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In the developing field of magnonics, it is very important to achieve tailoring of spin wave propagation by
both a proper combination of materials with different magnetic properties and their nanostructuring on the
submicrometric scale. With this in mind, we have exploited deep ultraviolet lithography, in combination with the
tilted shadow deposition technique, to fabricate arrays of closely spaced bilayer nanowires (NWs), with separation
d = 100 nm and periodicity a = 440 nm, having bottom and top layers made of permalloy and iron, respectively.
The NWs have either a “rectangular” cross section (bottom and upper layers of equal width) or an “L-shaped”
cross section (upper layer of half width). The frequency dispersion of collective spin wave excitations in the above
bilayered NW arrays has been measured by the Brillouin light-scattering technique while sweeping the wave
vector perpendicularly to the wire length over three Brillouin zones of the reciprocal space. For the rectangular
NWs, the lowest-frequency fundamental mode, characterized by a quasiuniform profile of the amplitude of the
dynamic magnetization across the NW width, exhibits a sizable and periodic frequency dispersion. A similar
dispersive mode is also present in L-shaped NWs, but the mode amplitude is concentrated in the thin side of
the NWs. The width and the center frequency of the magnonic band associated with the above fundamental
modes have been analyzed, showing that both can be tuned by varying the external applied field. Moreover, for
the L-shaped NWs it is shown that there is also a second dispersive mode, at higher frequency, characterized
by an amplitude concentrated in the thick side of the NW. These experimental results have been quantitatively
reproduced by an original numerical model that includes a two-dimensional Green’s function description of the
dipole field of the dynamic magnetization and interlayer exchange coupling between the layers.
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I. INTRODUCTION

Bicomponent magnonic crystals (BMCs) consisting of
two different periodically arranged magnetic materials have
attracted great interest in recent years because of the possibility
of tuning the spin wave (SW) band structure, such as the
frequency position and the width of the allowed band and
forbidden band gap [1–7], thanks to the additional degrees
of freedom offered by the contrasting properties of the
ferromagnetic (FM) materials.

In one dimension (1D), BMCs have been experimentally
demonstrated, in the form of periodic arrays of alternating
contacting cobalt (Co) and permalloy (Py) nanowires (NWs).
The SW dispersion relations were mapped for both the parallel
[8,9] and antiparallel [10] phases and the dependence of
the band-gap width and frequency position on the external
magnetic field have been investigated. These studies suggest
that there is a strong direct exchange coupling across the
Co-Py interface which influences the pinning of the dynamical
magnetization at the interface [10,11].

In two dimensions (2D), NiFe antidot lattices with em-
bedded Co dots [12–14], and an array of alternated Py and
Co nanodots have been investigated [15]. The studies on 2D
BMCs reveal that their band structure is very rich due to the
large density of modes and their consequent hybridization.
Here, additional complexity with respect to the 1D case derives

from the pronounced nonuniformity of the internal static field
due to static demagnetization effects [16].

To fully exploit BMCs’ capabilities in applications, how-
ever, the key challenge is associated with their nanofabrication.
There are various limitations to the quality of BMCs produced
with the multilevel electron beam lithographic approach
including the alignment between successive fabrication steps
which can create thin oxidized layers at the interfaces between
ferromagnetic materials [10].

In this work, the SW dispersion (frequency versus wave
vector) in BMCs consisting of arrays of bilayered (Py-Fe) NWs
has been measured by the Brillouin light-scattering (BLS)
technique thanks to its wave vector sensitivity. All the samples
have a fixed width (w2) of the Py NWs and differ by the
width of the Fe (w1) NWs. For NWs with a “rectangular”
cross section the bottom Py and upper Fe layers are of equal
width, w1 = w2 = 340 nm, while for the “L-shaped” NWs
w1 = 170 nm and w2 = 340 nm. These samples have been
fabricated by the self-aligned shadow deposition technique
[17] which, unlike the multilevel electron beam lithographic
process, does not require alignment between the two FM
layers. In addition, the deposition of the two materials can be
performed without breaking the vacuum in the same process
step, thus ensuring high quality of the interface between the
two FM materials. This set of NWs has been previously studied
with the ferromagnetic resonance (FMR) method in order to
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understand the impact of the strongly broken symmetry of such
nanostructures on the FMR response [18]. However, with the
above technique, it was only possible to take measurements
for the � point of the first Brillouin zone (BZ), i.e., at a
wave vector q = 0, where magnetization dynamics represents
a family of in-plane standing spin waves with zero Bloch wave
numbers. Here instead, the BLS analysis was performed by
sweeping the wave vector perpendicularly to the wire length
over three BZs of the reciprocal space. Remarkably, for all
the investigated NWs the fundamental mode, lying at the
lowest frequency, shows the largest frequency dispersion. The
magnetic field dependence of both the width and the center
of the corresponding magnonic band has been investigated,
showing that both depend on the number of layers and on the
width of the overlying Fe NWs. Moreover, for the L-shaped
cross-section NWs, it is shown that there is also another,
high-order, mode with a sizable dispersion. Quantitatively,
the experimental results have been successfully reproduced
by numerical simulations based on an original model which
includes a two-dimensional Green’s function description of
the dynamic dipole field of the dynamic magnetization and
the interlayer exchange coupling between the layers. This
approach also enabled us to calculate the spatial profile of
the dynamical magnetization corresponding to each of the
detected eigenmodes, showing that those that exhibit a sizable
dispersion are characterized by the absence of nodes across
the NW width.

