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Progress in describing thermodynamic phase transitions in quantum systems is obtained by noticing that
the Gibbs operator e−βH for a two-dimensional (2D) lattice system with a Hamiltonian H can be represented
by a three-dimensional tensor network, the third dimension being the imaginary time (inverse temperature) β.
Coarse graining the network along β results in a 2D projected entangled-pair operator (PEPO) with a finite
bond dimension D. The coarse graining is performed by a tree tensor network of isometries. The isometries
are optimized variationally, taking into account full tensor environment, to maximize the accuracy of the PEPO.
The algorithm is applied to the isotropic quantum compass model on an infinite square lattice near a symmetry-
breaking phase transition at finite temperature. From the linear susceptibility in the symmetric phase and the
order parameter in the symmetry-broken phase, the critical temperature is estimated at Tc = 0.0606(4)J , where
J is the isotropic coupling constant between S = 1

2 pseudospins.
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I. INTRODUCTION

Understanding phase transitions and broken symmetries in
frustrated many-body quantum systems remains one of the
major challenges of modern physics. Frustration in magnetic
systems occurs by competing exchange interactions and leads
frequently to disordered spin liquids [1,2]. However, this
does not happen in two-dimensional (2D) classical systems
where ordered states with broken Z2 symmetry occur at finite
temperature, as in the exactly solvable Ising models with fully
frustrated lattice, or with frustration distributed periodically
along columns [3,4]. In contrast, quantum spins interacting by
SU(2) symmetric interactions order only at zero temperature
in the 2D Heisenberg model. Whether or not 2D quantum
spin models with interactions of lower symmetry do order
at finite temperature is a challenging problem in the theory.
Unfortunately, quantum spin systems interacting on a square
lattice are not exactly solvable as entanglement plays an
important role [5], and advanced methods which deal with
entangled degrees of freedom have to be applied.

Perhaps the simplest example of frustrated quantum ex-
change interactions is found in the 2D compass model [6],
where two different spin components interact along horizontal
or vertical bonds of the square lattice. Recent interest in
the compass models is motivated by spin-orbital physics
in transition-metal oxides with active orbital degrees of
freedom [7–16]. This field is very challenging due to the
interplay and entanglement of spins and orbitals which lead
to remarkable consequences in real materials [17]. However,
when spin order is ferromagnetic or when spins and orbitals
couple strongly by spin-orbit interaction [18], the exchange
interactions simplify and concern only orbitals or pseudopins.
A generic model which stands for all these situations is the 2D
compass model [6]. It represents directional orbital interac-
tions between eg or t2g orbitals on the bonds in a 2D square
or three-dimensional (3D) cubic lattice [19–26]. Its better

understanding is crucial not only for spin-orbital systems, but
also for its realizations in optical lattices [27]. Unlike the spins
interacting by Heisenberg SU(2) symmetric exchange, the 2D
compass model for orbitals breaks the symmetry at finite tem-
perature in form of nematic order [29]. It is remarkable that in
nanoscopic systems this order survives perturbing Heisenberg
interactions in the lowest-energy excited states, providing a
perspective for its applications in quantum computing [30]. A
better understanding of the signatures of this phase transition
provides a theoretical challenge.

To address these questions, we develop below tensor
network renormalization at finite temperature, following
the pioneering work by two of us [31]. The quantum
tensor networks proved to be a competitive tool to study
strongly correlated quantum systems [32]. Their advent was
a discovery of the density matrix renormalization group
(DMRG) [33,34] that was later shown to optimize the matrix
product state (MPS) variational ansatz [35]. Over the last
decade, MPS was generalized to a 2D projected entangled
pair state (PEPS) [36] and supplemented with the multiscale
entanglement renormalization ansatz (MERA) [37]. As
variational methods, these networks do not suffer from the
fermionic sign problem [38] and fermionic PEPS provided
the most accurate results for the t-J [39] and Hubbard [40]
models employed to study the high-Tc superconductivity.
The networks, both MPS [41–43] and PEPS [44–46], made
also some major breakthroughs in the search for topological
order. This is where geometric frustration often prohibits the
traditional quantum Monte Carlo (QMC).

Thermal states of quantum Hamiltonians were explored
much less than their ground states. In one-dimensional (1D)
models they can be represented by MPS ansatz prepared
by accurate imaginary-time evolution [47,48]. A similar
approach can be applied in 2D case [49,50], the PEPS
manifold is a compact representation for Gibbs states [51],
but the accurate evolution proved to be more challenging
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there. Alternative direct contractions of the 3D partition
function were proposed [52] but, due to local tensor update,
they are expected to converge more slowly with increasing
refinement parameter. Even a small improvement towards the
full update can accelerate the convergence significantly [53].
This research parallels similar progress in finite-temperature
variational Monte Carlo (see, e.g., Ref. [54]).

