 ∝ T 7 power-law behavior.

In a conventional collinear antiferromagnet at low temper-
ature [49],

1

T1
≈ F

�V 2
cellm

2
sγ

2
N�3

8π3v̄6
s χ

2
⊥

�

(
kBT

�

)
, (B1)

where a constant form factor F is assumed, ms is the ordered
moment, Vcell is the volume of a unit cell, � is an energy gap,
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FIG. 8. Diagrams used to calculate the low-temperature, dynamic
spin susceptibility in the spin-nematic state. Slashes denote differen-
tiation of the φ field with respect to time. It follows that 1/T1 ∝ T 7.

v̄s is the geometric mean of the spin wave velocities, χ⊥ is the
perpendicular susceptibility, and

�(x) = x2Li1(e−1/x) + x3Li2(e−1/x), (B2)

with Lim(z) = ∑∞
l=0 zl/ lm the mth polylogarithm of z. For

temperatures T � �,

1

T1
≈ F

�V 2
cell

48π
m2

sγ
2
N

(kBT )3

χ2
⊥v̄6

s

, (B3)

while for temperatures T � �,

1

T1
≈ F

�V 2
cell

8π3
m2

sγ
2
N

(kBT )2�

χ2
⊥v̄6

s

e
− �

kBT . (B4)

For a discussion of cases in which the form factor is not
constant, see Ref. [49].

In a two-sublattice AFQ state in a large applied magnetic
field, 1/T1 can be calculated by an analogous method.
The excitations of the quadrupolar order parameter can be
described by a nonlinear sigma model field theory [15–17],
and this can be linearized to give the effective action,

S2SL[φ,h]

≈ 1

2Vcell

∫ β

0
dτ

∫
d3r

×
{

χ
Q,z
h (∂τφ)2 +

∑
μ

ρ
Q,z
h (∂μφ)2 + χ

Q,z
h �2

exφ
2

}
, (B5)

where ρ
Q,z
h is the order-parameter stiffness, χ

Q,z
h is the

susceptibility, and �ex is a very small energy gap due to

anisotropy. This action describes an almost gapless mode
with dispersion of the form ωk = √

�2
ex + v2k2, where v =√

ρ
Q,z
h /χ

Q,z
h .

The action can be used to calculate the dynamic spin
susceptibility, and 1/T1 follows from Eq. (2) in the main
text. The lowest-order contribution to the relaxation rate is
the “three-magnon” term, which involves averages over six
φ fields with two time derivatives. Evaluating the diagrams
shown in Fig. 8 gives

1

T1
≈ F

9�V 3
cell

32

(
meff

s

)2
γ 2

N

I (T )

χ
Q,z
h

, (B6)

where (meff
s )2 = √

3(gμB)2|〈Q⊥〉|/2, a constant form factor F
has been assumed, and

I (T ) = �7
ex

8π5v9

(
kBT

�ex

)7 ∫ ∞

�ex
kBT

dx1dx2

√
x2
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×
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2 −

(
�ex
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)2
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)2

× (
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1 + x1x2 + x2
2

) ex1+x2
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(B7)

At temperatures T � �ex, this can be approximated by

1

T1
≈ F

27
√

3ĨlT�V 3
cell

128π5

(
meff

s

)2
γ 2

N

�4
ex(kBT )3

χ
Q,z
h v9

e
− 2�ex

kBT , (B8)

where

ĨlT =
∫ ∞

0
dy1dy2

√
y1y2e

−(y1+y2) ≈ 0.79. (B9)

For temperatures T � �ex,

1

T1
≈ F

9ĨhT�V 3
cell

256π5

(
meff

s

)2
γ 2

N

(kBT )7

χ
Q,z
h v9

, (B10)

where

ĨhT =
∫ ∞

0
dx1dx2x1x2(x1 + x2)

(
x2

1 + x1x2 + x2
2

)

× ex1+x2

(ex1 − 1)(ex2 − 1)(ex1+x2 − 1)
≈ 146.5. (B11)
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