II. SAMPLE FABRICATION AND BRILLOUIN
LIGHT-SCATTERING MEASUREMENTS

Large area (4 × 4 mm2) arrays of bilayer NW arrays were
fabricated on silicon substrates by using deep ultraviolet
lithography in combination with the recently developed tilted
shadow deposition technique [17]. Five NW arrays, whose
geometrical and magnetic parameters are summarized in
Table I, have been studied. In all investigated NW arrays,
the lower NW is formed by permalloy (Ni80Fe20, Py); it
has a fixed width w2 = 340 nm and a thickness L2 = 10 nm.
The Py NWs were capped with Fe NWs having a width
w1 = 340 nm and a thickness L1 = 10 nm (“rectangular” cross
section) or a width w1 = 170 nm (“L-shaped” cross section)
and a thickness L1 = 10 or 20 nm. Single-layer NWs of
either Py (w2 = 340 nm, L2 = 10 nm) or Fe (w1 = 340 nm,
L1 = 10 nm) were fabricated and used as reference samples.
For all the arrays, the interwire edge-to-edge distance was
d = 100 nm (as measured at the level of Py layers) and
the array periodicity a = (w2 + d) = 440 nm, resulting in the

FIG. 1. Scanning electron microscopy micrographs of the L-
shaped NW array (sample no. 4) together with the coordinate system
used in the calculation. NW magnetization is aligned along the y

direction.

edge of the first BZ located at π/a = 0.71 × 107 rad m−1. A
scanning electron micrograph of sample no. 4 is reported in
Fig. 1. The geometric details of these samples are listed in the
third and fourth columns of Table I.

BLS spectra were recorded at room temperature in the
backscattering configuration by applying a magnetic field
of H = 500 Oe along the NWs length (y direction) and
sweeping the wave vector q in the orthogonal direction
(x direction) [19]. At this field the NWs are saturated along
the y direction, as inferred from the measured magneto-optic
Kerr effect hysteresis loops (not shown here). About 200 mW
of p-polarized monochromatic light from a solid state laser
λ = 532 nm was focused onto the sample surface for different
incidence angles of light with respect to the sample normal and
the s-polarized backscattered light was analyzed with a (3+3)
tandem Fabry-Pérot interferometer [20]. The magnitude of the
in-plane wave vector is linked to the incidence angle of light
θi and to the light wavelength λ by the following relation:
q = (4π/λ)sin θi .

III. THEORY

In order to interpret the dispersion of collective SW
excitations and the cross-sectional profiles of the modes, we
used a numerical method which is a further development of
the quasianalytical approach from Kostylev et al. [21]. It is
based on solution of the linearized Landau-Lifshitz-Gilbert
(LLG) equation in the magnetostatic approximation with a 2D
Green’s function description of the dipole field of dynamic

TABLE I. Geometric and magnetic parameters for the single- and bilayered NWs.

