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Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy
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We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy
in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in
momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads
to a magnetic-field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin
anisotropy. The bubble crystal exhibits a quasicontinuous (devil’s staircase) temperature-dependent ordering
wave vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.
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I. INTRODUCTION

Helical spin states were originally observed in rare-earth
and other itinerant magnets [1–3], whose localized magnetic
moments interact via the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction, −J 2 ∑

q χ0
q Sq · S−q [4–6]. Because this

interaction is mediated by conduction electrons coupled to
the local moments by an exchange J , it selects ordering
wave vectors, Q, which maximize the electronic magnetic
susceptibility χ0

q . However, as recently recognized [7–13],
single-Q helical orderings can become unstable towards
multiple-Q modulated structures whenever χ0(q) has global
maxima at different symmetry-related wave vectors Qν . This
instability has its roots in the relatively large strength of four-
and higher-spin interactions, which arise from tracing out
conduction electrons beyond the RKKY level [12,13].

From a real-space viewpoint, low-symmetry wave vectors
of helical orderings arise from competition between exchange
interactions. This competition does not require long-range
(power-law decay) interactions, like the RKKY coupling
of intermetallic systems. Mott insulators can also exhibit
competing (short-range) exchange interactions that favor
helical ordering [14–16]. However, unlike the case of itinerant
magnets, four- and higher-spin interactions are usually weak in
these systems. It is then natural to look for alternative ways of
stabilizing multiple-Q structures in high-symmetry frustrated
Mott insulators, whose exchange interaction in momentum
space, J (q), has multiple global minima.

The triangular lattice (TL) provides a simple realization of
a high-symmetry system with six equivalent orientations for
the helix. This symmetry allows for an anharmonic interaction
between triple-Q modulations and the uniform magnetization
induced by an external field because Q1 + Q2 + Q3 = 0 [17].
Indeed, Monte Carlo (MC) simulations of a frustrated J1-J3

classical Heisenberg model on a TL revealed a skyrmion
crystal at finite temperature and magnetic field values [18].
The origin of this phase is quite different from the skyrmion
crystals (SC’s) that emerge in chiral magnets out of the com-
petition between Dzyaloshinskii-Moriya and ferromagnetic
exchange interactions [19–21]. Moreover, because the chiral
and U (1) symmetries are spontaneously broken in nonchiral
magnets, their metastable single skyrmions have different
properties [22,23].

Single-Q orderings are favored by the exchange interactions
at T = 0 because multi-Q orderings are accompanied by
higher harmonics required to preserve the spin normalization
S2

i = 1. Quantum or thermal fluctuations make the longitudinal
spin stiffness finite and can heavily suppress it near quantum
critical points or thermodynamic phase transitions. Indeed,
triple-Q magnetic orderings, such as vortex and SC’s, have
been reported for both regimes [18,24–26]. Fluctuations
then play an important role in the subtle competition be-
tween single-Q and different multi-Q orderings. Easy-axis
anisotropy is also expected to favor multi-Q orderings, as
recently shown by means of purely classical T = 0 variational
calculations [22]. In this paper we use unbiased MC simula-
tions of the J1-J2 and J1-J3 triangular Heisenberg models with
easy-axis anisotropy to demonstrate that thermal fluctuations
modify substantially the T = 0 phase diagram.

By combining MC simulations with variational T = 0
calculations, we clarify the range of stability of the skyrmion
crystal found in Ref. [18]. In the absence of an easy-axis
anisotropy, the sixfold spatial anisotropy plays a crucial role
in the stabilization of the skyrmion crystal [Fig. 1(a)]. Indeed,
the skyrmion crystal phase disappears for a small Q and
it only reappears for moderate easy-axis anisotropy. The
field-induced skyrmion crystal evolves into a bubble crystal
(BC) [see Fig. 1(b)] for larger spatial and spin anisotropies.
This triple-Q collinear state exhibits a devil’s staircase–like
temperature-dependent ordering wave vector, characteristic of
the competition between frustrated exchange and easy-axis
anisotropy.

