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Mn-Ga alloys close to the Mn3Ga stoichiometry can be synthesized in three different crystal modifications:
hexagonal, tetragonal, and face-centered cubic, both in bulk and in thin-film forms. The magnetic ordering of
these modifications is varying from noncollinear antiferromagnetic in the hexagonal case to ferrimagnetic order in
the tetragonal one, whereas it is still unknown for the atomically disordered fcc structure. Here we study the onset
of magnetic order at finite temperatures in these systems on a first-principles basis calculating the interatomic
magnetic exchange interactions in the high-temperature paramagnetic regime. We employ the disordered local
moment formalism and the magnetic force theorem within the framework of the local spin-density approximation
and Monte Carlo simulations taking also the effects of atomic disorder in fcc alloys into account. In particular we
find the origin of the stabilization of the noncollinear 3k structure in competition between antiferromagnetic inter-
and in-plane couplings of frustrated kagome planes in hexagonal Mn3Ga and predict the antiferromagnetic-1
collinear order due to frustration in fcc alloys. Special attention is paid to the effects of the off-stoichiometry
and the consequences of atomic disorder. We calculate the site-preference energy of Ga antisite atoms in the
tetragonal structures in the range of the compositions from Mn3Ga to Mn2Ga and slightly beyond and confirm
the earlier explanation of the effect of magnetization increase due to Ga preferentially occupying one of the Mn
sites.
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I. INTRODUCTION

Recent developments in spintronics, such as spin valves
(SVs) and magnetic tunnel junctions (MTJs) [1] led to an
increasing demand for magnetic materials, which satisfy
stringent technological requirements: high ordering temper-
atures, magnetic anisotropy, structural thermal stability, etc.
In particular, there is a growing interest in the novel high-
temperature antiferromagnetic (AFM) materials with high
magnetic anisotropy, which can replace the currently used
alloys containing expensive constituents, such as Ir, used as
pinning layers in functional SVs and MTJs. On the other
hand, the ferromagnetic materials for thin films with high
and thermally stable perpendicular magnetic anisotropy as
well as high-temperature ferrimagnets for fast magnetization
switching and giant magnetoresistance ratio are continuously
in the focus of the spintronic research.

It is thus not surprising that the magnetism of Mn3Ga
alloys and thin films have been intensively studied during
recent years both experimentally and theoretically (see for an
overview Refs. [2,3]) as their different crystal modifications
can be utilized for different purposes. The bulk [4,5] and
thin films of this material can be experimentally stabilized
[6,7] in the hexagonal DO19 crystal structure ε-Mn3Ga, which
is antiferromagnetic with a high Néel temperature at about
470 K [4], and a noncollinear triangular magnetic structure
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[4,7] similar to the triangular magnetic state in the archetypical
IrMn3 functional antiferromagnet [8]. It has been demonstrated
recently that exchange-biased MTJs with antiferromagnetic
ε-Mn3Ga have remarkably large values of the exchange bias
field due to a frustrated triangular AFM structure, comparably
to other MTJs without heavy elements, such as Ir and Pt [7].
On the other hand, the tetragonal phase of Mn3Ga with the
DO22 structure (τ phase) is a relatively novel hard magnetic
material [9], which has a high uniaxial anisotropy and Curie
temperature of about 770 K depending on the stoichiometry
[6,9]. The τ -Mn3Ga phase can be derived by annealing the
hexagonal material in bulk and thin-film forms. The magnetic
properties of the Mn-Ga tetragonal phase are found to be very
promising for various applications in SVs and MTJs [2,6]. This
has triggered an intensive experimental investigation of the
bulk [9] and thin films grown on various substrates [6,10–13].
Such magnetic properties of the tetragonal Mn3Ga films as
magnetization and anisotropy however strongly depend on
the stoichiometry of the Mn3−xGa alloys and the preparation
conditions [10,13]. It is interesting that the magnetization
increases almost linearly with manganese deficiency up to the
composition of Mn2Ga where the alloys retain the tetragonal
structure [10]. This effect is related to the preferential site
occupation of the excess of the Ga antisite (AS) atoms on
the two nonequivalent Mn positions in the DO22 structure
and the ferrimagnetic character of the order between these
two sites [6,13,14] (see also Sec. IV). However, the latest
neutron-diffraction experiments indicate the presence of a
magnetic noncollinear structure (with small canting of the
moments on one of the Mn sublattices) in the atomically
well-ordered Mn3−xGa close to the ideal Mn3Ga stoichiometry
[13]. This property has been claimed to be intrinsic and not
related to the formation of a secondary phase [13]. In fact, it
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appears that the interplay of the atomic composition, atomic
disorder, and magnetic interactions in the τ -Mn3−xGa phase
are by no means trivial at all.