Number of Layer Layer Gyromagnetic Saturation Exchange Interlayer exchange
Sample layers and width thickness ratio magnetization constant A constant A12

label used materials w1-w2 (nm) L1-L2 (nm) (MHz/Oe) 4πM (G) (10−6 erg/cm) (erg/cm2)

No. 1 One, Py 340 10 2.9 7000 1 N/A
No. 2 One, Fe 340 10 3.05 12500 2 N/A
No. 3 Two, Fe-Py rectangular 340-340 10-10 3.05-2.9 16500-10000 2-1 6
No. 4 Two, Fe-Py L-shaped 170-340 10-10 3.05-2.9 18500-9000 2-1 6
No. 5 Two, Fe-Py L-shaped 170-340 20-10 3.05-2.9 18000-7500 2-1.2 6
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magnetization [18]. As for any periodic medium, the
spin waves on periodic arrays of interacting NWs rep-
resent Bloch waves. This implies that the distribution of
their vector amplitude across the crystal unit cell a is
given by a spatially periodic function (“Bloch function”)
m̃(x,z,q)[m̃(x,z,q) = m̃(x + a,z,q)], and the variation of the
phase of this distribution from unit cell to unit cell by a Bloch
wave number q [22].

m(x,z) = m̃(x,z,q) exp(iqx). (1)

Accordingly, the dispersion ω(q) of those waves is periodic
with the first Brillouin zone spanning from q = −π/a to
q = +π/a.

As we consider NWs magnetized along their longitudinal
axes, the static magnetization configuration for the material
is uniform, with all spins in both layers pointing along this
direction. To calculate the dynamic dipole field hdip(x,z)
created by the dynamic magnetization we use the Green’s
function approach:

hdip(x,z) =
∫

V

Ĝ(x − x ′,z − z′)m(x,z)dV , (2)

where Ĝ(s,p) is given by Eqs. (1) and (2) in Ref. [22] and
V is the volume of the magnetic material. The presence of
the Green’s function in the expression for the total dynamic
effective field h results in an integral part for the expression.
Since the sizes of the NW cross section are comparable with
the exchange length of the magnetic materials, the contribution
from the effective exchange field of dynamic magnetization is
also included. Based on previous studies [23,24], “unpinned
surface spins” boundary conditions [25] are assumed at all NW
surfaces. The exchange field is given by the usual differential
operator [Eq. (2) in Ref. [34]]

hexc(x,z) = αi(∂
2/x2 + ∂2/z2)m(x,z), (3)

where αi = Ai/(2M2
i ) is the exchange constant for the ith

layer (i = 1,2) having saturation magnetization Mi .
Both the integral and the differential parts of the operator for

h are discretized on a square mesh which fills the NW cross
section. This procedure is the same as previously employed
in Refs. [4,5]. In this work an additional contribution is
considered because of the presence of two exchange-coupled
ferromagnetic materials. They possess different values of
saturation magnetization (M1 and M2), intralayer exchange
constant (A1 and A2), and gyromagnetic ratio (γ1 and γ2),
above and below the layer interface, respectively. On top
of this, the interface exchange boundary conditions for the
dynamic magnetization are included in the model. We use the
linearized boundary conditions [26]:

∂m(1)
x /∂z + A12

A1
m(1)

x − A12

A1

M1

M2
m(2)

x = 0,

∂m(2)
x /∂z − A12

A2
m(2)

x + A12

A2

M2

M1
m(1)

x = 0. (4)

In this expression, m(1)
x and m(2)

x are the in-plane (x) compo-
nents of the dynamic magnetization in layers 1 (Fe) and 2 (Py),
respectively, while A12 is the interlayer exchange constant.
A similar boundary condition is used for the perpendicular-
to-plane (i.e., perpendicular-to-the-interface) component of

dynamic magnetization mz. As in Ref. [27], the surface and
interface boundary conditions are included in the boundary
elements of the discrete (finite-difference) version of the
exchange operator. In our previous work on the Py L-shaped
NWs array [21], the interlayer exchange coupling was not
considered because of the presence of one FM material, only.

The discretization of the operators taking into account (1)
transforms the linearized LLG equation

iωm = −γi[m × H + Mih × ey] (5)

into an eigenvalue problem for a matrix:

iω|m̃〉 = Ĉ|m̃〉. (6)

Here ω = 2πf is circular frequency, γi is the gyromagnetic
ratio for the ith layer, ey is the unit vector in the direction of
the static magnetization (y direction), |m̃〉 is a block column
vector with blocks (m̃xj ,m̃zj ), where m̃λj is the λ component
(i.e., x or z component) of the Bloch function for the point j

of the mesh, and Ĉ is the matrix obtained by discretizing the
LLG equation after the substitution of (1) into it. In Eq. (3) the
Bloch wave eigenfrequencies correspond to the eigenvalues of
Ĉ while m̃(x,z,q) are the cross-sectional profiles of the modes
corresponding to the different eigenfrequencies.