The rest of the paper is organized as follows. After
introducing a frustrated Heisenberg model on a TL in Sec. II,
we show in Sec. III that in the absence of spin anisotropy this
model exhibits a skyrmion crystal phase only above a critical
value of Q. In Sec. IV we demonstrate that a single-ion easy-
axis anisotropy naturally leads to multi-Q magnetic orderings
irrespective of the magnitude of the ordering vector. Section V
includes a T = 0 variational analysis and finite-T MC simu-
lations for relatively small wave vectors Q. These results are
combined to produce different phase diagrams as a function
of temperature, magnetic field, and single-ion anisotropy. In
particular, we show that the easy-axis anisotropy gives rise to
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FIG. 1. Schematic views of (a) a noncoplanar skyrmion texture
and (b) a collinear bubble. Triangular crystals of these structures are
induced by magnetic field and easy-axis anisotropy in high-symmetry
frustrated magnets.

multiple-Q states, such as skyrmion and bubble crystal phases.
In Sec. VI we provide a similar analysis for large Q values. A
summary of the results is presented in Sec. VII.

II. MODEL

We consider a frustrated Heisenberg model on a TL:

H =
∑
〈i,j〉

Jij Si · Sj − H
∑

i

Sz
i − A

∑
i

(
Sz

i

)2
. (1)

The classical moments, Si , have a fixed magnitude S2
i =

1. The first term is the isotropic exchange interaction, in-
cluding nearest-, second-nearest-, and third-nearest-neighbor
couplings, J1, J2, and J3, respectively. The ferromagnetic
interaction, J1 = −1, will be our unit of energy and the lattice
constant, a, will be adopted as the unit of length. Frustration
arises from the antiferromagnetic nature of the further neighbor
interactions J2 > 0 and J3 > 0. The second and third terms
represent the Zeeman coupling to an external magnetic field
and the easy-axis (A > 0) spin anisotropy, respectively. H is
invariant under the space group of the TL and under the U (1)
group of global spin rotations along the field axis.

Below the saturation field, Hsat, the ground
state of H(A = 0) is the conical spiral: Si =
( sin θ cos(Q · ri), sin θ sin(Q · ri), cos θ ) with
Q = |Q| = (2/

√
3) cos−1 [(1 + J1/J2)/2] for the J1-J2

model (J3 = 0) and Q = 2 cos−1 [(1 + √
1 − 2J1/J3)/4] for

the J1-J3 model (J2 = 0). In each case there are six possible
ordering wave vectors, ±Qν (ν = 1,2,3), because of the C6

symmetry of the TL. These vectors are parallel to the nearest
(next-nearest) neighbor bond directions for the J1-J3 (J1-J2)
model. The canting angle θ is given by cos θ = H/Hsat with
Hsat = J (Q) − J (0), and J (q) = ∑

δ Jδe
iq·δ (δ is the relative

vector between neighboring sites). From this relationship,
we obtain that Hsat ∝ Q4 for Q � 1, i.e., near the Lifshitz
transition to the commensurate Q = 0 ferromagnetic state.

III. ISOTROPIC SPIN INTERACTIONS

We start by considering isotropic spin interactions (A = 0)
in order to isolate the effect of the sixfold lattice anisotropy.
This anisotropy appears upon expanding J (q) up to sixth order
in qx and qy . For the J1-J3 model we have

J (q) = − 6(J1 + J3) + 3

2
(J1 + 4J3)q2 − 3

32
(J1 + 16J3)q4

+ 1

384
(J1 + 64J3)q6 + 1

3840
(J1 + 64J3)q6 cos 6φ,

(2)

where q = (q cos φ,q sin φ).

The thermodynamic phase diagram of the J1-J2 and the
J1-J3 is obtained from unbiased MC simulations based on
the Metropolis algorithm and the over-relaxation method.
The lattices used for these simulations have N = L2 spins
and periodic boundary conditions. The target temperature is
reached by simulated annealing over 105–106 MC sweeps
(MCS), and 105–107 MCS measurements are performed
after equilibration. Statistical errors are estimated by taking
averages over 3–16 independent runs.