In order to overcome these problems, two of us introduced
a variational algorithm to optimize a finite-temperature pro-
jected entangled-pair operator (PEPO) [31]. The 3D network
e−βH is coarse grained along the imaginary time β (inverse
temperature) to obtain the PEPO ansatz for e−βH . The coarse
graining is optimized variationally, employing full/nonlocal
tensor environments, in order to maximize the accuracy of
the coarse-grained PEPO. A benchmark application to the
2D quantum Ising model in transverse field was presented
in Ref. [31]. In this paper, we move near the edge of geometric
frustration and apply the same algorithm to the 2D isotropic
quantum compass model [6]. Our results supplement earlier
QMC studies [28,29,55], and high-temperature expansion [56]
studies concerning the symmetry-breaking phase transition in
this model which happens at finite temperature.

This paper is organized as follows. In Sec. II, we introduce
the 2D quantum compass model and summarize the results
on its finite-temperature symmetry-breaking phase transition.
In Sec. III, the algorithm for variational renormalization is
described in detail, but some more technical features are
delegated to Appendixes A, B, and C. They include the
standard corner matrix renormalization in Appendix A as well
as new elements, like a direct estimate of the error inflicted by
the finite bond dimension in Appendix B and variational op-
timization in case of nonsymmetric environments introduced
in Appendix C. The numerical results obtained for the 2D
quantum compass model are collected in Sec. IV. We analyze
the order parameter and the susceptibility in Sec. IV A as well
as spin-spin correlations in Sec. IV B. Concluding remarks and
a short summary are presented in Sec. V.

II. QUANTUM COMPASS MODEL

The quantum compass model on an infinite square lattice [6]
is

H = −1

4
Jx

∑
j

XjXj+ea
− 1

4
Jz

∑
j

ZjZj+eb
. (1)

Here, j is a site number and Xj ≡ σx
j and Zj ≡ σ z

j are Pauli
matrices at site j , and ea (eb) are unit vectors along the
a (b) axis. The model is a sum of nearest-neighbor Ising-
type ferromagnetic couplings between S = 1

2 pseudospins:
JxXjXj+ea

/4 for a bond along the a axis and JzZjZj+eb
/4

along the b axis. We consider mainly the isotropic case, and
set Jx = Jz = J = 1. The order parameter is

Q ≡ |〈Qj 〉| = |〈XjXj+ea
− ZjZj+eb

〉|. (2)

For convenience, we define Q � 0, i.e., for the cases when
Qj < 0 we transform the obtained state to Qj > 0 by
exchanging simultaneously the two axes and the two spin
components a ↔ b and X ↔ Z. The order parameter is finite
below the phase transition that occurs at temperature Tc. This
transition belongs to the d = 2 Ising universality class [55,57].

Recent progress in understanding the nature of nematic
order in the 2D quantum compass model is due to the
uncovering the consequences of its symmetries. It was shown
that the spectral properties can be uniquely determined by
discrete symmetries like parity [58]. The conservation of spin
parities in rows and columns in the 2D quantum compass
model (for x and z components of spins) has very interesting
consequences. While the most of the two-site spin correlations
vanish in the ground state, the two-dimer correlations exhibit
the nontrivial hidden order [58].

The phase transition to such an exotic nematic state with
hidden order was studied with QMC, and its critical temper-
ature was estimated at Tc = 0.0585 [55]. As compared to the
classical compass model, it is strongly suppressed by quantum
fluctuations [29]. A high-temperature series expansion in β up
to order β24 predicted [56], using an extrapolation with Padé
approximants, a similar but (estimated to be) less accurate
value Tc = 0.0625. The same extrapolation, but with the Tc

fixed at the QMC value, estimated the susceptibility exponent
γ � 1.3 that is close to the exact γ = 1.75 but slightly away
from it. In this paper, we readdress these questions with the
tensor network algorithm presented below.

III. ALGORITHM

In this section, we describe the algorithm that was intro-
duced and tested for the 2D quantum Ising model in Ref. [31].
Here, we present its less symmetric version suitable for the
compass model. Unlike in the Ising model, where results could
be easily converged by increasing a PEPO bond dimension
D, here they require an extrapolation with 1/D → 0. In
Appendix B, we explain how to estimate the error inflicted
by a finite D. The extrapolation becomes smoother when 1/D

is replaced by the error estimate.