Solutions of Eq. (6) are obtained by using numerical
tools built in into commercial MATHCAD software. For the
mesh size 3.33 × 3.33 nm2, it takes about 5 min to obtain all
eigenvalues of Ĉ with a quad-core personal computer for the
most computation-demanding geometry—that of the L-shaped
NW with the 20-nm-thick Fe layer. The determination of
the magnetic parameters through the fitting procedure has
been considered as acceptable when the frequency difference
between the calculated and measured frequencies of the
whole set of modes is smaller than ±0.5 GHz, the maximum
uncertainty in the determination of the spin wave frequency
in the measured BLS spectra. The values of the magnetic
parameters which provide the best agreement of the simulation
results with the experimental data are listed in the last four
columns of Table I. It appeared that keeping the values for
the gyromagnetic ratio and the intralayer exchange constant
(except for the Py layer of sample no. 5) equal to the literature
values [18], and varying the remainder of the parameters—
the saturation magnetization and the interlayer exchange
constant—allows one to obtain reasonable agreement with the
experiment.

Similar to our FMR study of the same materials [18], we
found that the calculated mode frequencies are highly sensitive
to assumed saturation magnetization values for the layers. For
instance, a decrease in 4πM for Py from 8500 G to 7500 G
shifts the fundamental mode for sample no. 5 as a whole
downwards by 400 MHz. Simultaneously, the frequency of
the third mode is shifted downwards by 750 MHz.

The saturation magnetization values for the materials as
extracted from the best fits (Table I) are significantly smaller
than the generally accepted ones for those materials. For
instance, for the Py layer of sample no. 5 we obtained 7500 G
instead of 10 000 G. This is because the extracted values rep-
resent the “effective” saturation magnetization that includes,
for instance, the effect of the surface perpendicular magnetic
uniaxial anisotropy (PMA) [28] that may be originated by
surface oxidation [29]. Its presence is corroborated by the fact
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that for the Py layer of sample no. 3, the only one completely
protected from oxidation by the presence of the Fe overlayer,
the obtained value of the saturation magnetization is similar to
the expected value for bulk Py and larger than in the L-shaped
samples.

To go deeper into the effect of the presence of PMA,
one should notice that the amount of frequency downshift
of Damon-Eshbach spin waves caused by PMA depends on
the wave number. Indeed, from Fig. 4 in the work of Kalinikos
et al. [30], one finds that an easy-axis anisotropy decreases
the slope of the dispersion curve. On the other hand, the wave
number dependence of the PMA induced frequency shift for
a Damon-Eshbach wave in a continuous film implies that,
in the present case of a confined geometry, PMA will affect
different collective modes and different q values differently.
Including the effective field of PMA in our numerical model
is a trivial task; we made a number of trial simulations for
which we kept the value of the saturation magnetization for
Py equal to a standard value 4πM1 = 10 kG and included a
nonvanishing effective field of PMA, HPMA. We found that,
although it is possible to obtain a good fit for the frequency
for the fundamental mode for HPMA = 2600 Oe, the second
dispersive mode and its nearest neighbor from below moved
prohibitively low in frequency with respect to the experimental
data of Fig. 4(b). This agrees with the above-mentioned fact
that the presence of PMA leads to a smaller dispersion slope for
the Damon-Eshbach wave. However, this might also suggest
that PMA is not the only contributor to the small values of
the effective saturation magnetization; additional contributions
can, in principle, be due to bulk in-plane anisotropy of the
layers. Also, one may expect that for the L-shaped NWs,
the anisotropy at the Py/iron interface may differ from the
surface anisotropy of the part of the Py layer not covered
by iron (see the discussion of the oxidation effect above). It
would not be difficult to include all these anisotropies into the
numerical model; however, because of the significant time for
a program run, their inclusion makes the material parameter
space too large for performing a numerical best-fit procedure.
Given all these considerations, we use the simple approach of
the effective saturation magnetizations (Table I) with the aim
of providing a physical explanation for the complicated BLS
spectra observed for this novel nanostructure, while a detailed
investigation of the magnetic parameters dependence on the
sample structure is beyond the scope of this work.