There exist quite elaborate first-principles studies of the
tetragonal Mn3Ga alloy [9,13–17], however the investigations
of the hexagonal phase are scarce [18]. Electronic structure cal-
culations within the local spin-density approximation (LSDA)
predict a ferrimagnetic ground state in the stoichiometric
τ -Mn3Ga with antiparallel orientation of the moments in the
Mn 2b and 4d sites of the tetragonal DO22 structure [9,16].
The electronic structure of alloys based on the tetragonal
Mn3Ga has been extensively investigated by Chadov et al.
[17] in an attempt to determine the effect of alloying on its
physical properties. The τ -Mn3−xGa with an excess of the
Ga together with the strain effects on the magnetic struc-
ture of Mn3−xGa films have been studied in first-principles
calculations in Ref. [14] where it has been demonstrated
that the total magnetization in tetragonal Mn3−xGa increases
with decreasing Mn due to preferential occupation of Mn-2b

sites by Ga earlier suggested in Ref. [9]. In this paper, we
will explore this topic further determining the site preference
of Ga in the ordered and thermally disordered magnetic
state. Magnetic exchange interactions in fully stoichiometric
τ -Mn3Ga have been obtained independently by Kübler [15]
and Rode et al. [13] using a mapping of the spin-spiral
energies onto a Heisenberg model. The ferrimagnetic ordering
temperatures within the random-phase approximation (RPA)
obtained in these papers are 762 K [15] and 670 K [13], which
are close to the experimental estimate of about 770 K [9].
Strong antiferromagnetic coupling between the Mn moments
on the 4d and 2b sites of the DO22 structure constrains the
collinear ferromagnetic state, and thus the origin of the recently
reported canted magnetic structure [13] remains unclear (see
the discussion in Sec. III).

First-principles calculations [18] predict the complex mag-
netic structure of the hexagonal ε-Mn3Ga phase in agreement
with experiment. The exchange interactions and the Néel
temperature, however, have not been estimated from first-
principles calculations until the present. It was suggested
[19,20] that the origin of the special kind of magnetic
order found in ε-Mn3Ga is the result of the geometrical
frustration on the kagome basal planes together with the strong
Dzyaloshinskii-Moriya (DM) interaction [5]. The effect of
frustrations on the kagome lattice is a highly interesting topic
on its own. As is demonstrated in Sec. IV, the triangular order
where the nearest-neighbor (NN) Mn moments have angles of
120◦ in-plane as well as out of the kagome planes is the result
of the competition of the purely isotropic (nonrelativistic)
exchange interactions.

There is another important topic connected with Mn-
Ga alloys, which has been largely inspired by ab initio
calculations, which predict a half-metallic electronic structure
in Mn3Ga having a full Heusler structure [21]. In general,
there was a larger number of studies of various Heusler alloys
and related tetragonal distorted structures based on Mn and Ga,
which resulted in the invention of various promising functional
materials [22]. Notable recent experimental progress in this
direction led to the stabilization of half-Heusler Mn2Ga thin
films doped with Ru [23].

The cubic phase of Mn3Ga has been experimentally
produced and investigated only very recently [24]. It has
a disordered face-centered-cubic (fcc) structure, which is
magnetically ordered at room temperature with zero net mag-
netization. The exact type of magnetic order in disordered fcc
Mn3Ga is still unknown, although the calculations performed
with a large fcc-based supercell structures have suggested
[24] antiferromagnetic coupling between nearest-neighbor Mn
moments. It is interesting to note that similar to the hexagonal
Mn3Ga the disordered fcc lattice is geometrically frustrated.
Moreover, the fcc lattice can be viewed as a set of the
triangular (111) planes, similar to the magnetic sublattice of the
hexagonal DO19 structure, which is composed of alternating
basal kagome planes along the c direction. Removing one
magnetic site from the fcc lattice (e.g., due to Cu3Au-type
ordering) the resulting magnetic sublattice would be similar
to the one in hexagonal Mn3Ga. Here, we will show that
the frustration between AFM interactions in the fcc Mn3Ga
structure leads to a quite different magnetic order from that in
ε-Mn3Ga.