A. Purification of thermal states

We consider spins- 1
2 with a Hamiltonian H on an infinite

square lattice. Every spin has states numbered by an index
s = 0,1 and is accompanied by an ancilla with states
a = 0,1. The enlarged “spin+ancilla” space is spanned by
states

∏
j |sj ,aj 〉, where j is the index of a lattice site. The

Gibbs operator at an inverse temperature β is obtained from
its purification |ψ(β)〉 in the enlarged space by tracing out the
ancillas:

ρ(β) ∝ e−βH = Trancillas|ψ(β)〉〈ψ(β)|. (3)

At β = 0 we choose a product over lattice sites,

|ψ(0)〉 =
∏
j

∑
s=0,1

|sj ,sj 〉, (4)

to initialize the imaginary-time evolution

|ψ(β)〉 = e− 1
2 βH |ψ(0)〉 ≡ U (β)|ψ(0)〉. (5)

The gate U (β) = e− 1
2 βH acts in the Hilbert space of spins.

With the initial state (4), the trace in Eq. (3) yields

ρ(β) ∝ U (β)U †(β). (6)

U (β) will be represented by a PEPO.
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B. Suzuki-Trotter decomposition

We define gates

UXX(dβ) ≡
∏

〈j,j ′〉||a
e

dβ

8 Xj Xj ′ ,

(7)
UZZ(dβ) ≡

∏
〈j,j ′〉||b

e
dβ

8 Zj Zj ′ .

In the second-order Suzuki-Trotter decomposition, an in-
finitesimal gate can be approximated in two ways:

U (dβ/2) ≈ UXX(dβ/4)UZZ(dβ/2)UXX(dβ/4),
(8)

U (dβ/2) ≈ UZZ(dβ/4)UXX(dβ/2)UZZ(dβ/4).

We combine them into an elementary time step

U (dβ) = UXX(dβ/4)UZZ(dβ/2)UXX(dβ/4)

×UZZ(dβ/4)UXX(dβ/2)UZZ(dβ/4). (9)

To rearrange U (dβ) as a tensor network, at every bond in
Eqs. (7) we make a singular value decomposition

e
dβ

8 Xj Xj ′ =
∑

μ=0,1

xj,μxj ′,μ,

(10)
e

dβ

8 Zj Zj ′ =
∑

μ=0,1

zj,μzj ′,μ.

Here, μ is a bond index, xj,μ ≡ √
�μ (Xj )μ, and

zj,μ ≡ √
�μ (Zj )μ. The singular values are �0 = cosh dβ

8 and
�1 = sinh dβ

8 . Now, we can write

UXX(dβ) =
∑
{μ}

∏
j

⎛
⎝∏

j ′
xj,μ〈j,j ′ 〉

⎞
⎠. (11)

Here, μ〈j,j ′〉 is a bond index for the nearest-neighbor (NN)
bond 〈j,j ′〉 along a axis, and {μ} is a set of all such bond
indices. The brackets enclose a Trotter tensor Tx(dβ) at site
j (see Fig. 1(a)]. It is a spin operator depending on bond
indices connecting its site with its two NNs along the a axis.
A contraction of these Trotter tensors is the gate UXX(dβ) in
Fig. 1(b). In a similar way,

UZZ(dβ) =
∑
{μ}

∏
j

⎛
⎝∏

j ′
zj,μ〈j,j ′ 〉

⎞
⎠. (12)

Here, the brackets enclose a Trotter tensor Tz(dβ) at site j ,
shown in Fig. 1(c). A layer of these Trotter tensors is the gate
UZZ(dβ) in Fig. 1(d).

To represent the time step (9) in Fig. 1(e), six Trotter
tensors are contracted along imaginary time into an elementary
Trotter tensor T0. Along each bond there are 3 bond indices of
dimension 2 that are combined into a single one of dimension
8. A layer of T0 in Fig. 1(f) is the time step (9).

The evolution operator is a product of N such elementary
time steps

U (β) = [U (dβ)]N, (13)

where N = β/dβ is a number of time steps. So far, the only
approximation is the Suzuki-Trotter decomposition.

FIG. 1. In (a), the Trotter tensor Tx(dβ) with two spin indices
(red lines) and two bond indices (black lines) along the a axis. The
bond indices have (bond) dimension 2. In (b), the gate UXX(dβ) is a
layer of tensors Tx(dβ) contracted through their bond indices. In (c),
Tz(dβ) with bond indices along the b axis. In (d), the gate UZZ(dβ)
is a layer of Tz(dβ) contracted through their bond indices. In (e), the
six Trotter tensors contributing to the elementary time step U (dβ)
in Eq. (9) can be merged into a single elementary Trotter tensor T0

with a bond dimension 8. In (f), the time step U (dβ) is a layer of
tensors T0.