IV. RESULTS AND DISCUSSION

A. Dispersion relation and spatial profile of the fundamental
mode for NWs with rectangular cross section

In Fig. 2, we present a sequence of representative BLS
spectra for sample no. 3, i.e., Py/Fe bilayer NWs with rectan-
gular cross section, measured at q = nπ/a (with n = 0,1, 2,
and 3). Spectra have a very good signal-to-noise ratio and are
characterized by the presence of several well-resolved peaks,
with the most intense peak which, on increasing the wave
vector, gradually moves toward higher-order modes, as shown
in previous investigations of magnetic wires [31] and dots [32].
It can be seen that the lowest-frequency fundamental mode,
whose intensity is maximum at q = 0, exhibits a remarkable
frequency evolution with q, while the modes at higher

FIG. 2. BLS spectra for sample no. 3 measured for H = 500 Oe
applied along NW length (easy direction) at different wave vector
values q = nπ/a (with n = 0, 1, 2, and 3). The lowest-frequency
mode, characterized by a significant frequency variation, is marked
by the red asterisk on the anti-Stokes side of the spectra. Insets show
the schematic cross-sectional view of the NWs (blue is Py and orange
is Fe).

frequency are much less dispersive, in agreement with previous
investigations of SW in arrays of interacting stripes [33].

In Fig. 3(a) we compare the frequency dispersion of the
lowest-frequency dispersive mode for samples no. 1–3. The
dispersion is periodic with the appearance of BZs determined
by the artificial periodicity of the stripes array. The periodicity
of the frequency oscillation (width of the Brillouin zone)
is independent of the thickness of the layers, since all the
investigated NW arrays have the same lattice period a.
Concerning the center position of the magnonic band, one
sees that it is upshifted passing from sample no. 1 to no.
3, i.e., from the single-layer Py NWs to the single Fe layer
and finally to the bilayered NWs. In addition, also the width
of the magnonic band (frequency variation between q = 0
and π/a) is more pronounced for bilayered NWs than for
single-layer ones. In all the cases, the experimental data are
well reproduced by theoretical calculations, performed by
using the magnetic parameters reported in Table I. Moreover,
from the calculations one can obtain the spatial profiles of
the considered mode for the different samples, as shown
in Fig. 3(b). The profiles are calculated at either q = 0 or
q = π/a and the dynamic magnetization distributions have
been averaged over the thicknesses of the respective layers to
create the two-dimensional plots. It can be seen that the spatial
profile is typical of a fundamental mode, without any node
across the NW width and maximum amplitude in the center.
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FIG. 3. (a) Measured (points) and calculated (lines) frequency dispersion of the fundamental collective SW mode for the different NWs
with a rectangular cross section (samples no. 1–3). The external magnetic field, H = 500 Oe, is applied along the length of the NWs, while the
wave vector is in the direction perpendicular to the NWs length. The vertical dashed lines mark the edge of the first (π/a) and second (2π/a)
Brillouin zones. (b) Calculated profiles of the dynamic magnetization through the NW width for the lowest collective mode; blue (orange)
curves are for the Py (Fe) layers.

This fundamental mode creates a large dynamic dipolar field
which efficiently couples a NW with its neighbors, resulting
in a sizeble dispersion [34].

For the bilayer NWs (sample no. 3) the precession is in
phase in the two layers, with a larger amplitude in the Fe layer
than in the Py one. To obtain this result we assumed strong fer-
romagnetic interlayer exchange interaction (A12 > 0) between
the layers. This interaction pushes the frequency of the optic
mode of the bilayer structure beyond the highest frequency
detected in the experiment (24 GHz). This is different from
what was previously observed in isolated (noninteracting)
Py/Cu/Py NWs [23] where the dipolar coupling through the
Cu spacer leads to the appearance of stationary modes of both
acoustic (in-phase) and optic (antiphase) types at relatively
low frequencies. An interesting effect that is seen in the spatial
profiles of the modes [see panel (b) of Fig. 3] is the pronounced
amplitude suppression for the NWs with the rectangular cross
section at the NW edges. This effect can be attributed to the
effective dipole pinning of magnetization at the edges [35] and
to the presence of the collective dynamic field of the array, as
discussed in Ref. [23].