The aim of the present paper is to investigate the for-
mation of the magnetic order in all three known crys-
talline modifications of Mn3Ga (and compositions close to
stoichiometry) within the same theoretical first-principles
scheme based on calculations of the interatomic exchange
interactions in the paramagnetic (PM) state with disordered
local moments and statistical simulations employing a Monte
Carlo (MC) method on ordered and site-disordered lattices.
The calculated exchange constants allow the prediction of the
magnetic ordering temperature with reasonable accuracy for
the tetragonal and hexagonal phases and reveal the mechanism
of the stabilization of the triangular magnetic state in the
system of frustrated kagome planes. The interesting finding
is that due to the presence of nonmagnetic Ga there are
two nonequivalent nearest-neighbor couplings on the kagome
plane. We predict that in turn the disordered fcc phase
would have an antiferromagnetic structure with alternating
ordering of ferromagnetic [100] planes, so-called “kind-1”
[25] or “AFM-1” [26] ordering on the fcc lattice. The ordering
temperature of the fcc phase was predicted to be at about room
temperature. The effects of the off-stoichiometry have been
studied in detail for the tetragonal phase.

II. METHODOLOGY AND COMPUTATIONAL DETAILS

Our first-principles investigation is based on the LSDA
[27] and the Korringa-Kohn-Rostoker (KKR) method in the
atomic sphere approximation (ASA) [28,29]. For calculation
of the electronic structure of alloys with atomic disorder a
single-site coherent potential approximation (CPA) [29] was
used. The partial waves in the KKR-ASA calculations have
been expanded up to lmax = 3 (spdf – basis) inside the atomic
spheres. The radii of the ASA spheres were set equal for all
nonequivalent atomic sites.

In this paper, we have used the experimental lattice
parameters: a = 3.777 Å for the disordered fcc phase [24];
a = 3.91 and c = 7.12 Å for the tetragonal τ phase; and
a = 5.404 and c = 4.357 Å for the hexagonal ε phase [6].
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The magnetic exchange interactions Jij of the classical
Heisenberg Hamiltonian,

H = −
∑

i,j∈{Mn}
Jij �ei �ej , (1)

where �ei is the unit directional vector of the magnetic
moment at the ith Mn lattice site have been calculated
using the magnetic force theorem [30] embedded [31] in
the bulk Korringa-Kohn-Rostoker band-structure method. The
exchange interactions were estimated in the paramagnetic
disordered local moment (DLM) state, which is a model for the
magnetic disorder above the magnetic ordering temperature
[32]. Indeed, the importance of using the DLM reference state
for calculating magnetic transitions will be demonstrated in
Sec. III, where we compare the results obtained in the DLM
state with the exchange interactions for the low-temperature
ground state.

The Monte Carlo simulations with Hamiltonian (1) have
been performed for a sample consisting of about 104 magnetic
sites using periodic boundary conditions and a conventional
Metropolis algorithm. A Monte Carlo simulation for the fcc
random Mn75Ga25 alloy has been performed using a supercell
with Mn atoms distributed by a random number generator on
the fcc lattice.

This methodology has been previously successfully used in
the description of the magnetism in various Mn-based systems.
In particular, we theoretically predicted the high-temperature
antiferromagnetism and magnetic structure in a tetragonal
Mn2Au compound [33], which has been confirmed in a recent
experiment [34]. We also investigated the effects of magnetic
frustrations and atomic disorder on the Néel temperature in
cubic Ru2Mn(Ga,Si,Ge) Heusler alloys [35] and in NiMnSb
half-Heusler alloys [36] where the magnetic Mn occupies the
frustrated fcc sublattice.