C. Coarse graining and renormalization in imaginary time

Equation (13) suggests to combine N elementary tensors
T0’s into a single PEPO tensor in a similar way as in Fig. 1(e)
the six Trotter tensors were combined into a single T0.
Unfortunately, along each bond this would require to combine
N bond indices of dimension 8 into a single one of dimension
8N . To prevent this exponential blowup with N , we proceed
step by step each time combining just two tensors into one:
T0 × T0 → T1, . . . ,Tn−1 × Tn−1 → Tn. Here,

n = log2 N = log2
β

dβ
(14)

is the total number of the coarse-graining transformations
that is only logarithmic in the total number of Suzuki-Trotter
steps N (and logarithmic in the small time step dβ). After
each step, Tm−1 × Tm−1 → Tm, the combined bond indices
are renormalized down to D by isometries Wm. The indices
along the a axis are renormalized by isometries Wx

m and those
along the b axis by Wz

m [see Fig. 2(a)]. Figure 3 shows the net
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FIG. 2. In (a), the coarse-graining step along the imaginary time.
Two Trotter tensors Tm−1 are combined and then renormalized into a
single tensor Tm. The renormalization is made by isometries Wx

m and
Wz

m on the bonds along the a axis and b axis, respectively. In (b), after
n coarse-graining transformations the PEPO tensor Tn is obtained. A
layer of contracted Tn makes the PEPO ansatz for the gate U (β). It
is equivalent to the PEPS ansatz for the purification |ψ(β)〉 when its
bottom spin indices are reinterpreted as ancilla indices.

outcome after m = 3 coarse-graining transformations. Along
each bond there are three layers of isometries, from W1 to W3,
that combine into a tree tensor network (TTN) [59].

A layer of Tn shown in Fig. 2(b) is the PEPO ansatz for the
gate U (β). When its bottom spin indices are reinterpreted as
ancilla indices it becomes a PEPS ansatz for the purification
|ψ(β)〉. Figure 4(a) shows how to combine two gates U (β)
into the Gibbs operator e−βH according to Eq. (6). A single
layer of transfer tensors t in Figs. 4(b) and 4(c) is an ansatz for
the partition function Z = Tre−βH .

D. Variational optimization

In order to optimize the isometries, we need an efficient
algorithm to calculate a tensor environment of each isometry. A

FIG. 3. Three coarse-graining transformations result in the Trot-
ter tensor T3. The isometries acting along a given bond combine into
a tree tensor network (TTN). They are optimized by repeated up and
down sweeps.

FIG. 4. In (a), the operator e−βH obtained after combining the
two gates U (β) and U †(β) in Fig. 2(b) according to Eq. (6). Here, the
layers of tensors Tn and T †

n represent U (β) and U †(β), respectively.
In (b), two tensors Tn combine into a transfer tensor t . In (c), a layer
of contracted transfer tensors is the partition function Z = Tre−βH .

tensor environment of Wm is the tensor EWm
that is generated by

removing one Wm from the partition function. It is proportional
to the gradient ∂Z/∂Wm. The algorithm proceeds step by step
down the hierarchy of isometries.

A preparatory step is calculation of an environment
Et ∝ ∂Z/∂t of the transfer tensor t in Fig. 5(a). It is the
tensor that remains after removing one transfer tensor from
the partition function in Fig. 4(c). The infinite network Et

cannot be contracted exactly, but its accurate approximation,
that can be improved in a systematic way by increasing
a control parameter M , can be obtained with the corner
matrix renormalization (CMR) [60] described in Appendix A.
Once converged, Et is contracted with one Tn to yield an
environment ETn

of the PEPO tensor Tn [see Fig. 5(b)]. With
ETn

we can initialize a down-optimization sweep.
From ETn

, we obtain the environments EWx
n

and EWz
n

[see
Fig. 6(a)]. These environments are used immediately to update
their isometries (see Fig. 7). With the updated Wn we can
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FIG. 5. In (a), the tensor environment Et for the tensor t obtained
after removing one tensor t from the partition function in Fig. 4(c).
In (b), tensor environment ETn

for the PEPO tensor Tn obtained
from Et .

calculate ETn−1 [see Fig. 6(b)]. From ETn−1 we obtain the
environments EWn−1 and use them immediately to update the
isometries Wn−1. The same procedure is repeated all the way
down to W1 whose update completes the down sweep.

Once W1 were updated, an up-optimization sweep begins.
It has n steps. In the mth step, two tensors Tm−1 and the
environment ETm

, calculated before during the down sweep,
are contracted to obtain the environments EWm

and update the
isometries Wm [see Fig. 6(b)]. The updated Wm are used to

FIG. 6. In (a), the environments of the isometries Wx
m and Wz

m are
obtained from ETm

. In (b), the step from the environment ETm
down

to ETm−1 . There are two inequivalent contributions to ETm−1 . They add
up to ETm−1 = E

(1)
Tm−1

+ E
(2)
Tm−1

.