B. Dispersion relation and spatial profiles for the
L-shaped NWs array

Let us now consider the frequency dispersion and the
spatial profiles for the SW modes in the “L-shaped” cross-
section NWs. The comparison between the experimental and
calculated frequency dispersion for samples no. 4 and no. 5,
i.e., for Fe thicknesses of 10 and 20 nm, is shown in Figs. 4(a)
and 4(b), respectively, together with the calculated profiles
of the most dispersive modes [Figs. 4(c)–4(j)]. One sees that
several peaks have been detected by BLS, whose frequencies
are downshifted on increasing the thickness of the Fe NWs.
Interestingly, we have found that the lowest-frequency mode
oscillates in the frequency range between 8 and 9 GHz [at
higher (smaller) frequency than the lowest-frequency mode

of the single-layer Py (Fe) NWs; see Fig. 4]. In addition,
there is a second mode, at higher frequency, which exhibits
a sizable periodic frequency oscillation as a function of the
Bloch wave number q. The oscillation amplitude of this latter
dispersive mode grows when the Fe thickness passes from
10 nm (0.30 GHz) to 20 nm (0.45 GHz). The presence of the
two dispersive modes, marked by the shaded regions in Fig. 4,
suggests a strong dynamic dipole coupling of individual NWs.
This is different from the case of the noninteracting stripes
where, as a consequence of lateral confinement, quantized
spin waves have been observed. These quantized modes
have a stationary character and are dispersionless, i.e., their
frequency does not change over the whole range of wave
vectors investigated [36,37].

To understand the origin of the dispersive character of
the above-mentioned modes, it is instructive to look at the
spatial profiles of the modes, which are shown in Fig. 4
for q = 0 [panels (c)–(f)] and q = π/a [panels (g)–(j)]. The
dynamic magnetization distributions have been averaged over
the thicknesses of the respective layers to create the two-
dimensional plots. Our first observation is that for the cross-
section areas 0 < x < 170 nm the magnetization precession
for both layers is in phase. Hence in all cases displayed in
Figs. 4(c)–4(j) we deal with the acoustic oscillation of the
bilayer structure. Secondly, one sees that the modal profiles
for the two Fe layer thicknesses are qualitatively the same, the
only difference being the number of antinodes of the standing
SW across the area of the Py layer not capped with Fe. For
the Py(10 nm)/Fe(10 nm) structure [Figs. 4(c) and 4(g)] the
standing SW pattern for this area is close to 1.5 periods of a
cosine function, while for the Py(10 nm)/Fe(20 nm) structure
it is close to two periods of that function [Figs. 4(e) and 4(i)].

A simple way to understand the formation of the modal
profiles for the higher-order dispersive mode [Figs. 4(c), 4(e),
4(g) and 4(i)] is to use some similarity of this geometry to
the case of bicomponent ferromagnetic NWs alternated into
an array [38]. In this respect, one may represent the L-shape
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FIG. 4. Measured (points) and calculated (lines) frequency dispersion for the L-shaped NWs with Fe thickness of (a) 10 nm (sample no.
4) and (b) 20 nm (sample no. 5). The magnetic field H = 500 Oe is applied along the length of the NWs (easy magnetization direction). The
vertical dashed lines mark the boundaries of the BZs (q = π/a; q = 2π/a). The amplitude of the magnonic band of the two dispersive modes
is represented by the shaded regions. (c)–(j) The calculated profiles of the in-plane component of dynamic magnetization for the dispersive
modes for the same samples. The blue (orange) curve is for the Py (Fe) layer.

NW as two effective 170-nm-wide NWs. The area 0 < x <

170 nm in the cross-section plane is an effective bilayer NW
consisting of a 10-nm-thick Py layer overlaid with either a
10- or 20-nm-thick Fe layer. We will refer to it as the THICK
portion of the NW. The area 170 < x < 340 nm represents an
effective 10-nm-thick single-layer Py NW that we will refer to
as the THIN portion. The THICK and THIN portions are in a
lateral exchange contact through a “virtual interface” placed at
x = 170 nm, running across the Py layer of the actual L-shaped
NW. They are also coupled by their dipole fields. One can
easily see from the right panels of Fig. 4 that in both samples
no. 4 and no. 5 the spatial profiles of the THICK portion
are qualitatively the same in the two layers, with the main
difference being that in sample no. 5 the frequency of all the
modes goes up due to the increased thickness and saturation
magnetization of the THICK portion.