III. TETRAGONAL τ -Mn3−xGa PHASE

A. Stoichiometric ordered alloy

The DO22 crystal structure of the tetragonal τ phase of
Mn3Ga is shown in Fig. 1. Mn atoms occupy the two nonequiv-
alent positions 2b and 4d. This structure can be viewed as
a strongly tetragonally distorted L21 full Heusler structure
(X2YZ with X = Y ). The cubic symmetry is recovered if
c = √

2a, however, tetragonal distortion with respect to a
cubic Heusler structure in the case of Mn3Ga is at about 1.28.
Therefore it is not surprising that experimental attempts to
synthesize the cubic L21 phase, which according to the theory
[16] will be a half-metallic fully compensated antiferromagnet,
failed and a different cubic structure (Cu3Au-type) was
stabilized instead [24].

In the high-temperature paramagnetic DLM state the Mn
moments are calculated to be 2.43 μB/Mn on the 2b positions
and 2.53 μB/Mn on the 4d positions, whereas in the ordered
ground state the moments are −2.99 μB/Mn and 2.38 μB/Mn
on both positions, respectively, and have the antiparallel
orientation (ferrimagnetic state). The latter magnitudes are
very close to those observed in neutron-diffraction experiments
[13]. One notices that, in the magnetically disordered state,
the difference between the magnetic moments of the two sites

FIG. 1. The DO22 structure of Mn3Ga. The big circles are Mn
(the darker ones are the 2b, and the lighter ones are the 4d sites), and
the small circles are the nonmagnetic Ga atoms.

is much smaller than in the ordered case since the absolute
value of the moment on Mn(2b) is sensitive to the magnetic
environment. This indicates the limited applicability of the
Heisenberg model with constant and temperature-independent
exchange interactions. The tetragonal Mn3Ga is thus an
example of a system where the magnitude of the local moment
depends on the state of magnetic disorder, and to correctly
estimate the magnetic ordering temperature and type of order
at finite temperatures one needs to calculate the exchange
interactions in the DLM state [35,37].

In Fig. 2, we show magnetic exchange interactions in
the paramagnetic DLM and ferrimagnetic states obtained as
described in the previous section. In the DLM state, the
dominating interaction is antiferromagnetic between 2b-4d

FIG. 2. Magnetic exchange interactions calculated in the DLM
paramgnetic state (filled symbols) and in the fully ordered ferrimag-
netic state (open symbols) plotted as a function of the interatomic
distance. Squares, circles, and triangles are Mn(4d)-Mn(4d), Mn(2b)-
Mn(4d), and Mn(2b)-Mn(4d) interactions, respectively.
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nearest neighbors. At the same time, the nearest-neighbor
4d-4d interaction is ferromagnetic, but it is rather weak.
Each of the Mn(2b) sites has eight Mn(4d) nearest neighbors,
which together with quite strong ferromagnetic interactions at
the second coordination shell for both 2b and 4d sublattices
leads to the ferrimagnetic ordering at an elevated temperature.
A similar behavior of the exchange interactions is seen
from the fit to the calculated energies of the spin-spiral
configurations in Ref. [13]. Our Monte Carlo simulations
with the calculated DLM exchange constants (Fig. 2) yield
the Néel temperature of 685 K, which is similar to the
one obtained using the random-phase approximation (670 K)
as given in Ref. [13]. Using the same exchange constants
as given in Ref. [13] we also arrive at a similar value
by performing a Monte Carlo simulation (675 K). At the
same time, the exact experimental value of the ordering
temperature can be estimated only approximately since the
tetragonal phase undergoes a structural transformation into
the hexagonal phase at a temperature just below the magnetic
ordering temperature. A rough estimate however, suggests that
it should be around 770 K [6]. The agreement between theory
and experiment can be considered as rather fair, owing to
the known slight underestimation of the magnetic ordering
temperatures in Mn-based intermetallics with large local
moments [35] due to omitting the moderate local correlation
effects in LSDA and the use of the classical Heisenberg
Hamiltonian (see, e.g., Refs. [38,39]). In both cases (DLM
and spin-spiral methods) the transition is found to be between
paramagnetic and ferrimagnetic states, which is stable down
to the lowest temperatures. Thus the isotropic nonrelativistic
exchange constants do not explain the small canting of the
2b moments found in neutron-diffraction experiments [13].
The distant small antiferromagnetic interactions, which, as
suggested in Ref. [13], together with the in-plane magnetic
anisotropy of the 2b sites might be responsible for canting,
cannot overthrow the strong first NN AFM coupling. This
conclusion is directly supported by the results of the total
energy calculations of the canted noncollinear magnetic states
presented in Ref. [13], which has a minimum for the collinear
spin-moment configuration.