According to our MC simulation of H on L = 75, 98, 100,
and 120 lattices, the conical spiral is the only ordered phase
for small enough Q. For the J1-J3 model, the skyrmion crystal
phase only appears above Qc = 1.980(4), which corresponds
to J c

2 /|J1| = 1.4027(138). For the J1-J3 model, we obtain
Qc = 1.648(2), which corresponds to J c

3 /|J1| = 1.0256(53).
These results indicate that the locking potential, which grows
as Q6 and forces three helices to propagate along the principal
axes of the TL, has to reach a critical value to stabilize the
skyrmion crystal phase in isotropic magnets. As we will see
in the next sections, this condition is no longer required in the
presence of a moderate easy-axis anisotropy.

IV. MULTI-Q INSTABILITY INDUCED BY
A SINGLE-ION ANISOTROPY

The purpose of this section is to demonstrate that a finite
easy-axis anisotropy is enough to stabilize multi-Q orderings.
To this end we will perform a stability analysis of the single-Q
conical spiral phase based on the following deformation [27]:

Sx
j =

√
sin2θ̃ − �2

2 cos (Q1 · rj ) + �2 cos (Q2 · rj ),

S
y

j =
√

sin2θ̃ − �2
2 sin (Q1 · rj ) − �2 sin (Q2 · rj ), (3)

Sz
j =

√
cos2θ̃ − 2�2

√
sin2θ̃ − �2

2 cos Q3 · rj ,

where the amplitude of the Q2 component, �2, is a variational
parameter and cos θ̃ is determined below [see Eq. (8)].

We will demonstrate that the energy of the variational state
given in Eq. (3) is a decreasing function of �2 for �2 � 1. This
means that the single-Q1 conical state (�2 = 0) is unstable
towards the development of a second Q2 component, as long
as the magnetic field, H , and the easy-axis anisotropy, A, are
nonzero. We will then expand the total energy per site, E(�2),
to fourth order in �2. In general, the total energy per site of an
arbitrary state is given by

E = 〈H〉 = 1

N

∑
q

J (q)|〈Sq〉|2 − H 〈Sz
0〉√

N
− A

N

∑
j

〈(
Sz

j

)2〉
,

(4)

with
Sq = 1√

N

∑
j

Sj e
iq·rj . (5)

For the state under consideration, we have

Sz
j = cos θ̃

[
1−x cos Q3 · rj−x2

2
cos2Q3 · rj

−x3

2
cos3Q3 · rj−5x4

8
cos4Q3 · rj + O

(
�5

2

)]
,

(6)
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with

x = �2

cos2θ̃

√
sin2θ̃ − �2

2. (7)

We will choose θ̃ , such that

cos θ =cos θ̃
[
1 − �2

2

(
sin2θ̃ − �2

2

)/
(4 cos4θ̃ )

]
. (8)

For this choice of θ̃ we have∣∣〈Sz
0

〉∣∣
√

N
= cos θ − 15

64
cos θ̃x4 + O

(
�5

2

)
,

∣∣〈Sz
Q3

〉∣∣2

N
= cos2θ̃

[
x2

2
+ 3x4

8

]
+ O

(
�6

2

)
,

∣∣〈Sz
2Q3

〉∣∣2

N
= cos2θ̃

x4

32
+ O

(
�6

2

)
,

∑
ν=1,2;μ=x,y

∣∣〈Sμ

Qν

〉∣∣2

N
= sin2θ̃ . (9)

By adding the different contributions to Eq. (4), we obtain

E(�2) − E(�2 = 0) =
[
J (2Q3) − J (0)

32
+ 9A

8

]
x4 cos2θ̃

− Ax2

2
cos2θ̃ + O

(
�5

2

)
, (10)

where we have used that H = 2 cos θ̃ [J (0) − J (Qν)] to zeroth
order in �2. It is clear from this expression that the energy is a
decreasing function of �2 for small enough �2. In particular,
if we assume that A � J (2Q3) − J (0), we can minimize (10)
as a function of x to obtain

x2 = 8A

J (2Q3) − J (0)
, (11)

implying that

�2 � cos2 θ
√

8A

sin θ
√

J (2Q3) − J (0)
. (12)

