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Laser-induced polarization of a quantum spin system in the steady-state regime
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The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in
which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several
general results for the behavior of the time-average magnetization caused by the laser field. The induced
magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate
the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies,
that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the
slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The
anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and
antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field)
have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where
the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes
in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy.
The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic
interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We
show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by
the high-frequency laser field in the steady-state regime in “easy-axis” antiferromagnetic spin systems (e.g., in
Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the
spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.
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I. INTRODUCTION

Dynamics and relaxation under the effect of laser fields
have attracted much attention during recent years. Ultrafast
manipulation with laser fields can lead to states of matter which
do not exist in equilibrium. Recently, several applications of
intense laser fields to systems of interacting particles have been
predicted theoretically and realized in experiments, including
Mott insulators [1], superconducting systems [2], systems
of ultracold atoms [3], and topological transitions [4]. An
application of the intense laser field can change, e.g., the
repulsion between electrons to attraction because it induces
inversion of the population, corresponding to “negative”
effective temperatures, which implies changing the sign of the
interaction between particles [5]. The laser field (especially in
the terahertz regime) can provide a direct way of manipulating
the motion of charges and spins at the femtosecond time scale
[6]. Terahertz-induced magnetic dynamics can address spins
via the Zeeman interaction [7].

To study magnetic properties of quantum spin systems
one usually applies the static magnetic field and measures
the induced magnetization as a function of the applied
field. However, for interacting spin systems such a study
requires very high values of magnetic fields, up to 100 T.
Recently, studying magnetic systems under the action of
high-frequency laser fields was proposed [8]. The idea explores
the unitary transformation of the circularly polarized laser
field to an effective magnetic field applied perpendicular to
the polarization plane, with the effective magnitude of the
magnetic field equal to the frequency of the laser. It was
shown [8] that such a circular polarization is the key ingredient

of the laser-induced magnetization of spin systems. It turns
out that a laser with the frequency of the terahertz range
can typically produce such an effective magnetic field (in the
rotating frame) of the order of 40 T, while the magnitude of
that laser field is usually less than 0.5 T. This way, stronger
effective fields can be obtained by increasing the frequency
of the laser. Similar results were predicted for the linear
polarized laser field [9]. Recently, a similar approach was used
in Ref. [10] for the theoretical investigation of gapped spin-1
systems. Notice that in Refs. [8,10] the effect of laser fields
on spin systems was considered in the dynamical regime, not
taking into account possible relaxation processes. However,
it is clear that damping can essentially change the behavior
of the laser-induced magnetization (see Ref. [9] for the linear
laser polarization).

In this work the effect of the circularly polarized laser
field on several quantum spin systems in the steady-state
regime has been studied. That regime takes place at large
time scales. The induced magnetization oscillates with the
frequency of the laser field in the steady-state regime. It is
different from the dynamical regime (small time scales), in
which oscillations with the laser frequency are modulated
by Rabi-like oscillations. The latter are smeared out by the
relaxation at large time scales. The magnetic anisotropy causes
the resonance behavior of the time-averaged magnetization.
Nonlinear effects (in the magnitude of the laser field) can
cause jumps and cusps in the frequency dependence of the
steady-state value of the time-averaged magnetization. Such
nonlinear effects are stronger for ferromagnetic interactions
and weaker for the antiferromagnetic case. The resonance
frequency is relatively small (proportional to the anisotropy
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value) for spin systems with ferromagnetic interactions, and
it is enhanced by the exchange interaction in spin systems
with antiferromagnetic couplings. That is why we suggest
studying the laser-field-induced magnetization of quantum
spin systems caused by the high-frequency laser field in the
steady-state regime, namely, in “easy-axis” antiferromagnetic
spin systems. The other main statement of our work is the
following. The effective Hamiltonian of the spin system
under the action of the circularly polarized laser field in a
rotating frame determines only the dynamics of spins, not the
thermodynamics. The action of the circular polarized laser
field drastically differs from the one of the static magnetic
field. The latter changes the thermodynamic properties of the
system together with dynamics. As usual, for the Hermitian
Hamiltonian the laser field induces oscillations of spins of the
considered system and thus the oscillation of the projection of
the magnetization. That is why the circularly polarized laser
field (i.e., the periodic driving force acting on the spins of a
magnet) can induce significant enhancement of the projection
of the magnetization only for some period of time (smaller than
the inverse frequency of the laser field). Then, the projection of
the magnetization reaches its maximal value and then becomes
smaller and so on. The circular polarized laser field itself
does not induce stationary changes of the magnetization of
the spin system. It can cause only the mean steady-state value
of the magnetization, about which the latter oscillates under
the action of the driving force. Such a mean value (as well as
the magnitude of oscillations) depends on many parameters of
the system, including the presence (absence) of the magnetic
anisotropy, the sign of the isotropic spin-spin interactions, and
the value and form of relaxation in the system. On the other
hand, the static magnetic field induces stationary changes of
the projection of the magnetization together with the standard
Zeeman oscillations of the magnetization.