(a) E W m
x

SVD� U
Λ
V

(b)

W m
x � U V

FIG. 7. The update of the isometry Wx
m. In (a), the isometric

environment is subject to a singular value decomposition (SVD)
EWx

m
= UλV †. In (b), the isometry is updated as Wx

m = UV †.
A similar procedure is applied to Wz

m.

coarse grain Tm−1 × Tm−1 → Tm [see Fig. 2(a)]. This basic
step is repeated all the way up to Tn.

The up sweep completes one optimization loop consisting
of three stages:

(i) the CMR procedure:

Tn
CMR−→ Et → ETn

;

(ii) the down sweep:

ETn
→ EWn

→ ETn−1 → · · · → ET1 → EW1 ;

(iii) the up sweep:

T0 → EW1 → T1 → · · · → Tn−1 → EWn
→ Tn.

Here, each EWm
is used immediately to update Wm. The

loop is repeated until convergence.
The numerical cost of all the procedures in this section

scales like D8. Typically, it is subleading as compared to
the cost of CMR in Appendix A. Having thus outlined the
algorithm, we can proceed now with the results obtained for
the 2D quantum compass model (1).

IV. RESULTS

A. Order parameter and its susceptibility

The mean extrapolated values of the order parameter in the
symmetry-broken phase were fitted with the scaling function

Q(T ) ∝ (Tc − T )β, (15)

where β stands here for the critical exponent of the order
parameter (this notation is widely accepted and we use it
in this section only). In this way, the critical temperature
was estimated as Tc = 0.060 90, where the number of digits
indicates precision of the linear fit alone. The exponent was
estimated here as β = 0.223 that is close but somewhat
removed from the exact β = 1

8 .
In the symmetric phase on the other side of the transition,

the mean extrapolated values of the linear susceptibility were
fitted with

χ (T ) ∝ (T − Tc)γ , (16)
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FIG. 8. In (a), the order parameter Q in Eq. (2) in the symmetry-
broken phase near the phase transition. The mean value was obtained
by extrapolation of the renormalization error to 0 (see Appendix B
and Fig. 10). The error bounds show the errors of the extrapo-
lation. The mean value was fitted with Q(T ) ∝ (Tc − T )β , where
β = 0.223 is the order-parameter exponent and the critical tempera-
ture Tc = 0.060 90. In (b), a log-log plot of the mean value and the
best fit.

where γ is the susceptibility exponent. The susceptibility is
defined as

χ = dQ

dA

∣∣∣∣
A=0

, (17)

where A is the anisotropy of the coupling constants in
Eq. (1): Jx = 1 + A/2 and Jz = 1 − A/2. The derivative (17)
was approximated accurately by a finite difference between
A = 10−5 and 0. The fit (16) yields Tc = 0.060 21 and
γ = 1.35. The exponent is again somewhat removed from the
exact γ = 1.75. The estimate of Tc is close to that obtained
from the order parameter on the other side of the critical point.

Relatively large errors of the critical exponents β and γ

originate from estimates made relatively far from the critical
point. Due to the nonanalyticity at the critical point, even a
tiny error in the estimate of Tc translates into a large error of a
critical exponent.

Figures 8 and 9 show the order parameter and its linear
susceptibility as a function of inverse temperature β in the
symmetry-broken and symmetric phases, respectively. The
results are converged in the environmental bond dimension
for M � 40, but they are not quite converged in the bond
dimension D � 15. As explained in Appendix B, instead of
the straightforward extrapolation with 1/D → 0, it is more
reliable to make a smoother extrapolation with the actual error
inflicted by the finite D. What is more, we found that an
extrapolation with only the dominant error ez → 0 is smoother
[we recall that Q > 0 by our convention (2)]. We expect that,
at least away from the critical point, physical quantities are
analytical in ez and, consequently, for small enough ez they
become linear. This expectation is confirmed by our data.
Examples of linear fits used for the extrapolation are shown
in Figs. 10 and 11. These fits include data for D = 8, . . . ,15.
For some D there is more than one data point corresponding
to different random tensors used to initialize the variational
optimization. Since ez does not capture all relevant errors (for
instance, it does not control the accuracy of the environmental

FIG. 9. In (a), the linear susceptibility χ in (16) of the order
parameter in the symmetric phase. The mean value was obtained
by extrapolation of the renormalization error to 0 (see Appendix B
and Fig. 11). The error bounds show the errors of the extrapolation.
The mean was fitted with χ (T ) ∝ (T − Tc)γ , where γ = 1.35 is the
susceptibility exponent and Tc = 0.060 21. In (b), a log-log plot of
the mean value and the best fit.

tensors), it is not justified to keep only the smallest ez for each
D. The quality of the linear fits decreases when the critical
point is approached from either side.

The two estimates can be combined into a rough
confidence interval Tc ∈ [0.0602,0.0609], or equivalently
Tc � 0.0606(4), giving a better idea of the actual error of
the method than the tiny errors of the linear fits alone. Our
result agrees well with the most reliable quantum Monte Carlo
estimate Tc = 0.0585(3) (see Ref. [55]).