Thus, we find that the single-Q conical state is unstable
toward the multi-Q deformation. A key observation is that the
modulation of the z spin component, required to preserve the
constraint S2

i = 1, has a very small exchange energy cost in a
C6 invariant system: to linear order in �2, the z component is
modulated by the third wave vector Q3, which still minimizes
J (q). This is so because the C6 symmetry of the TL guarantees
that Q1 + Q2 + Q3 = 0. Therefore, the exchange energy cost
of the higher harmonics produced by the normalization
condition is proportional to �4

2[J (2Q3) − J (0)], while the
anisotropy energy gain produced by the same modulation
is proportional to −A�2

2, as shown in Eq. (10). In the
end, this leads to �2 ∝ √

A/[J (2Q3) − J (0)] for �2 � 1 or
A � |J (2Qν)|, as obtained in Eq. (12). Finally, it is interesting
to note that a double-Q conical state, like the one described
by Eq. (3), has been obtained below the saturation field of a
spatially anisotropic TL model [28].

V. SMALL Q

In Sec. III we showed that a critical Q value is required
to stabilize a skyrmion crystal for isotropic spin interactions.
In Sec. IV, we demonstrated that a single-Q conical spiral

phase is unstable towards multi-Q orderings in the presence of
finite easy-axis anisotropy. It is then natural to ask what is the
thermodynamic phase diagram for small Q values (Q < Qc)
as a function of magnetic field and easy-axis anisotropy A.
This is the main purpose of this section. We start with a simple
T = 0 variational analysis, which is complemented by finite-T
MC simulations.

A. Variational analysis

Here we present a simple T = 0 variational analysis of the
J1-J3 model based on the following variational states:

(1) Skyrmion crystal phase: the spin configuration is given
by S = M/|M|, with

Mx,y

i = Ixy

∑
ν=1−3

sin (Qν · ri + θν) eν,

Mz
i = mz − Iz

∑
ν=1−3

cos (Qν · ri + θν) eν . (13)

The three unit vectors are e1 = x̂, e2 = −x̂/2 + √
3x̂/2, and

e3 = −x̂/2 − √
3x̂/2; Qν = Qeν , and mz is the uniform

spin magnetization. Higher harmonics are generated by the
normalization condition S2

i = 1. Without loss of generality, we
take θν = 0 because H is invariant under global spin rotations
along the magnetic field direction. The variational parameters
of the skyrmion crystal state (13) are mz, Iz, Qv , and Ixy .

(2) Fully polarized state:

Sxy

i = 0, Sz
i = 1. (14)

(3) Single- Q conical spiral:

Sxy

i =
√

1 − m2
z [cos (Qν · ri) x̂ + sin (Qν · ri) ŷ],

Sz
i = mz. (15)

(4) Single- Q vertical spiral: the spin configuration is given
by S = M/|M|, with

Mxy

i = Ixy cos (Qν · ri) x̂,

Mz
i = mz + Iz sin (Qν · ri), (16)

where we have assumed that the spins rotate in the x-z
plane. Once again, the orientation of this polarization plane
is arbitrary (provided it is parallel to the z axis) because H is
U (1) invariant under global spin rotations along the z axis.

(5) Multiple- Q conical spiral: this state corresponds to
Eq. (3) and it is given by S = M/|M| with

Mx
i = Ix[cos (Q1 · ri) + cos (Q2 · ri)],

M
y

i = Iy[sin (Q1 · ri) − sin (Q2 · ri)], (17)

Mz
i = mz + Iz cos(Q3 · ri).

As can be inferred from the analysis of Eqs. (3) and (12), this
state has lower energy than that of the single-Q conical state
for finite A and H [22].

Figure 2 shows the H dependence of the energy density
of each variational state for Q = 2π/5 (J3/|J1| = 0.5) and
A = 0.5. The vertical spiral, skyrmion crystal, and fully
polarized states become stable upon increasing H . For strong
enough anisotropy A, the vertical spiral can continuously
reduce the width of the domain wall between spin up and down
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skyrmion crystal
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field-induced ferromagnet
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FIG. 2. H dependence of the energy per site of different varia-
tional states for Q = 2π/5 and A = 0.5. The vertical solid line marks
the phase boundary between the single-Q vertical spiral and skyrmion
crystal phases. The vertical dashed line marks the phase boundary
between the skyrmion crystal and fully polarized state. Here we only
considered the multiple-Q conical spiral with Ix = Iy .

domains through the development of higher harmonics. This
is the reason why the vertical spiral has lower energy than the
conical spiral state. While the multiple-Q conical spiral is not
the global energy minimum for this set of parameters, it always
has lower energy than the single-Q conical spiral. Moreover,
in agreement with the variational analysis of Eq. (3) in Sec. IV,
the multiple-Q conical spiral becomes the ground state for a
small values of A � 1 [22].