II. LASER-INDUCED MAGNETIZATION:
THE STEADY STATE

Consider the quantum spin system with interactions be-
tween spins. Suppose the system is situated in the circularly
polarized electromagnetic field of a laser. The Hamiltonian of
the system can be written as

H = His + Han − h
∑

n

[
cos(ωt)Sx

n − sin(ωt)Sy
n

]
, (1)

where S
x,y,z
n are the operators of the projections of the spin

situated at the site n, t is time, h = gμBh0 and ω are the
magnitude (h0) and the frequency of the circular polarized laser
field (g is the effective g factor, and μB is Bohr’s magneton),
His = J

∑
n,δ Sn · Sn+δ is the part of the Hamiltonian which

describes isotropic (exchange) interactions with the coupling
constant J between spins of the system, and, finally, Han

describes the magnetic anisotropy. Here we limit ourselves to
the uniaxial anisotropy, for example, Han = ∑

n,δ AδS
z
nS

z
n+δ ,

where Aδ are anisotropy constants. (For δ = 0 the model
describes the single-ion anisotropy, while for δ �= 0 it describes
the interion anisotropy).

It is well known that the dynamics of any measurable values
in quantum mechanics can be described in two ways. In the first
approach one can write the Heisenberg equations of motion for

operators of those quantities and average the obtained results
either with the wave function (for the pure state) or with the
density matrix (for the mixed state) of the system taken at a
fixed time. In the second approach one can find the solution of
the nonstationary Schrödinger equation for the wave function
of the system (or the Liouville equation for the density matrix)
and then average the considered operator with the obtained
time-dependent wave function or density matrix. Naturally, if
one realizes these procedures exactly, the result must be the
same. Let us use the second approach. The Liouville equation
for density matrix ρ has the form

i�ρ̇ = [H,ρ]. (2)

To consider the effect of the circular polarized laser field
it is useful [8] to perform the unitary transformation ρ =
Uρ1U

−1, where U = exp(iωt
∑

n Sz
n). For the spin system it

is equivalent to the transition to the rotating frame. Then the
equation of motion for ρ1 can be written as

i�ρ̇1 = [H1,ρ1], (3)

where H1 = U−1HU + �ω
∑

n Sz
n. For the system described

by the Hamiltonian (1) the Hamiltonian H1 can be written
exactly, H1 = His + Han − h

∑
n Sx

n + �ω
∑

n Sz
n.

Usually, however, the spin system is not isolated. For
example, there are processes which export the energy from
the system, i.e., relaxation processes. Relaxation can be
considered in a number of ways. For simplicity it is possible
to use the relaxation first introduced in Ref. [11]. Namely,
one can write the Liouville equation of motion for the density
matrix as the “quantum Boltzmann kinetic equation” for the
density matrix in the approximation of relaxation time in the
form

i�ρ̇ = [H,ρ] − i�γ (ρ − ρ0). (4)

Here the relaxation of the density matrix with the rate γ to the
state with the density matrix ρ0 was introduced. The reason
for the relaxation of the density matrix is the interaction of the
considered system with some environment; such an interaction
withdraws energy from the considered system. For example,
for the studied quantum spin system the crystal lattice (i.e.,
the elastic subsystem) can serve as such an environment.
This approximation implies equal relaxation times for all
eigenmodes of the system. It is equivalent to the Bloch form of
the relaxation in the theory of the nuclear magnetic resonance
[12]. (Two relaxation times as in Bloch’s approach can be
easily introduced in the above scheme by using different
relaxation rates for diagonal and nondiagonal components of
the density matrix.) In general, one can use the Lindblad master
equation [13] for the description of relaxation processes, which
describes several methods of dissipation. In particular, one can
speak about Bloch-like terms (with the relaxation rate) in the
Lindblad equations and other terms which are similar to the
Torrey phenomenological theory [14], which adds diffusion
processes to the Bloch equations. It is possible to show that
the effect of relaxation in the Bloch form is similar to the effect
of relaxation in the Landau-Lifshitz form for spin systems [15].
Here we are interested mostly in the homogeneous response
and can neglect the spatial dependence of relaxation. So in the
limit of small relaxation rates the quantum Boltzmann equation
and the Lindblad equation yield similar results. In our approach
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the temperature dependence in the thermal equilibrium appears
via ρ0 = exp(−H0/T )[Tr exp(−H0/T )]−1, where T is the
temperature (the Boltzmann constant is taken to be equal to 1)
and H0 is the Hamiltonian that describes the state to which the
system relaxes. Obviously, after the unitary transformation we
can write

i�ρ̇1 = [H1,ρ1] − i�γ (ρ1 − Uρ0U
−1). (5)

III. STEADY-STATE MAGNETIZATION IN
MAGNETICALLY ISOTROPIC SYSTEMS

First, let us consider the spin system without magnetic
anisotropy, Aδ = 0. All projections of the total spin Sx,y,z =
(1/N )

∑
n S

x,y,z
n (N is the number of spins) commute with the

HamiltonianHis. In that case it is possible to write equations of
motion for the average values of operators of spin projectors
with the density matrix 〈Sx,y,z〉 = Tr(ρSx,y,z) (they can be
called the quantum Boltzmann equations too) as

i�

[
∂〈S̃±〉

∂t
+ γ (〈S̃±〉 − S̃±

0 )