The calculated exchange interactions in the ferrimagnetic
state (Fig. 2, open symbols) differ substantially from the DLM
interactions. The MC simulations with these constants produce
the much lower ordering temperature (540 K). Although
they might be more relevant for magnetic excitations at low
temperatures, they are less accurate than DLM interactions for
temperatures close and above the Néel temperature.

B. Effects of off-stoichiometry

The bulk and thin-film samples of the τ -Mn3Ga phase are
usually Mn deficient [6,13,14], and they can be synthesized
close to the stoichiometry of Mn2Ga. It is found that the less
Mn is in the sample the larger the measured saturated magne-
tization becomes [6,9,12,14]. This effect can be explained by
the preferential occupation of Ga excess atoms of the Mn(2b)
positions [9,14], which results in a decreasing magnetization of
the Mn(2b) sublattice oriented oppositely to the magnetization
of the Mn(4d) sublattice remaining unchanged upon doping.

FIG. 3. Total energies of the off-stoichiometric Mn3−xGa alloys
calculated with different Ga distributions on Mn sites. The energies
are given with respect to the alloy with fully random Ga distribution
over the 2b and 4d sites and per one Ga antisite atom (site-preference
energies). The squares denote excess Ga atoms on 2b sites. The
circles denote excess Ga atoms on 4d sites. The open symbols
are the energies calculated in the high-temperature paramagnetic
state (DLM), and the filled circles are energies in the ferrimagnetic
state.

Here, we calculate the site-preference energies for the Ga
excess atoms in the DO22 structure, Mn atomic moments, and
magnetization in the ferrimagnetic state in off-stoichiometric
alloys in the framework of the CPA. In Fig. 3, we show the
total energies of the (Mn1−xGax)3Ga alloys calculated for three
different distributions of Ga atoms on the Mn sublattices: all
excess (with respect to Mn3Ga stoichiometry) AS-Ga atoms
on 2b sites, all Ga-AS on 4d sites, and the Ga-AS are equally
distributed over the Mn sites. The energies are given per single
AS atom and with respect to the latter distribution case. One
can see that Ga indeed prefers 2b sites (Fig. 3). Since the
production of the τ phase is usually performed by annealing at
elevated temperatures, we show the site-preference energies
calculated both in the low-temperature ferromagnetic state
(full symbols) and in the high-temperature DLM state (open
symbols). For both cases we find that excess Ga atoms strongly
prefer the Mn(2b) positions. At usual annealing temperatures
of 400–500 K (∼3 mRy) almost all Ga-AS would populate 2b

sites. The calculated magnetic moments and magnetization
in alloys with such Ga distributions are shown in Fig. 4.
One can see that the moments on both Mn sites remain
almost unchanged with increasing Ga concentration resulting
in an almost linear total magnetization increase. The other
scenario, namely, that Mn disappears from 2b positions leaving
vacancies in off-stoichiometric samples can be completely
ruled out since it is energetically highly unfavorable. For
instance, the calculated energy cost of creating composition
compensating (or structural) vacancies on Mn sites instead of
creating Ga-AS on the Mn(2b) sublattice is ∼180 mRy per
vacancy on the Mn 2b sites.
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FIG. 4. The local atomic moments and total magnetization of the
τ -(Mn3−xGax) Ga alloy with the Mn-Ga alloy on the 2b sites of the
DO22 structure.