B. Monte Carlo simulations

The MC phase diagrams are obtained by computing the
uniform spin susceptibility, specific heat, and the spin and
chiral structure factors,

Sνν
s (q) = 1

N

∑
j,l

〈
Sν

j Sν
l

〉
eiq·(rj −rl ),

Sμμ
χ (q) = 1

N

∑
γ,η

〈
χμ

γ χμ
η

〉
eiq·(rγ −rη), (18)

as a function of H , A, and T . The Greek labels γ and η denote
the sites of the dual (honeycomb) lattice of the TL. The brackets
〈· · · 〉 denote the thermodynamic average. χμ

γ = Sj · Sk × Sl is
the scalar chirality on the μ = u,d (up or down) triangle jkl

with center rγ .
Figure 3(a) shows the A-H phase diagram of the J1-J3

model for L = 100, J3/|J1| = 0.5, and T = 0.18. A conical
spiral phase appears for small A. In agreement with our vari-
ational analysis of Eq. (3) and direct variational calculations
in Fig. 2, this phase becomes unstable at lower temperatures.
The vertical spiral phase is induced at low fields. This phase
is not a pure single-Q ordering because of higher harmonics
induced by A: the optimal vertical spiral is elliptical instead
of circular to have the spins more aligned with the easy axis.
The real-spin configuration and the spin structure factor of
the vertical spiral are shown in Fig. 4. As we will discuss in
Sec. VI, for larger A values this elliptical distortion eventually

FIG. 3. (a) A-H phase diagram obtained from MC simulations
of the J1-J3 model for J3/|J1| = 0.5 at T = 0.18. (b) T -H phase
diagram for A = 0.5. The red triangles are determined from T = 0.0
variational calculations. The inset shows the phase diagram for
A = 0.0. (c) Field dependence of the magnetization at different
temperatures for A = 0.5. The error bars are smaller than the symbol
size.

evolves into a “collinear 1D” phase, which preserves the 1D
modulation of the spiral phase.

The skyrmion crystal phase emerges at intermediate mag-
netic field values and above a rather small critical A value.
This phase narrows down with increasing A because the
easy-axis anisotropy naturally favors the fully polarized state
(Hsat decreases with A). Except for the second-order phase
transition between the conical spiral and the fully polarized
state, the other transitions are of first order, as is clear from the
discontinuities in the magnetization curves, M(H ), shown in
Fig. 3(c). We also note that the magnetization curve has a very
small slope (M ∼ 0.4) inside the skyrmion crystal phase.

Figure 5(a) shows a typical real-space spin configuration
obtained from a snapshot of the MC simulation in the skyrmion
crystal phase. The skyrmion cores (blue regions) form a
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FIG. 4. Snapshots of spin configurations and the corresponding
spin structure factor of the vertical spiral appearing in Fig. 3(b) for
Q = 2π/5 and N = 100 × 100. The data are taken for A = 0.5, H =
0.15, and T = 0.15. In (a), we average over 500 MCS to integrate
out the short-wavelength fluctuations. Panels (b) and (c) show the
square root of the xy and z components of the spin structure factor,
respectively. Here and hereafter, the field-induced q = 0 component
is subtracted for clarity.
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FIG. 5. Snapshot of the real-space (a) spin configuration and (b)
scalar chirality in the skyrmion crystal phase for H = 0.27 and T =
0.15 in Fig. 3(b). The color scale in (a) indicates the z spin component,
parallel to H , while the arrows indicate the in-plane xy components.
The lattice size is L = 100 and the MC results are obtained after
averaging over 500 MCS. Panels (c) and (d) show the xy and z

components of the spin structure factor, respectively.