]
= ∓�ω〈S̃±〉 ∓ h〈Sz〉,

i�

[
∂〈Sz〉
∂t

+ γ
(〈Sz〉 − Sz

0

)] = −h

2
(〈S̃+〉 − 〈S̃−〉). (6)

The approach is similar to the Bloch equations. Here the
standard notations S± = Sx ± iSy , S̃± = US±U−1, and S̃±

0 =
US±

0 U−1 are used. Notice that, obviously, Sz = S̃z and Sz
0 =

S̃z
0. Here we supposed that the system relaxes to the state

with the values of spin projections S
x,y,z

0 . The latter can be
determined, e.g., by the Hamiltonian of the system in the
thermal equilibrium (i.e., not taking into account the effect
of the laser field) [9] or in some other way [11]. One can
see that S

x,y,z

0 determine the temperature dependence of the
system in thermal equilibrium in this approach. The solution
of these equations describes the dynamics of the isotropic
quantum spin system under the action of the circular polarized
laser field if the relaxation is taken into account in the simplest
form. Notice that the set of equations (6) is closed.

It is instructive to look for the solution of these equations
in two important limits. First, one can be interested in the
dynamical regime of the spin system under the action of
the laser field. It happens for t � γ −1. In this limit it is
possible to neglect terms proportional to γ on the left-hand
sides of Eqs. (6). Such a situation was studied in Refs. [8,10].
The solution (we suppose an initially nonzero value of 〈Sz〉)
describes oscillations of Sx,y,z with the frequency of the
laser field ω modulated by the Rabi-like frequency � =√

ω2 + (h/�)2. For example, the z component of the laser-
induced spin moment (the magnetization is proportional to
that component multiplied by gμB) is

〈Sz〉 ∼ h

��

{
cos(ωt) − cos[(ω − �)t] − h

��
[1 − cos(�t)]

}
.

(7)

Notice that here the effective field
√

ω2 + (h/�)2 is
much larger than in the case when the static mag-
netic field H is present and the Rabi-like frequency is√

(ω − H/�)2 + (h/�)2, which in resonance is small, � ∼
h/�. For the standard for laser field situations, �ω > h;

hence, the values of spin projections oscillate almost with
the frequency ω + � ≈ 2ω, modulated by the low frequency
|ω − �| ≈ h2/2�

2ω. By time averaging Eq. (7) we get 〈Sz〉 ≡
limA→∞(1/A)

∫ A

0 〈Sz〉dt ∼ −(h/��)2. At small t � |ω|−1

Eq. (7) can be expanded, yielding 〈Sz〉 ∼ (h/2)(t/�)2[�ω −
h]. The latter essentially implies the results of Refs. [8,10].

However, in this work we are interested in the steady-state
regime, t � γ −1. For that case it is possible to neglect the
terms with time derivatives in Eqs. (6). Equations (6) are
the system of inhomogeneous linear differential equations
(LDEs). It is known that the solution of an inhomogeneous
LDE can be constructed as the general solution of the
respective homogeneous LDE (the complementary function)
plus a particular integral of the inhomogeneous LDE. The
complementary functions of Eqs. (6) are oscillating-in-time
functions, which decay in time as exp(−γ t). Hence, we can
neglect this part for t � γ −1. On the other hand, the solution
of Eqs. (6) presented below with neglected time derivatives
has particular integrals of Eqs. (6) considered as the set
of inhomogeneous LDEs. Namely, those particular integrals
describe the steady state that is of interest for our purposes.
The total time evolution of the system, described by Eqs. (6), at
large times is also determined by the (oscillating and decaying
in time) complementary functions, i.e., by Eq. (7) multiplied by
exp(−γ t). A similar time evolution can be seen, for example,
in Ref. [9], where the dynamics of the spin system under
the action of the linear polarized laser was studied. One can
see below that in the steady-state regime (t � γ −1) there are
oscillations of the magnetization with the frequency of the
laser field ω for nonzero S±

0 . The solutions for the average
spin projectors in the steady-state regime can be written as

〈Sz〉 = Sz
0 − hX,

〈S̃x〉 = S̃0 − �ωX, (8)

〈S̃y〉 = �γX,

where

X = hSz
0 + �ωS̃x

0 + �γ S̃
y

0

h2 + (�ω)2 + (�γ )2
. (9)

Hence, in the steady-state regime average values of the
projectors of spin operators oscillate with the frequency of the
circular polarized laser field ω [notice that S̃x → Sx cos(ωt) +
Sy sin(ωt) and S̃y → Sy cos(ωt) − Sx sin(ωt), with similar
relations for S̃

x,y

0 ]. We see that in the steady-state regime the
Rabi oscillations with the frequency � are damped by the
relaxation (see Ref. [9] for the case of the linear polarized
laser field), and the average values of spin projections oscillate
only with the laser frequency.