FIG. 10. Three examples of the extrapolation of the order param-
eter Q (2) described in Appendix B, to the vanishing renormalization
error ez → 0. Here, the decreasing ez corresponds to increasing
D = 8, . . . ,15. The results are converged for the regime of M � 40.
The quality of the linear fit decreases with β decreasing towards the
phase transition. Each fit is used to extrapolate to ez = 0 and estimate
the errors of the extrapolation. The means and error bounds are shown
in Fig. 8.
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FIG. 11. Three examples of the extrapolation of the susceptibility,
described in Appendix B, to the vanishing renormalization error
ez → 0 for (a) β = 15.5, (b) β = 14.75, and (c) β = 13.09. Here, the
decreasing ez corresponds to increasing D = 8, . . . ,15. The results
are converged for the regime of M � 40. The quality of the linear
fit deteriorates with β increasing towards the phase transition. Each
fit is used to extrapolate to ez = 0 and to estimate the errors of this
extrapolation, shown together with the mean value in Fig. 9.

B. Spin-spin correlation functions

In agreement with predictions for any finite temperature [6],
but in contrast with quantum Monte Carlo [55], we find zero
spontaneous magnetization

〈Xm〉 = 0 = 〈Zm〉, (18)

within the numerical precision of 10−5. There is neither any
local magnetization nor any long-range order in the spin-spin
correlators.

The spin-spin correlations in the symmetry-broken phase
at β = 17.2 are shown in Fig. 12. The dominant correlation

FIG. 12. Top: spin correlations for increasing distance d at
β = 17.2: (a) the dominant correlation function 〈XmXm+ead〉 along
the a axis obtained for D = 15 and converged in M for M = 40, and
(b) the transverse correlation function 〈ZmZm+ebd〉 along the b axis
obtained for D = 15 and converged in M for M = 60. Bottom: (c)
the dominant correlation length ξ as a function of the error estimate
for different D. The extrapolation to zero error gives ξ = 40(2), and
(d) the transverse correlation length ξ as a function of the error. The
extrapolation gives ξ = 6.9(4).

function along the a axis is exponential but relatively long
ranged with a correlation length estimated at ξ = 40(2). The
transverse correlations decay exponentially on a much shorter
transverse correlation length estimated at ξ = 6.9(4).

C. Numerical details

All calculations were done in MATLAB with an extensive
use of the NCON procedure [61]. They were checked for
convergence in the elementary time step dβ � 0.005. The
number of isometric layers was fixed at n = 12 with the
number of time steps N = 2n = 4096. To give an idea of
the actual time and computer resources needed to perform
the algorithm, the most challenging data points nearest to the
phase transition at β = 15.5 and 16.6, with the highest bond
dimensions D = 15 and M = 40, required one to two days on
a desktop. This time was needed to reach good convergence
after ∼102 iterations of the optimization loop. In each loop,
the CMR procedure made tens of iterations to converge the
environmental tensors.

At β = 15.5 and 16.6, the calculations with D = 15 were
initialized by embedding converged tensors with smaller D and
the tensors with the smallest D = 8, . . . ,10 were converged
after initialization with random numbers. At each point, 100
simulations with random initialization were performed to
exclude other solutions. The calculations farther away from
criticality were initialized with tensors converged closer to it.
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TABLE I. Estimates of the critical temperature Tc for the 2D
isotropic quantum compass model with Jx = Jz = 1 as obtained by
different methods [see Eq. (1)].

Tc Method Ref.

0.0625 High-T expansion [56]
0.075(2) Trotter QMC [28]
0.055(1) QMC periodic BC [29]
0.0585(3) QMC screw BC [55]
0.0606(4) VTNR This work

Additionally, for D = 8, . . . ,10 at β = 15,14.5,14,13.5,13
and 17.2,17.0,16.8,16.7 further random initializations were
performed, 100 each time, to exclude other solutions. The
further away form the phase transition, the fewer iterations
were necessary to reach convergence.

V. SUMMARY AND CONCLUSIONS

We applied the variational tensor network renormalization
(VTNR) in imaginary time, first introduced in Ref. [31],
to the 2D quantum compass model demonstrating its ap-
plicability beyond the quantum Ising model, in a model of
interacting pseudospins close to geometric frustration. The
method makes efficient use of the bond dimension and it
is only logarithmic in the total number of Suzuki-Trotter
imaginary-time steps. An important new algorithmic feature is
the extrapolation in the small error inflicted by the finite bond
dimension D.