triangular crystal with lattice parameter 4π/(
√

3Q) ∼ 5.77.
The snapshot of the local scalar chirality, χ

μ

jkl = Sj · Sk × Sl ,
shown in Fig. 5(b), indicates that this phase has a net uniform
scalar chirality, χ̄ = ∑

〈ijk〉 χijk/N , as expected for a SC. This
is confirmed by our finite-size scaling analysis of the chiral
structure factor in the Appendix. The six peaks in both S⊥

s

and Szz
s [see Figs. 5(c) and 5(d)] indicate the formation of a

triangular SC. Note that S⊥
s can only order at T = 0 in 2D [29],

while Szz
s can exhibit sharp Bragg peaks at finite T because the

wave vectors Qν are commensurate with the underlying TL.
The real-space spin configurations of the other two phases,

the single-Q conical and vertical spirals, are shown Figs. 4
and 6, respectively. It is interesting to compare the finite-
temperature MC phase diagram shown in Fig. 3(a) with the
T = 0 variational phase diagram reported in Ref. [22]. As
shown in Fig. 3(a), the single-Q conical state and the single-Q
vertical spiral are the only ordered states at T = 0.18 for small
H and A. As shown in Fig. 7 our Monte Carlo results indicate
that these single-Q states evolve into multiple-Q states upon
lowering the temperature. This behavior is consistent with
the T = 0 variational calculations of Ref. [22]. However, it
is important to emphasize that the phase diagram becomes
qualitatively different in the presence of moderate thermal
fluctuations. Indeed, at low enough temperatures the single-Q1

vertical spiral becomes unstable over a finite field interval
towards a finite spin modulation in the direction perpendicular
to the original spin polarization plane. As shown in Figs. 7(a)–
7(c), this additional spin modulation has equal intensity for
the Q2 and Q3 components. In addition, the single-Q conical
spiral state becomes a multiple-Q conical spiral upon lowering
the temperature, in agreement with the analysis presented in
Sec. IV [see Figs. 7(d)–7(i)].
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FIG. 6. (a) Snapshot of the spin configurations and (b) the
square root of the xy component of the spin structure factor for
the conical spiral phase in Fig. 3(a). The Hamiltonian parameters
are Q = 2π/5, A = 0.02, H = 0.43, T = 0.18 and the lattice size
is N = 75 × 75. The snapshot of the spin configuration in (a) is
obtained after averaging over 2000 MCS in order to integrate out the
short-wavelength fluctuations. The field-induced q = 0 component
of the spin structure factor has been omitted in (b). Note that the
z-spin component remains uniform in the conical spiral state.

The phase diagram of Fig. 3(a) also exhibits a field-induced
transition between the vertical spiral and the skyrmion crystal
phase for larger values of A. This transition can be interpreted
in the following way. When A becomes a significant fraction of
|J1|, the crossover between the spin down and up regions of a
low-energy spin configuration occurs over length scale of order√

J1/A. This length can be made much shorter than 2π/Q in
the long-wavelength limit Q � 1; i.e., we can assume that the
boundary between domains with opposite spin alignment is a
line with positive tension. The energy of a given state can then
be reduced by minimizing the perimeter of the boundary per
unit of area. The effect of H on the vertical spiral is to move the
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FIG. 7. Snapshots of spin configurations and the square root of
the spin structure factor for Q = 2π/5, T = 0.02, and N = 75 × 75
spins. (a)–(c) Multiple-Q vertical spiral obtained for A = 0.03 and
H = 0.19, (d)–(f) multiple-Q conical spiral with equal transverse
amplitudes, Ix = Iy , obtained for A = 0.05 and H = 0.64, and (g)–
(i) multiple-Q conical spiral with different transverse amplitudes,
Ix 
= Iy , obtained for A = 0.02 and H = 0.67.
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up-down boundaries to the right and the down-up boundaries
to the left in order to shrink (expand) the spin down (up) stripes.
This implies that the perimeter per unit of area, Ph/Ah = Q/π ,
does not depend on the value of the uniform magnetization M

along the field direction. In contrast, the perimeter per unit
area of the SC, Ps/As = 31/4Q

√
1 − M/2

√
π , does depend

on M because the skyrmion cores shrink as a function of
H . We then expect a transition from the vertical spiral to the
skyrmion crystal state when Ph/Ah ≈ Ps/As , which leads to a
critical value of Mc � 0.265. Given that the transition between
both phases is of first order, we need to consider the average
between the M values right below and above the transition.
According to the results shown in Fig. 3(c), this average is
0.24, which is in good agreement with our simple estimate.