Consider the ensemble-averaged value of the projection of
the spin, along which the effective magnetic field of the laser
�ω in the rotating frame is directed, 〈Sz〉 (the one studied
in Refs. [8,10]). It oscillates with the frequency ω about its
mean value (the latter can be calculated by averaging 〈Sz〉
with respect to time; see above)

〈Sz〉 = Sz
0

(
1 − h2

h2 + (�ω)2 + (�γ )2

)
. (10)

Figure 1 shows the dependence of such a mean value of the
total spin moment of the isotropic system (normalized by Sz

0)
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FIG. 1. The normalized average value M = 〈Sz〉/Sz
0 of the time-

averaged projection of the total spin of the system with isotropic
spin-spin (ferromagnetic) interactions as a function of the frequency
of the applied circular polarized laser field ω in the steady-state
regime. We used the parameters �γ = 0.01|J | and h = 0.1|J |. (We
normalize all energy values to the value of the isotropic exchange
interaction |J | = 1.)

as a function of the laser frequency in the steady-state regime.
The slope of the curve at low frequency is proportional to the
power of the laser field (determined by h2), and it depends
on the ratio (h/�γ )2. For very small h the average value of
the total spin moment can be approximated by Sz

0 for most
frequencies. Notice that this answer [Eq. (10)] is universal.
It does not depend on which kind of isotropic exchange
interaction is considered (ferromagnetic, antiferromagnetic,
inhomogeneous, spin frustrated), and it is independent of
which kinds of low-energy excitations are present in the system
(whether they are gapless or gapped). The only necessary
condition for the existence of that answer is the absence of
the magnetic anisotropy. It is important to notice also that,
on the other hand, for the isotropic antiferromagnetic system
without external static magnetic field we have S

x,y,z

0 ≡ 0, and
hence, 〈Sz〉 = 0 for any values of the frequency and magnitude
of the circularly polarized laser field, ω and h. In this sense
Fig. 1 is rather related to the spin system with the ferromagnetic
isotropic interaction between spins.

IV. EFFECT OF THE MAGNETIC ANISOTROPY:
FERROMAGNETIC SYSTEMS

Now, let us consider the effect of the nonzero magnetic
anisotropy.

Let us first study the steady-state regime of the effect of
the circular polarized laser field on the quantum spin system
with the ferromagnetic spin-spin interaction. Here it is more
convenient to write Heisenberg equations of motion for spin
operators and then average them with the density matrix taken
at some fixed time. When writing the equations of motion
for spin projections, one can see that the situation drastically
differs from the isotropic case. Other operators, bilinear
in spin-projection operators, e.g., ±Aδ(Sz

n−δS
±
n + S±

n Sz
n+δ),

appear on the right-hand sides of Heisenberg equations of
motion for spin projections. Then, to study the dynamics,
one needs to write Heisenberg equations of motion for
such pair-correlation functions. The equations for the latter
will have cubic terms in spin-projection operators on their
right-hand sides. The simplest way to take into account such
terms is to use the dynamical mean-field-like approximation
[9,16]. In that method we truncate the above-mentioned
procedure by approximating averages of quadratic forms of
spin-projection operators by the products of two averages
of spin-projection operators. Then, naturally, one needs to
determine self-consistently the values of those averages of spin
projections. From now on, for simplicity we consider the case
S = 1/2 with Aδ = A for fixed δ (for example, for the nearest-
neighbor coupling in the ferromagnetic chain we have δ = ±1;
we consider A < 0, i.e., the easy-axis anisotropy for the
ferromagnetic exchange coupling J < 0). The generalization
for the case of any value of spin S is straightforward.

After averaging with the density matrix and after the
introduction of relaxation into equations of motion, analogous
to the isotropic case (6), we obtain the quantum Boltzmann
equations,

i�

[
∂〈S̃±〉

∂t
+γ (〈S̃±〉−S̃±

0 )

]
=∓(�ω−ZA〈Sz〉)〈S̃±〉 ∓ h〈Sz〉,

i�

[
∂〈Sz〉
∂t

+ γ
(〈Sz〉 − Sz

0

)] = −h

2
(〈S̃+〉 − 〈S̃−〉), (11)

where Z is the coordination number (for example, for the
ferromagnetic spin chain we have Z = 2). Now our goal is
to look for the steady-state solution of this set of equations
for t � γ −1. The solution shows that all components of the
average values of spin projections oscillate with the frequency
of the circularly polarized laser field ω (the oscillations with
the Rabi frequency � are damped in the steady-state regime).
The averaged in time (mean) value of the projection of the spin
along the anisotropy axis is determined from the solution of
the self-consistency equation

〈Sz〉 = Sz
0

(
1 − h2

h2 + (�γ )2 + (�ω − ZA〈Sz〉)2

)
. (12)

It is the cubic equation with respect to 〈Sz〉. It is possible to
obtain solutions of that equation in the closed form (e.g., via
the modified Cardano’s formula). However, the exact analytic
form of those solutions is very complicated, and we will
not present it here. For simplicity, we present the results of
calculations in graphical form for several values of parameters
in Fig. 2.