C. Discussion on the possible origin of the magnetic canting

Concerning the possible origin of a small canting of
the magnetic moments on the 2b sublattice found in the
experiment, one can get a good hint from the observation that
the midpoint of the nearest-neighbor bond between Mn(2b)
and Mn(4d) has no inversion symmetry. It is obvious since
the atoms on different point symmetry positions (also having
different magnetic moments) are on the opposite ends of the
bond. According to the Moriya criterion [40] this allows for
the nonzero relativistic DM interaction between these atomic
sites. If the size of the DM interaction exceeds the magnetic
anisotropy of either of the nonequivalent Mn sites, this will lead
to a canting of the magnetic moment on this site since the DM
interaction favors noncollinear configurations of the moments.
An analysis of the symmetry suggests that the DM vector
of the interaction between first nearest-neighbor (1NN) Mn
sites will be directed perpendicular to the face of the unit-cell
tetrahedra containing the Mn(2b)-Mn(4d) bond, which is a
mirror symmetry plane. It follows from the Moriya symmetry
rule [40] stating that the DM vector has to be perpendicular to
the mirror plane containing the bond. It would be interesting
to investigate this problem with fully relativistic noncollinear
first-principles calculations allowing for the rotation of one
sublattice magnetization with respect to the other. Moreover,
judging from the calculations, which have been presented in
Fig. 18 of Ref. [13], one can see a maximum of the total
energy curve with respect to the azimuth angle in between 0°
and 180° without specifying the polar angle. This can be a
signal of a strong DM interaction. However, if a strong DM
interaction is present the total energy will also depend not only
on the azimuth, but also on the polar angle, which means that
there could be an additional minimum for a canted magnetic
configuration.

IV. MAGNETIC ORDERING IN HEXAGONAL ε-Mn3Ga

The hexagonal crystal structure of Mn3Ga is shown in
Fig. 5(a). The experimental magnetic state of the ε-Mn3Ga

(a)

(b)

(c)

FIG. 5. (a) Hexagonal unit cell of the DO19 structure of MnGa3.
The large circles are Mn, and the small circles are the Ga atoms,
(b) 1NN interplane interactions (bonds) between Mn atoms, and
(c) the in-plane nearest-neighbor Mn-Mn bonds and two adjacent
basal planes are shown. The connections of Mn to neighboring Ga
atoms (small green circles) are also shown, the lighter large circles
are Mn on the top kagome plane, and the darker circles are Mn on the
bottom kagome plane.

is a triangular structure with a mutual orientation of the
neighboring Mn moments of 120° as in the basal magnetic
kagome planes as well as between the neighbors on different
planes. Indeed such a structure provides a minimum total
energy in the fully relativistic calculations by Zhang et al. [18]
allowing for magnetic noncollinear states. However, the origin
of the stabilization of this magnetic structure is still unknown.
The main question is whether it is the result of a relativistic MD
coupling as was recently suggested [7] or the frustration of the
antiferromagnetic exchange interactions on the basal kagome
lattices together with antiferromagnetic interplane coupling
[18]. In order to investigate this question and to calculate
the Néel temperature from first-principles investigations we
calculate the interatomic exchange constants for this system.

Similar to the tetragonal phase, the ε-Mn3Ga has well
localized magnetic moments in the paramagnetic DLM state
of 2.60 μB/Mn. In Fig. 5(b), we show the nearest-neighbor
interplane bonds between the magnetic Mn atoms in ε-Mn3Ga.
One can see that these bonds form a separated one-dimensional
network of connected Mn atoms. These connections are
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FIG. 6. Calculated magnetic exchange interactions (in mRy) for
the ε-Mn3Ga alloy as a function of interatomic distance (in units
of the lattice constant a). (s. Ga) stands for the in-plane interaction
between Mn having a shared nearest-neighbor Ga atom.

such that each Mn interacts with two Mn atoms on the top
kagome plane and with two on the bottom one. Since the
corresponding magnetic exchange interaction is the strongest
and antiferromagnetic (see Fig. 6), this leads to the frustration
effect. This interaction is inducing antiferromagnetic order
between the Mn basal planes, however, to be fully energetically
satisfied, such a magnetic configuration needs a ferromagnetic
arrangement of the Mn atoms in the isolated triangles of
the kagome planes since they share the same Mn out-of-plane
neighbors. The latter condition is in conflict with in-plane
antiferromagnetic interactions between Mn atoms within these
triangles. Although they are about four times smaller in
magnitude than the strongest ones, nevertheless they are large
enough to destroy a noncollinear arrangement in the planes.
The in-plane 1NN interactions are different between Mn in
the triangles of the kagome planes due to the presence of
Ga in the adjacent layers. This is shown in Fig. 5(c) where
we show the in-plane NN bonds in two neighboring basal
layers. The presence of Ga partitions the kagome planes into
triangles with different exchange interactions between sites.
The calculated in-plane interaction between Mn with shared
Ga neighbors appears to be also antiferromagnetic and larger
than between Mn without Ga (−0.23 and −0.64 mRy, re-
spectively). This interaction provides the connection between
strongly interacting triangles and ensures the 120° orientation
between neighboring Mn moments belonging to different
Mn networks as shown in Fig. 5(b). As for the triangles
without shared Ga, the triangular structure is a result of the
competition between a strong 1NN interplane and a small
1NN kagome-plane interaction as well as a strong (0.41-mRy)
ferromagnetic 2NN-inter-plane coupling. Therefore, one can
conclude that the triangular structure is the result of both the
geometrical frustration and the frustration due to competing
exchange interactions.