Finally, it is also interesting to study the evolution of the
finite-T phase diagram towards T = 0 when A is comparable
to |J1|. Figure 3(b) shows the T -H phase diagram for L = 100,
J3/|J1| = 0.5, and A = 0.5. The MC results are comple-
mented with T = 0 variational calculations in Fig. 2, whose
phase boundaries, denoted with red triangles in Fig. 3(c),
deviate slightly from the T → 0 extrapolation of the MC
results. The skyrmion crystal phase extends all the way to
T = 0, in agreement with the variational treatment of Ref. [22].

VI. LARGE Q

In this section we will study the effect of easy-axis spin
anisotropy in the large-Q regime by considering the J1-J3

model with Q = 4π/7 (J3 ∼ 1.62). Figure 8(a) shows the
typical A-H phase diagram at intermediate T values (T =
0.60) obtained from simulations on lattices of N = 98 × 98
spins. Four phases appear in the small-A region: vertical spiral,
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FIG. 8. (a) A-H phase diagram of the J1-J3 model at T = 0.60
and for Q = 4π/7 (J3 ∼ 1.62). (b) T dependence of the ordering
vectors of the collinear 1D and BC phases (A = 2.0). The horizontal
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FIG. 9. (a) Snapshot of spin configuration and (b)–(c) the square
root of the spin structure factor of the multiple-Q conical spiral in
Fig. 8(a). The Hamiltonian parameters are Q = 2π/5, A = 0.2, H =
4.4, T = 0.6 and the system size is N = 75 × 75. The snapshot of the
spin configuration in (a) is obtained after averaging over 500 MCS
to integrate out the short-wavelength fluctuations. The field-induced
q = 0 component of the structure factor has been omitted in (b)
and (c).

SC, multiple-Q conical, and paramagnetic states. The vertical
spiral and the skyrmion crystal phases are similar to the ones
already described for small Q (see Figs. 4 and 5). A typical
spin configuration for the multiple-Q conical state is shown in
Fig. 9.

Remarkably, the large-A region includes two collinear
broken-symmetry states. The low-field phase corresponds to a
spin density wave with a 1D modulation, as is clear from the
real-space spin configuration shown in Fig. 8(c) and from the
longitudinal spin structure factor, Szz

s , shown in the inset of
the same figure. In contrast, the high-field collinear BC phase,
schematically displayed in Fig. 1(b), is modulated along three
principal directions parallel to the vectors Qν [see Fig. 8(d) and
its inset]. Similar BC phases have been previously discussed in
different contexts [30–32]. The local scalar chirality induced
by thermal fluctuations near the phase boundary between the
skyrmion and the bubble crystals decreases gradually and
disappears for increasing A. Consistently with this behavior,
S⊥

s exhibits quasi-long-range ordering in the finite-T skyrmion
crystal phase and only short-range correlations in the bubble
crystal phase.

Another interesting aspect of the collinear phases is the
temperature dependence of their spatial modulation, similar to
the well-known case of the axial next-nearest-neighbor Ising
(ANNNI) model [3,33,34]. We note that in both cases there
is a competition between frustrated exchange couplings and
easy-axis anisotropy. Moreover, the low-field collinear state
of Fig. 8(a) exhibits a spontaneous 1D modulation similar
to the case of the ANNNI model. As expected, the dominant
ordering wave vector of the low-field collinear phase [obtained
from the peak position of Szz

s (q)] exhibits plateaus of different
sizes and a quasicontinuous behavior in between [see bottom
of Fig. 8(b)], which is very similar to the result for the ANNNI
model [34].