Again, as for the isotropic case, for large values of the
laser frequency the mean value of the spin projection tends
to Sz

0. Also at low frequencies the slope of the dependence
M(ω) is determined by the value of the laser power h2.
However, the magnetic anisotropy can cause specific features
in the frequency dependence of the averaged value of the spin
projection in the steady-state regime. Namely, the resonance
behavior appears: The frequency dependence of the mean
value of the magnetization, caused by the laser, shows the
depression related to the resonance �ω = ZA〈SZ〉 at low
values of the laser strength. The resonance is, obviously,
caused by the nonzero magnetic anisotropy. It is important
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FIG. 2. The solutions of the self-consistency equation for nor-
malized average value M = 〈Sz〉/Sz

0 of the time-averaged projection
of the total spin of the ferromagnetic spin-1/2 chain (Z = 2) with
anisotropic spin-spin interactions A = 0.1|J | as a function of the
frequency of the applied circular polarized laser field ω in the
steady-state regime. We used �γ = 0.01|J | and various values of
the power of the laser field. The solution for h = 0.01|J | is shown
as the red solid line, the solution for h = 0.1|J | is shown as the blue
dashed line, and the solution for h = 0.3|J | is shown as the black
dotted line.

to point out that in the dynamical regime, t < γ −1, such a
resonance behavior yields a small value of the Rabi frequency
� =

√
(ω − ZA〈Sz〉/�)2 + (h/�)2 which in resonance is de-

termined by h/�. Then, one can see that, depending on the
strength of the laser field, several different situations can exist.
For small values of h there can be a transition (jump) between
solutions. For higher values of the laser power the jump is
transformed into cusps. Figure 3 shows the behavior of M(ω)
more precisely for small values of ω for small h. Consider
the behavior of M(ω) according to Fig. 3. At small values of
ω there are three solutions related to one value of ω in the
considered range of parameters. To avoid this degeneracy, let
us consider how the value of M(ω) can be changed when we
increase ω from 0 to 0.5|J | (as in Fig. 3, exact solutions).
First, M(ω) decreases smoothly [according to the first root of
Eq. (12), shown as the blue long-dashed line in Fig. 3] until
some value of ω, at which there has to be a jump to the second
root (shown as the red solid line in Fig. 3). On the other hand,
with ω decreasing from 0.5|J | to 0, M(ω) decreases smoothly
[according to the first and second solutions of Eq. (12), shown
by the blue long-dashed and red solid lines in Fig. 3], and then
at some other value of ω it jumps to larger values, i.e., to the first
solution, shown by the blue long-dashed line. Hence, according
to this scenario, the value of M(ω) is mostly determined by
the first and the second roots of Eq. (12) (shown by the blue
long-dashed and red solid lines in Fig. 3), and the third root
(the green dotted line) presents a nonphysical solution. The real
values of ω, at which such jumps exist, cannot be determined
exactly: They may be determined by additional processes not
considered here. The situation is reminiscent of the theory of

FIG. 3. The blue long-dashed line shows the first solution of
the nonlinear equation [Eq. (12)] for h = 0.01|J | (see Fig. 2). The
red solid line shows the second solution, and the green dotted
line is related to the third solution. The black dashed line shows
the approximate solution calculated according to Eq. (13). Other
parameters are the same as in Fig. 2.

the first-order phase transitions, where we need to choose the
physical solution between possible roots of the cubic equation.

For comparison in Fig. 3 we also present the behavior of
M(ω) for the ferromagnetic case for small h2, in which region
one can write

〈Sz〉 ≈ Sz
0

(
1 − h2

(�γ )2 + (
�ω − ZASz

0

)2

)
. (13)

In the approximate solution smooth behavior at resonance
instead of the jump is manifested. Out of resonance the
difference between the exact and approximate solutions (see
Fig. 3) is small, while in resonance the difference is large.
Notice that in the dynamical regime t < γ −1 the mean z

component of the laser-field-induced spin moment formally
coincides with Eq. (13) for γ → 0.

How can the features related to nonlinear effects be
interpreted? To understand their nature, it is instructive to
present the self-consistency equation (12) in a more convenient
form for analysis (the depressed cubic equation),

x3 + px + q = 0. (14)

Here the change in variable (known as the Tschirnhausen
transformation)

〈Sz〉 = 2�ω + ZASz
0 − 3x

3ZA
(15)

is used. The governing parameters are

3q = −2(�γ )2
(
�ω − ZASz

0

) − h2
(
2�ω + ZASz

0

)
+ 2

(
�ω − ZASz

0

)3

9
, (16)

p = (�γ )2 + h2 −
(
�ω − ZASz

0

)2

3
.
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The discriminant �2 = (p/3)3 + (q/2)2 is nonpositive, so ac-
cording to the modified Cardano’s formula three real solutions
exist for the cubic equation (12). For the realistic set of
parameters 0 < Sz

0 � S,|A| ∼ 0.1|J | and for �γ � |J |,|A|,
two of those solutions describe mostly physically reasonable
situations (see Figs. 2 and 3). The third one shows physically
unreasonable behavior (as a function of the frequency and the
magnitude of the laser field). That is why we have chosen only
those parts of formal solutions for the mean magnetization
which describe physically reasonable behavior.