Remarkably, one can notice that the only two dispersive
modes, whose calculated profiles are reported in Fig. 4,
correspond to the fundamental mode of either the THIN
or the THICK portions of the NW. In the latter case the
frequency is considerably larger, due to the significantly larger
thickness and mean saturation magnetization of the THIN
portion. This mismatch of the fundamental mode frequencies
between the two sides also explains why for the low-frequency
fundamental mode of the THICK portion [Figs. 4(d), 4(f),
4(h), and 4(j)] there is no counterpart to couple in the THIN
part. Consequently, the magnetization precession in the latter
region is not resonant but represents a forced oscillation
(decaying-exponent-like) driven by the exchange coupling
through the virtual interface and by the long-range dipole field
of the THIN part. On the contrary, the fundamental mode
of the THICK portion couples to a much higher individual
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mode of the THIN one, as seen in Figs. 4(c), 4(g), 4(e),
and 4(i).

Let us now comment on the difference in the profiles for
q = 0 and q = π/a. The most relevant difference, especially in
sample no. 5, is the different amplitude of the forced oscillation
in the Py layer of the THICK region for the low-frequency
fundamental mode [compare Fig. 4(d) with 4(h) and Fig. 4(f)
with 4(j)]. The reason for this behavior is that for q = 0 all
the NWs on the array resonate in phase, so that the strong
dipole field of the fundamental mode generated in both the
THICK and the THIN parts penetrates the neighboring NWs
(440 < x < 610 nm and −440 nm < x < −100 nm). Since
the dipole field generated by the neighbors is in phase with
the coupling through the virtual interface x = 170 nm, it helps
to drive the forced magnetization precession in the Py layer of
the THICK part. It also enhances the magnetization precession
in Py near the edge of the THIN part. As a result, the precession
amplitude at both edges is increased. On the contrary, for the
lowest-frequency mode and q = π/a, the dipole field of the
nearest neighbor is in antiphase with the coupling through
the virtual interface. Accordingly, it tends to suppress the
forced magnetization oscillation at the edges of the Py layer of
the THICK region. As a result, the profiles of the fundamental
mode across the width of the Py layer of NWs look (slightly)
more uniform for q = 0 [Figs. 4(d) and 4(f)] than for q = π/a

[Figs. 4(h) and 4(j)]. The same argument of the phase of the
coupling field can be used in order to explain the differences
in the profiles in Figs. 4(c), 4(e) and 4(g), 4(i).

C. Field dependence of the width and the center
frequency of the magnonic band

The field dependence of both the width and the center
frequency of the magnonic band (amplitude of frequency os-
cillation) for the lowest-frequency mode in all the investigated
samples is shown in Fig. 5. First of all, we notice that there is
a monotonic increase (decrease) of the band center frequency
(width) with the intensity of the applied magnetic field. For
the three samples with rectangular cross section it is clearly
seen that both these quantities plotted in Figs. 5(a) and 5(b)
increase with increasing either the layer magnetization (i.e.,
passing from sample no. 1 to no. 2) or the film thickness (i.e.,
passing from sample no. 2 to no. 3). This is because the band
center frequency is larger for larger saturation magnetization
and thickness, while the bandwidth depends on the strength
of the inter-NW dipole coupling (that also increases with
magnetization and thickness). Moreover, one can see that the
behavior of the data relative to the L-shaped samples no. 4 and
no. 5 is rather similar to that of sample no. 1, consisting of a
single Py layer. This is because, as discussed in the previous
paragraph, the lowest-frequency mode in the L-shaped samples
is strongly localized in the THIN Py side [Figs. 4(d) and 4(f)].
Such mode localization, which would cause a less efficient
coupling with neighbor NWs, if compared to sample no. 1, is
partly compensated in samples no. 4 and no. 5 by the effect
of larger average thicknesses and saturation magnetizations.
As a result, one can see that the bandwidth for samples no. 4
and no. 5 is practically the same as for sample no. 1. In any
case, it is remarkable that the calculations accord very well
with experimental data, showing that the theoretical model

FIG. 5. Comparison between the measured (points) and the
calculated (curves) magnonic band center (a) and width (b) of the
lowest-frequency mode as a function of the magnetic field strength
for all the investigated samples (nos. 1–5).

also captures the magnetic-field-dependent features of the BLS
data.