The presented VTNR reproduces the thermodynamic phase
transition in the 2D quantum compass model. In the symmetry-
broken phase atT < Tc, we find nematic order with long-range
spin correlations along the dominant axis, and short-range
correlations in the transverse direction, but no spontaneous
magnetization. We also attempted to estimate the order-
parameter exponent β = 0.224 and the susceptibility exponent
γ = 1.35 that are close but somewhat removed from the exact
values β = 0.125 and γ = 1.75, respectively.

The present approach provides a controlled estimate of the
critical temperature at Tc = 0.0606(4). In Table I, we compare
this result with earlier estimates including the most recent
QMC [55] with screw boundary conditions (BC). These BC
remove anomalous scalings observed in the case of periodic
BC without introducing the sign problem making Ref. [55]
the most reliable benchmark. Our estimate at 3.5% above their
Tc = 0.0585(3) is in good agreement with QMC. The accuracy
of QMC is limited by extrapolation to infinite system size while
the accuracy of our infinite tensor network by extrapolation to
infinite bond dimension. This positive test suggests that the
method used here could be a competitive tool to treat systems
suffering from the sign problem.
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APPENDIX A: CORNER MATRIX RENORMALIZATION

An infinite network, like the one in Fig. 4(c), cannot be
contracted exactly but, fortunately, what we often need is not
this number, but a tensor environment for a few sites of interest
like, for instance, the environment Et in Fig. 5(a). From the
point of view of the removed t , its exact infinite environment
can be substituted with a finite effective one made of finite
corner matrices C and edge tensors Ex and Ez (see Fig. 13).
The environmental tensors C and E are contracted with each
other by environmental bond indices of dimension M . By
increasing M , the effective Et can be converged towards the
exact one in a systematic way. When the correlation length is
finite, the convergence is reached exponentially at a finite M .
At a critical point, even though the correlation length ξ (M)
remains finite for any finite M , it quickly diverges with a
power of M making local observables and correlations up to
the distance ξ (M) converge to their exact values [31,50].

The finite tensors C and E represent infinite sectors of the
network in Fig. 13(a). The tensors are converged by iterating
the corner matrix renormalization in Figs. 13(c)–13(e). In
every renormalization step, the corner C is enlarged to C ′′. This
operation represents the top-left corner sector in Fig. 13(a)
absorbing one more layer of tensors t . The enlarged C ′′ is
subject to singular value decomposition C ′′ = ZzλZ

†
x [see

Fig. 13(e)]. λ is truncated to M largest singular values and
the unitaries Zz and Zx to the corresponding isometries. The
isometries renormalize C ′′ and the enlarged edge tensors to a
new corner C ′ and edges E′, respectively. The whole procedure
is iterated until convergence.

The numerical cost of converging the environmental tensors
is O[M3(D2)3], where D2 is the bond dimension of t . The cost
of calculating ETn

can be reduced to O(M2D6,M3D4) if one
goes directly from the environmental tensors to ETn

without
calculating the intermediate Et .

APPENDIX B: ERROR ESTIMATE

Observables should be converged not only in M but also
in D. A modest D � 7 is sufficient in the 2D quantum Ising
model [31], but in realistic models rather than full convergence
we would expect to get close enough to it to make a reliable
extrapolation with 1/D → 0. However, the raw 1/D may be
not the most reliable small parameter for the extrapolation [40].
For instance, the PEPO ansatz may not change much between
D and D + 1 but then suddenly improve for D + 2 making
the dependence of observables on 1/D rough. A more direct
measure of the actual error inflicted by a finite D would make
the dependence smoother and the extrapolation more reliable.

The measure can be constructed in a similar way as for
the zero-temperature PEPS [40]. Figure 14 shows the network
used to estimate the error inflicted by the isometries Wx with
the bond dimension D. This network is a number Nx

D . When
the bond dimension of the isometries on the central bond is
enlarged to D′ > D and the enlarged isometries on this bond
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(a)

(b)

(c)

(d)

(e)

FIG. 13. In (a), planar version of the partition function in
Fig. 4(c). From the point of view of the central tensor t , this infinite
network can be replaced by a finite effective one made of a corner
matrix C and edge tensors Ex and Ez. Each of them represents its
corresponding infinite sector delimited by the blue dashed lines. The
environmental tensors contract through bond indices of dimension
M . In (b), the finite effective environment Et made of the finite
environmental tensors. With increasing M it becomes the exact one
in Fig. 5(a). In (c), a network equivalent to the networks in panel (a).
Here, the blue dashed lines separate enlarged environmental tensors.
In (d), the enlarged tensors are renormalized by isometries Zx and
Zz to new tensors C ′, E′

x , and E′
z back with the environmental bond

dimension M . In (e), the isometries are obtained from a singular value
decomposition (SVD) of the enlarged corner: C ′′ = ZzλZ†

x .

are optimized, then the number becomes Nx
D′ . It converges

to Nx
∞ for a large enough D′. In our calculations, D′ = 4D

proved to be sufficient. The relative error is given by

ex(D) = (
Nx

∞ − Nx
D

)
/Nx

∞. (B1)

C E x E x C

E z t t E z

C E x E x C

FIG. 14. The network used to estimate the error along the central
a bond inflicted by the isometries Wx

m with the bond dimension D.
Its contraction is a number Nx

D . When the bond dimension of the
isometries on the central bond is enlarged to D′ > D and the enlarged
isometries on this bond are optimized, the number becomes Nx

D′ . For
large enough D′ it converges to Nx

∞. The relative error ex is given by
Eq. (B1).