It is known that, depending on the values of governing
parameters p and q, the solution of the cubic equation
can have several features. For the values of parameters
(p/3)3 + (q/2)2 = 0 the jump takes place between two values
of solutions. On the other hand, the jump transforms into
the cusp for pc = qc = 0. At q = 0 the behavior of 〈Sz〉 is
equal to (2�ω/3ZA) + (Sz

0/3) − (p1/2/ZA), and for q = 0
it is 〈Sz〉 = (2�ω/3ZA) + (Sz

0/3) − (q1/3/ZA). Naturally, the
values of exponents belong to the mean-field universality class
due to the approach we used. At p = q = 0 we have the
triple real root. The nonlinearity is clearly caused by nonzero
magnetic anisotropy.

V. UNIAXIAL ANTIFERROMAGNETIC SYSTEMS

Now, let us consider the antiferromagnetic spin-1/2 system
under the action of the circular polarized laser field in the
steady-state regime.

Formally, we can first consider the answer presented above
for the ferromagnetic system with the magnetic anisotropy.
Notice that for the antiferromagnetic case J > 0 we have
to consider A > 0 for the case of the easy-axis magnetic
anisotropy. However, in the thermal equilibrium, for the
antiferromagnetic system without static magnetic field H = 0
one has S

x,y,z

0 = 0 for A �= 0, and hence, the answer for
magnetization caused by the circular polarized laser field in
the antiferromagnetic spin system in our dynamical mean-field
approximation is zero. It does not depend on the parameters of
the laser field (ω and h) or on γ .

To obtain a nonzero answer for the laser-induced magne-
tization for the antiferromagnetic system with the nonzero
magnetic anisotropy, we have to use the two-sublattice ap-
proximation (see Ref. [16]). Such an approximation takes into
account that while we have S

x,y,z

0 = 0 for the antiferromagnetic
system, for some values of parameters the average values of
the nearest-neighboring site spins are nonzero.

To be concrete, let us consider the spin chain with the
nearest- and next-nearest-neighbor interactions (which is
equivalent to the zigzag ladder). The Hamiltonian of such a
system can be written as

Haf =
∑

n

[
J (S1,n · S2,n + S2,n · S1,n+1)

−A
(
Sz

1,nS
z
2,n + Sz

2,nS
z
1,n+1

)
(17)

+
∑
j=1,2

(
JN Sj,n · Sj,n+1 − ANSz

j,nS
z
j,n+1

)]
,

where j = 1,2 numerate two legs of the spin ladder, n

numerates the position in the leg, J > 0 is the isotropic
antiferromagnetic exchange between legs (or nearest-neighbor
exchange in the chain), and JN is the exchange along legs
(or the next-nearest-neighbor exchange along legs). A < 0
and AN < 0 (the easy-axis case) determine the magnetic
anisotropy constants related to J and JN , respectively.

For this case the quantum Boltzmann equations can be
written as

i�

[
∂〈S̃±

1,2〉
∂t

+ γ (〈S̃±
1,2〉 − S̃±

0,1,2)

]

= ∓B〈S̃±
1,2〉 ± 2J

〈
Sz

1,2

〉〈S̃±
2,1〉 ∓ h

〈
Sz

1,2

〉
,

i�

[
∂
〈
Sz

1,2

〉
∂t

+ γ
(〈
Sz

1,2

〉 − Sz
0,1,2

)] = −h

2
(〈S̃+

1,2〉 − 〈S̃−
1,2〉),

(18)

where B = �ω + 2AN 〈Sz
1,2〉 + 2(J + A)〈Sz

2,1〉. Here S
±,z
1,2 are

the projections of the spin in each elementary cell of the antifer-
romagnetic spin-1/2 chain (rung of the ladder). Equations (18)
do not contain the contribution from JN . First, it is caused by
the application of the two-sublattice approximation (in fact, the
terms proportional to J appear because we artificially divide
our system into two sublattices). Second, the contribution from
the terms proportional to JN produces higher-order corrections
in h to the laser-induced magnetization (see Ref. [17]).

Again, the analysis of the solution of Eqs. (18) in the steady-
state regime t � γ −1 reveals that the average values of the
spin projections of the antiferromagnetic chain oscillate with
the frequency of the circular polarized laser field ω (Rabi
oscillations are smeared out by the relaxation). The average-in-
time value of the average spin projection 〈Sz〉 ≡ 〈(Sz

1 + Sz
2)〉/2

of the antiferromagnetic chain can be found as the solution of
the self-consistency equations

〈Sz〉 =
(
Sz

0,1 + Sz
0,2

)
2

− h2

2

×
[

F1

(�γ )2 + (�ω − x1)2
+ F2

(�γ )2 + (�ω − x2)2

]
,

Sa =
(
Sz

0,1 − Sz
0,2

)
2

− {
[�ω + 4(J + A)〈Sz〉]2

− 2(J + |A − AN |)2
(〈Sz〉2 − S2

a

)}
× h2

[(�γ )2 + (�ω − x1)2][(�γ )2 + (�ω − x2)2]
, (19)

where

x1,2 = 2(J + A)〈Sz〉 ∓ F, (20)

with

F = 2
√

(J − AN )2〈Sz〉2 + |A − AN |(2J + |A − AN |)S2
a

(21)
and with Sa = 〈Sz

1 − Sz
2〉/2 and, finally,

F1,2 = 〈Sz〉
2

± (J − AN )〈Sz〉2 − |A − AN |S2
a

F
. (22)