The qualitative consideration given above is fully supported
by Monte Carlo simulations with the exchange interactions
presented in Fig. 6. We find the magnetic ordering temperature

FIG. 7. Calculated spin-spin correlations functions for several
Mn coordination shells in ε-Mn3Ga. The 1NN in-plane (s. Ga) stands
for the in-plane shell where Mn has a shared nearest-neighbor Ga
atom.

to be about 370 K, which is in good agreement with
experiment, 440 K [4]. Similar to the case of the τ phase,
there is a 10%–20% underestimation of the Néel temperature,
probably due to the same reasons as discussed in the previous
section. The system is ordered in a triangular magnetic state
in full agreement with experiment. Since the interactions
in the system are frustrated we find massive short-range
magnetic order effects above the Néel temperature. These
effects are presented in Fig. 7 where we plot the calculated
spin-spin correlation function for different nearest-neighbor
shells defined as

c(n) = 1

N

∑

i

1

Nn

∑

�Rn

〈�e �Ri
�e �Ri+ �Rn

〉
, (2)

where the first sum runs over N translation vectors of the DO19

lattice �Ri , the second sum is taken over the Nn translation
vectors, �Rn spans the nth shell connecting Mn, and 〈 〉 stands
for the statistical average. These functions also determine
the average angle between the moments on the respective
shells 〈ϕn〉 = arccos[c(n)], and thus they are good accounts
for the short-range order effects. We note that these correlation
functions are calculated for each Mn site in the lattice basis.
For the present case of ε-Mn3Ga we find them to be equal for
all different sublattices.

At low temperatures, the correlations functions for the
1NN shells have their ground-state values for the triangular
structure, which correspond to a mutual angle of 120◦ [c(n) =
−0.5]. The 2NN in-plane and interplane planes are connecting
the same positions in different unit cells with values of
c(n) = 1.0 in the ground state. One can also see in Fig. 7 that
very strong short-range order effects exist in the temperature
range well above Néel for the coordination shells with large
exchange interactions (see Fig. 6). The neighboring moments
within the triangles of the kagome planes, which have no
shared Ga [see Fig. 5(c)] remain almost uncorrelated down
to a temperature where long-range magnetic order starts to
develop.
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FIG. 8. Calculated magnetic exchange interactions (in mRy) for
a fcc random Mn75Ga25 alloy as a function of interatomic distance
(in units of the lattice constant a).

V. MAGNETISM OF RANDOM fcc Mn75Ga25

The cubic phase of Mn3Ga was recently produced as a
random alloy in the fcc structure [24]. It was found to be
magnetically ordered at room temperature with zero total
magnetization. Although a clear magnetic phase transition
point has not been observed, a large anomaly in the measured
magnetization in an applied magnetic field was found around
420 K. Yet, the authors of Ref. [24] have not ruled out
the possibility of a random freezing of spins around this
temperature (instead of an order-disorder magnetic phase tran-
sition) due to the atomically disordered nature of the Mn3Ga
ribbons. The ab initio calculations [24], performed for a 32
quasirandom atomic supercell to model substitutional atomic
disorder, predict a compensated antiferromagnetic ground
state indicating a strong AFM nearest-neighbor coupling.