The BC phase can be regarded as a multi-Q extension of the
ANNNI physics. The bubble density increases with decreasing
temperature, as shown in Fig. 8(b) for H = 2.0 and 5.2.
Once again, the competition between exchange and anisotropy
induces temperature-driven commensurate-incommensurate
transitions. In all cases, the ordering wave vector evolves
towards the Q value selected by the competing exchange in-
teractions (largest magnetic susceptibility) upon approaching
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FIG. 10. Size dependence of the order parameters for each
phase: (a) z component of the spin structure factor evaluated at
q = Q1,Q2,Q3 and (b) chirality structure factor evaluated at q = 0
[Sχ (q) = Suu

χ (q) + Sdd
χ (q)] for Q = 2π/5, H = 0.25, A = 0.5, and

different temperatures in the skyrmion crystal phase; (c) z component
of the spin structure factor evaluated at q = Q1 for Q = 2π/5,
H = 0.0, A = 0.5 in the vertical spiral state; (d) chirality structure
factor for the upward triangles of the triangular lattice evaluated at
q = 0 for Q = 2π/5, H = 0.4, and A = 0.02 in the conical spiral
state; (e) z component of the spin structure factor with q = Q1 for
Q = 4π/7, H = 0.0, and A = 2.0 in the collinear 1D state; (f) z

component of the spin structure factor evaluated at q = Q1,Q2,Q3

for Q = 4π/7, H = 2.0, and A = 2.0 in the bubble crystal phase; (g)
z component of the spin structure factor evaluated at q = Q1,Q2,Q3

for Q = 4π/7, H = 4.4, and A = 0.2 in the multiple-Q conical state.

the transition to the paramagnetic state [see horizontal line in
Fig. 8(b)]. However, the moments become longitudinally rigid
upon decreasing temperature forcing the dominant ordering
vector to deviate from the optimal Q value at T = Tc.

VII. SUMMARY

In summary, we found that both spatial and easy-axis
spin anisotropies stabilize magnetic-field-induced skyrmion
crystals in frustrated magnets. Strong sixfold spatial anisotropy
induced by a large ordering wave vector is enough to stabilize
a finite-temperature skyrmion crystal in isotropic (Heisenberg)
frustrated TL magnets. However, a small easy-axis anisotropy
is required to render the skyrmion crystal stable in the
long-wavelength limit. The universality of this continuum limit
implies that the same is true for any C6 invariant frustrated
lattice model, such as honeycomb or kagome. Moreover,
our variational argument based on Eq. (3), which holds for
arbitrary Q, is also valid for any C6 invariant lattice. The
skyrmion crystal phase is replaced by a collinear crystal of
magnetic bubbles for strong enough spatial and easy-axis
anisotropies.

Our study underscores the rich multiple-Q spin textures that
emerge from the combination of frustration and anisotropy.
The following three ingredients are enough to obtain field-
induced multiple-Q ordering: (1) C6 symmetry [35], (2) finite
|Q| ordering due to competing interactions, and (3) easy-axis
anisotropy. FexNi1−xBr2 [36], ZnxNi1−xBr2 [16], and an Fe
monolayer on Ir(111) [37,38] are then candidate materials to
exhibit field-induced skyrmion crystal or BC phases.
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APPENDIX: FINITE-SIZE SCALING OF THE SKYRMION
CRYSTAL AND OTHER PHASES

In this appendix we include a finite-size scaling analysis
of each phase of the phase diagram shown in Figs. 3 and 8.
Figures 10(a) and 10(b) include the 1/L dependence of the z

component of the spin structure factor and the uniform scalar
chirality normalized by the system size N in the skyrmion
crystal phase. As expected, the 3-Qν (ν = 1,2,3) components
of Szz

s (q) extrapolate to a finite value in the thermodynamic
limit (L → ∞). The same is true for the uniform scalar spin
chirality. We also show the finite-size scaling analysis for other
phases included in Figs. 10. Panels (c)–(g) include the vertical
spiral in Fig. 3(b), the conical spiral in Fig. 3(a), the collinear
1D phase in Fig. 8(a), the bubble crystal in Fig. 8(a), and
the multiple-Q conical spiral in Fig. 8(a) of the main text,
respectively.
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