Unfortunately, it is impossible to solve Eqs. (19) in the closed
form for any magnitude of the laser field h. However, we
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can obtain the approximate solution. For the antiferromagnetic
system with the easy-axis magnetic anisotropy it is the most
natural to study the situation in which Sz

0,1 ≈ −Sz
0,2 ≡ S0

[18]. The largest value for S0 is expected for Ising-like
antiferromagnetic chains. Consider the small-h regime, which
is natural for the laser excitation. In this regime we get

Sa ≈ S0 − 2h2S2
0 (J + |A−AN |)

�
,

(23)

〈Sz〉 = −h2
�ω|A−AN |S2

0

�
,

where

� = [(�γ )2 + (�ω − F )2][(�γ )2 + (�ω + F )2]. (24)

Neglecting the h dependence of Sa , i.e., Sa ≈ S0, we finally
obtain for the averaged-in-time z component of the spin
moment (related to the magnetization) of the antiferro-
magnetic chain under the action of the circular polarized
laser field in the steady-state regime 〈Sz〉 ≈ −[h2S2

0�ω|A −
AN |/�], where in the expression for � we use F =
2S0

√|A − AN |(2J + |A − AN |. The temperature dependence
in our approach comes from S0(T ) (see above). Obviously, the
value of S0 is maximal at T = 0 and decreases with the growth
of temperature; hence, we expect the maximum of the effect
at low temperatures.

Figure 4 presents the mean value of the normalized z

component of the spin moment of the antiferromagnetic chain
(ladder) as a function of the laser frequency. One clearly sees
the main features characteristic of the steady-state regime of
the response of any quantum spin system to the circularly
polarized laser field. Namely, the value M = 〈Sz〉/S0 is
approximately zero away from the resonance frequency. Also,
the response to the laser field clearly has a resonance character,
and the resonance is determined by the nonzero magnetic

FIG. 4. The normalized time-averaged value M = 〈Sz〉/S0 of the
projection of the total spin of the antiferromagnetic spin-1/2 chain
(spin ladder) with anisotropic spin-spin interactions as a function
of the frequency of the applied circular polarized laser field ω in
the steady-state regime. We used �γ = 0.01|J |,h = 0.01|J |,S0 =
0.4,J = 1, and (A − AN ) = −0.1|J |.

anisotropy. Again, we can point out that in the dynamical
regime t < γ −1 a nonzero anisotropy causes Rabi oscillations
(which are damped in the steady-state regime) with the small
Rabi frequency �1 =

√
(ω − F/2�)2 + (h/�)2; in resonance

the latter is approximately determined by the magnitude of the
laser field h/�. Notice that there is another Rabi frequency for
the antiferromagnetic case, �2 =

√
(ω + F/2�)2 + (h/�)2,

but that frequency is large compared to �1. However, differ-
ences exist when making a comparison to the ferromagnetic
case. The resonance frequency for the antiferromagnetic case
is determined not only by the magnetic anisotropy itself, like
in the ferromagnetic case, but by the square root of the product
of the anisotropy and the exchange plus anisotropy. Such a
dependence is characteristic of the easy-axis magnetic systems
[17]. Obviously, for zero magnetic anisotropy the obtained
results coincide with the previously considered isotropic case
for small h values. The strongest effects will be manifested in
Ising-like spin-1/2 antiferromagnetic chains. The Ising case
can be trivially obtained by taking the limit J = JN → 0.
It turns out that the absolute value of the laser-induced
steady-state magnetization even in resonance is smaller for
the antiferromagnetic case than for the ferromagnetic one.
This fact is caused by the difference in the nature of the
interactions between spins: The ferromagnetic interaction
obviously enhances the total magnetization (even for the laser-
induced situation), while the antiferromagnetic interaction
tends to the minimization of the total magnetization. Formally,
the difference between resonance responses can be seen
from the comparison of Eqs. (13) and (19). Namely, for the
antiferromagnetic case two resonance terms partly cancel each
other’s effect on the total magnetization of the system. The case
of the simple (nonzigzag) antiferromagnetic spin chain in the
two-sublattice approximation can be formally considered by
taking the limit JN = AN → 0.

The effect of the spin frustration caused by next-nearest-
neighbor interactions is in the renormalization of the value of
the effective anisotropy. In particular, the resonance frequency
tends to zero for AN = A. Also, the time-averaged (mean)
value of the magnetization of the antiferromagnetic chain
as a response to the circularly polarized laser field can be
zero for AN = A in the steady-state regime. As for nonlinear
effects, we expect ones similar to those for the ferromagnetic
situation. However, these effects will be weaker because in
the antiferromagnetic case resonance and antiresonance terms
(with x1,2) partly cancel each other out (see above).