V. CONCLUSIONS

In conclusion, the Brillouin light-scattering technique has
been exploited to measure the dispersion of collective spin
waves in arrays of permalloy/Fe nanowires with either a
rectangular or L-shaped cross section, fabricated by a method
which combines deep ultraviolet lithography and a self-
aligned shadow deposition. The measurements relative to the
frequency dispersion of the spin waves have been satisfac-
torily reproduced by a theory based on the two-dimensional
Green’s function description of the dynamic dipole field of
the oscillating magnetization. This theory also allows us to
calculate the spatial profiles of the modes in the two layers,
thus helping us to comprehend their frequency behavior. For
the rectangular nanowires, the fundamental mode lying at the
lowest frequency, characterized by an in-phase precession of
the magnetization in the two layers and maximum amplitude
in the center of the nanowire, exhibits the largest frequency
oscillation amplitude. Its frequency in the bilayer Py/Fe
nanowires is upshifted with respect to that measured for single-
layer Py and Fe nanowires due to the increased thickness. For
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the case of the nanowires with an L-shaped cross section,
two dispersive modes with a sizable magnonic band have
been observed. These are interpreted as the fundamental
modes of either the THICK or the THIN portion of each
nanowire. The effect of the Fe nanowires width and thickness
on magnonic band amplitude and frequency position has also
been carried out. We believe that this work can stimulate the
design, tailoring, and characterization of magnonic crystals
where, thanks to the presence of two contrasting ferromagnetic
materials and the interlayer exchange interaction at their
interface, new tailored functionalities can be achieved. We also
expect that introducing a thin nonmagnetic spacer between the
two ferromagnetic layers and thanks to the different coercivity
of the materials, it would be possible to study the spin wave

propagation in the case of parallel and antiparallel alignment
of the magnetization in the two layers, thus permitting a
reprogrammable dynamic response of the system.

ACKNOWLEDGMENTS

This work was supported by the MIUR under PRIN Project
No. 2010ECA8P3 “DyNanoMag,” the Australian Research
Council, the University of Western Australia (UWA) and
UWA’s Faculty of Science, and the National Research Founda-
tion, Prime Minister’s Office, Singapore under its Competitive
Research Programme (CRP Award No. NRF-CRP 10-2012-
03).

[1] Z. K. Wang, V. L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok, S.
Jain, and A. O. Adeyeye, ACS Nano 4, 643 (2010).

[2] S. Tacchi, G. Duerr, J. W. Klos, M. Madami, S. Neusser, G.
Gubbiotti, G. Carlotti, M. Krawczyk, and D. Grundler, Phys.
Rev. Lett. 109, 137202 (2012).

[3] C. S. Lin, H. S. Lim, Z. K. Wang, S. C. Ng, and M. H. Kuok,
IEEE Trans. Magn. 47, 2954 (2011).

[4] M. Krawczyk, S. Mamica, M. Mruczkiewicz, J. W. Klos, S.
Tacchi, M. Madami, G. Gubbiotti, G. Duerr, and D. Grundler,
J. Phys. D: Appl. Phys. 46, 495003 (2013).

[5] F. S. Ma, H. S. Lim, V. L. Zhang, Z. K. Wang, S. N.
Piramanayagam, S. C. Ng, and M. H. Kuok, Nanosci. Nan-
otechnol. Lett. 4, 663 (2012).

[6] S. Mamica, M. Krawczyk, and J. W. Klos, Adv. Condens. Matter
Phys. 2012, 161387 (2012).

[7] J. Rychły, J. W. Kłos, M. Mruczkiewicz, and M. Krawczyk,
Phys. Rev. B 92, 054414 (2015).

[8] Z. K. Wang, V. L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok, S.
Jain, and A. O. Adeyeye, Appl. Phys. Lett. 94, 083112 (2009).

[9] M. L. Sokolovskyy and M. Krawczyk, J. Nanopart. Res. 13,
6085 (2011).

[10] V. L. Zhang, H. S. Lim, C. S. Lin, Z. K. Wang, S. C. Ng, M. H.
Kuok, S. Jain, A. O. Adeyeye, and M. G. Cottam, Appl. Phys.
Lett. 99, 143118 (2011).

[11] C. S. Lin, H. S. Lim, V. L. Zhang, Z. K. Wang, S. C. Ng, M. H.
Kuok, M. G. Cottam, S. Jain, and A. O. Adeyeye, J. Appl. Phys.
111, 033920 (2012).

[12] G. Duerr, M. Madami, S. Neusser, S. Tacchi, G. Gubbiotti, G.
Carlotti, and D. Grundler, Appl. Phys. Lett. 99, 202502 (2011).

[13] G. Duerr, S. Tacchi, G. Gubbiotti, and D. Grundler, J. Phys. D:
Appl. Phys. 47, 325001 (2014).
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