In a similar way, we obtain the error inflicted by isometries
Wz on a bond along the b axis:

ez(D) = (
Nz

∞ − Nz
D

)
/Nz

∞. (B2)

APPENDIX C: FIGURE OF MERIT

The algorithm optimizes each isometry Wx
m to maximize

its overlap with its environment EWx
m
. As the overlap is

proportional to the partition function Z, the optimization aims
at maximizing Z. We will argue that in the compass model
maximizing Z is equivalent to minimizing the error inflicted
on Z by the isometry.

Indeed, the n layers of isometries Wx
1 , . . . ,Wx

n make a tree
tensor network like the one shown in Fig. 3 in case of n = 3
layers. The whole TTN is also an isometry to be called Wx .
(We note in passing that in principle the TTN could be replaced
with a more general tensor network like the one in Ref. [62],
but it is not clear at the time of writing how to perform its
variational optimization with full tensor environment.) In the
PEPO ansatz for the gate U (β) in Fig. 2(b) on every bond
along the a axis there are two isometries Wx that combine
into a projector Px = WxW

†
x . We want to minimize the error

inflicted on the partition function by Px .
The partition function in Fig. 4 can be represented by the

effective network in Fig. 14. We focus on the two projectors Px

on the central bond, one in each of the two layers U (β). Given
the left-right symmetry of this network reflecting the symmetry
of the compass model, it can be shown that EPx

= MM†,
where M is a huge matrix representing the left half of Fig. 14.
The environment is symmetric and positive-semidefinite,
hence, the partition function is distorted least by the projector
Px that maximizes its contraction with EPx

(see Fig. 15). This
optimal projector is made of isometries that in turn maximize
their overlaps with the respective environments.

In order to put this simple result in a more general context,
let us consider now EPx

that is not positive-semidefinite but
is still symmetric. Since the Px to be contracted with EPx
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(a)

TTN TTND

EPx

P x

(b)

TTN TTN
sign

EPx

FIG. 15. In (a), n layers of isometries Wx
1 , . . . ,Wx

n make a TTN
(see Fig. 3 in case of n = 3 layers). The TTN is also an isometry to be
called Wx . Two TTNs make a projector Px = WxW

†
x . In (b), the sign

matrix (C2) is inserted into the central bond. After this insertion the
isometries Wx

m can be updated by maximizing their overlaps with their
respective environments even when EPx

is not positive-semidefinite.

is symmetric, hence, only the symmetric part of EPx
matters

anyway. Now, the least distortive projector is no longer the one
on the largest eigenvalues of EPx

, but that on the eigenvalues
with the largest magnitudes. The huge EPx

can be neither

diagonalized nor even calculated, but the D × D matrix ePx

obtained after cutting the central D bond in Fig. 15 is EPx

projected on a D-dimensional subspace. This matrix can be
efficiently calculated and diagonalized,

ePx
=

D∑
α=1

|α〉λα〈α|, (C1)

and we can construct its sign operator

sign(ePx
) =

D∑
α=1

|α〉 sign(λα)〈α|. (C2)

Inserting this sign into the cut D bond in Fig. 15 is equivalent
to replacing the eigenvalues of EPx

by their magnitudes.
With the inserted sign, the least distortive isometries Wx

m are
again those that maximize their overlaps with their respective
environments. The sign insertion is a redundant null operation
when EPx

� 0, like in the quantum compass or quantum
Ising models, but it proves essential in the fermionic Hubbard
model [63].
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[35] U. Schollwöck, Ann. Phys. (NY) 326, 96 (2011).
[36] F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066; V. Murg,

F. Verstraete, and J. I. Cirac, Phys. Rev. A 75, 033605 (2007); G.
Sierra and M. A. Martin-Delgado, arXiv:cond-mat/9811170; T.
Nishino and K. Okunishi, J. Phys. Soc. Jpn. 67, 3066 (1998); Y.
Nishio, N. Maeshima, A. Gendiar, and T. Nishino, arXiv:cond-
mat/0401115; Z.-C. Gu, M. Levin, and X.-G. Wen, Phys. Rev.
B 78, 205116 (2008); J. Jordan, R. Orús, G. Vidal, F. Verstraete,
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