We can also consider the situation with the easy-plane
magnetic anisotropy, which implies opposite signs for A and
AN in Eqs. (17) and (18). Here it is clear that Sz

0,1,2 = 0. Hence,
for the easy-plane antiferromagnetic systems the laser-induced
magnetization can be related only with nonzero S±

0,1,2(T )
(which are expected to be maximal in the ground state).
However, our analysis of the solutions of the self-consistency
equations shows that in this case for the circularly polarized
laser field we get 〈Sz〉 = 0 in the steady-state regime.

Our results can be generalized for the case of the
Dzyaloshinskii-Moriya (DM) interactions present in the sys-
tem. Here we consider the case in which the Dzyaloshinskii
vector is directed along the z axis; that is, the DM coupling
distinguishes the same axis as the magnetic anisotropy. In this
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case we have to add to the Hamiltonian of the antiferromag-
netic chain the term

HDM =
∑

n

[
D

(
Sx

1,nS
y

2,n−S
y

1,,nS
x
2,n + Sx

2,nS
y

1,n+1 − S
y

2,nS
x
1,n+1

)

+DN

∑
j=1,2

(
Sx

j,nS
y

j,n+1 − S
y

j,nS
x
j,n+1

)]
, (25)

with obvious notations. The effect of the DM terms is in the
introduction of the replacements A → A − √

D2 + J 2 + J

and AN → AN −
√

D2
N + JN

2

+ JN in the equations for
the response of the antiferromagnetic spin-1/2 chain to the
circularly polarized laser field in the steady-state regime.
Notice that we do not consider large DM constants here, so
that the above combinations remain positive.

Finally, let us consider the situation in which the direction of
the anisotropy (or the Dzyaloshinskii vector) does not coincide
with the direction of the laser field. Here, for example, the shift
of the resonance has to be multiplied by 1 − 3 cos2 θ , where
θ is the angle between the direction of the laser field and the
axis, distinguished by the anisotropy. Other results seem to be
generic because the contribution of the nonresonance terms is
small in the steady-state regime. However, there is a possibility
of parametriclike resonances, which will manifest properties
of the response to the circular polarized laser field similar to
the ones for the linear polarized laser (see Ref. [9]).

VI. SUMMARY

In summary, the effect of the circular polarized laser
field on several quantum spin systems in the steady-state
regime, in which relaxation plays the central role, has been
studied. The steady-state regime occurs at large time scales
for t � γ −1. Our dynamical mean-field-like theory predicts
several general results for the behavior of the time-averaged
(mean) magnetization (the spin moment multiplied by gμB)
caused by the circular polarized laser field. First, the induced
magnetization oscillates with the frequency of the laser field
(while Rabi-like oscillations, which modulate the latter in
the dynamical regime for t � γ −1, are damped). Second,
at high frequencies, that magnetization is determined by the
value to which the relaxation process is directed. Third, at
low frequencies the slope of that magnetization as a function
of the frequency is determined by the strength of the laser
field. The anisotropy determines the resonance behavior of
the time-averaged magnetization for both the ferromagnetic

and antiferromagnetic spin-spin interactions with the nonzero
magnetic anisotropy. The strongest effects have to exist in
Ising-like spin-1/2 antiferromagnetic chains [19]. Nonlinear
effects (in the magnitude of the laser field h) can cause jumps
and cusps in the behavior of the steady-state value of the
time-averaged magnetization due to the circular polarized
laser field. Such nonlinear effects are stronger for ferromag-
netic interactions and weaker for the antiferromagnetic case.
The resonance frequencies are determined by the magnetic
anisotropy in the ferromagnetic case and by the square root
of the product of the magnetic anisotropy and the exchange
coupling plus anisotropy for the antiferromagnetic case. The
effects of the Dzyaloshinskii-Moriya interaction, the spin-
frustration couplings (in the case of the zigzag spin chain),
and the influence of the tilting of the direction of the laser
field with respect to the axis of the magnetic anisotropy (or
Dzyaloshinskii vector) have been analyzed.

In conclusion, the effect of the circularly polarized laser
field in the steady-state regime on quantum spin systems is
maximal in resonance, where the time-averaged magnetiza-
tion, caused by the laser field, is changed essentially. Out
of resonance the changes in the magnetization are relatively
small. The resonance effect is caused by the nonzero mag-
netic anisotropy. The resonance frequency is relatively small
(proportional to the anisotropy value) for spin systems with
ferromagnetic interactions, and it is enhanced in spin systems
with antiferromagnetic couplings. The effective Hamiltonian
of the spin system under the action of the circularly polarized
laser field in a rotating frame determines only the dynamics
of spins, not the thermodynamics. The action of the circular
polarized laser field drastically differs from that of the static
magnetic field. The latter changes thermodynamic properties
of the system together with the dynamics. Hence, to observe
the maximal laser-induced magnetization we suggest studying
quantum spin systems in the steady-state regime in easy-axis
antiferromagnetic or ferromagnetic spin systems, like Ising
antiferromagnetic spin-chain materials [19] in resonance. The
resonance frequency is high (which is important for experi-
ments with lasers) for the antiferromagnetic spin systems. The
obtained results are generic and can be compared with the data
of possible experiments on the laser field effect on quantum
spin systems in the steady-state regime.
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