Here, we perform CPA first-principles calculations of a
random Mn75Ga25 alloy and find that Mn has a well-defined
local moment in the paramagnetic state of 2.44 μB , which is
similar to those in ordered hexagonal and tetragonal phases.
The calculated exchange interactions are shown in Fig. 8. One
can see that in addition to the strong 1NN AFM interaction
found previously [24], there is a very strong ferromagnetic
interaction at the second coordination shell. In general, the fcc
lattice is frustrated with respect to the nearest-neighbor AFM
interactions, and there exist four possible kinds of collinear
AFM structures on a fcc lattice, some of them highly frustrated
[25,26]. According to the well-known (J1NN,J2NN,J3NN )
phase diagram of the magnetic fcc lattice as given by Moran-

FIG. 9. Derived antiferromagnetic structure of the fcc random
Mn75Ga25 alloy. The dark circles are spin-up atoms, and the white
circles are spin-down atoms. The structure is alternating FM planes
along the (100) direction (AFM-1).

Lopez et al. [26] the calculated exchange interactions (Fig. 8)
correspond to a stabilization of the so-called AFM-1 type
of magnetic order on the atomically ordered fcc lattice (see
Fig. 9). Our Monte Carlo simulations are performed on the
disordered fcc lattice where 25% of the lattice magnetic sites
were left empty and are distributed fully randomly and indeed
predict a phase transition to the magnetically ordered state of
the AFM-1 kind (Fig. 9) at a temperature of 260 K. Again,
we underestimate the Néel temperature as compared to the
experiment, and we note that this underestimation is slightly
larger than in the case of the ordered phases discussed in the
previous sections. This shortcoming might be due to some
effects of the atomic short-range order in the actual Mn3Ga
ribbons since they are produced by long annealing at the high
temperatures.

VI. CONCLUSIONS

The presented study of the finite-temperature magnetic
properties of all three stable phases of Mn3Ga in the same
first-principles framework (DLM model, magnetic exchange
interactions from the magnetic force theorem calculations,
and statistical Monte Carlo simulations) allows us to see
similarities and differences between their magnetic properties.
In all three phases, Mn has a robust local magnetic moment
of 2.4–2.6 μB in the high-temperature paramagnetic state. The
leading nearest-neighbor interactions also have similar mag-
nitudes ∼ −1.2 mRy in the τ and ε phases and ∼−0.8 mRy
in the fcc random alloy (see Table I). The further similarity

TABLE I. The Mn magnetic moment in the paramagnetic DLM state, first nearest-neighbor exchange interaction, calculated, and
experimental ordering temperatures. Moments for the hexagonal phase are given for 2a and 4d sites.

Mn3Ga structure Moment Mn, μB in the PM state J (1NN) mRy T c (K) calculated T c (K) experimental

Hexagonal 2.6 1.17 370 440
Tetragonal 2.43/2.53 1.21 685 ∼770
Disordered fcc 2.44 0.8 260 420
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FIG. 10. Calculated atom projected Mn density of states of
Mn3Ga alloys for three modifications: disordered fcc (upper panel),
tetragonal (middle panel), and hexagonal (lower panel). The DOS is
given in states/Ry per spin per Mn atom for majority and minority
spin channels in the disordered local moment state.

can be seen from the Mn density of states (DOS) calculated in
the paramagnetic regime, which is shown in Fig. 10. One can
see the similar size of the exchange splitting of the majority
and minority spin channels. The only essential difference is
a smearing out of the DOS for the fcc alloy induced by
the chemical disorder effects. The essential differences in the
ordering temperatures among tetragonal and two other phases
are partially due to the geometrical magnetic frustration of
the hexagonal and fcc lattices. The frustration effects lead
not to the noncollinear order in the hexagonal phase but
to a collinear order in the disordered fcc phase. The origin
of the triangular order in the hexagonal phase of Mn3Ga
with DO19 symmetry may be understood and derived from
the nonrelativistic isotropic exchange interactions, but, as we
have argued, the understanding of the canted noncollinear
structure in the tetragonal alloy may require the relativistic
DM interaction. Although off-stoichiometry (Mn deficiency)
leads to pronounced changes in the total magnetization of
the tetragonal phase, we find, similar to the situation in other
related materials [41,42] that a moderate off-stoichiometry and
associated partial atomic disorder has little effect on the Mn
local atomic moments and interatomic exchange interactions
in both the tetragonal and the hexagonal phases.
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