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MnAu2 is a spin-spiral material with in-plane ferromagnetic Mn layers that form a screw-type pattern around a
tetragonal c axis. The spiral angle θ was shown using neutron diffraction experiments to decrease with pressure,
and in later studies it was found to suffer a collapse to a ferromagnetic state above a critical pressure, although the
two separate experiments did not agree on whether this phase transition is first or second order. To resolve this
contradiction, we use density functional theory calculations to investigate the spiral state as a function of pressure,
charge doping, and also electronic correlations via a Hubbard-like U . We fit the results to the one-dimensional
J1-J2-J3-J4 Heisenberg model, which predicts either a first- or second-order spiral-to-ferromagnetic phase
transition for different regions of parameter space. At ambient pressure, MnAu2 sits close in parameter space to
a dividing line separating first- and second-order transitions, and a combination of pressure and electron doping
shifts the system from the first-order region into the second-order region. Our findings demonstrate that the
contradiction in pressure experiments regarding the kind of phase transition are likely due to variations in sample
quality. Our results also suggest that MnAu2 is amenable to engineering via chemical doping and to controlling
θ using pressure and gate voltages, which holds potential for integration in spintronic devices.
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I. INTRODUCTION

The tetragonal material MnAu2 is one of the oldest
known spin-spiral materials [1–3], with a Néel temperature
of TN = 363 K [1] and a local Mn moment of 3.5μB [3,4].
The magnetic ground state consists of in-plane ferromagnetic
Mn layers with a screw-type pattern around the tetragonal
c axis, which can be described using a spiral angle θ [this is
equivalent to the wave vector q = (0,0,qz), where θ = qzc/2].
Neutron diffraction measurements [3,5,6] find that θ has a
weak dependence on temperature, increasing slightly with
increasing temperature [θ (77 K) = 47◦ and θ (295 K) = 51◦].
The spiral state is known to collapse to a metamagnetic fanlike
configuration when placed in a ∼10 kOe magnetic field at
room temperature [1,2], which led to a revival of interest
in MnAu2 when it was found that this gives rise to a giant
magnetoresistive effect [4].

There are several microscopic mechanisms that can induce
spin spirals. In itinerant systems, both Fermi surface nesting [7]
and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[8–10] can lead to spiral formation. The Dzyaloshinsky-
Moriya (DM) interaction [11,12], which occurs in materials
without an inversion center (MnAu2 has an inversion center,
which rules it out as a possible mechanism), can also induce
spirals and moment canting, but due to the interaction’s
relativistic origin it is more important in materials with heavy
elements. It can still be competitive in lighter transition
metals, such as MnSi [13–15], but the spirals will have a
long wavelength due to weak relativistic effects. Finally, frus-
tration, which can be geometric or magnetic, can encourage
noncollinearity and lead to the formation of spirals.

The spin spirals in MnAu2 are understood to be a conse-
quence of magnetic frustration, which is commonly modeled
using a one-dimensional Heisenberg model with first and sec-
ond neighbor interplanar couplings (the J1-J2 model) [16,17].
In this model, the spiral state is stable when J1 �= 0, J2 > 0,
and |J1| < 4|J2| [16]. The validity of applying this model to
MnAu2 was confirmed using density functional theory (DFT)
calculations [18,19]. The origin of the magnetic frustration was

traced to a competition between two exchange mechanisms,
nearest-neighbor superexchange and a transferred RKKY-like
interaction, and electronic correlations were found to play an
essential role in suppressing the RKKY-like interaction, which
is necessary to satisfy the |J1| < 4|J2| inequality [19].

The spiral angle θ is sensitive to pressure, with neutron
diffraction measurements determining that θ (P ) decreases
with applied pressure [θ (0) = 50.7◦ (47.0◦) decreasing to
θ (8.83 kbar) = 41.8◦ (40.5◦) at a temperature of 295 K (77 K)]
[5]. Measurements of the critical magnetic field Hc for the
spiral-to-ferromagnetic transition as a function of pressure,
when extrapolated to zero external field, implied that the
spiral state should collapse to ferromagnetism at ∼12 kbar
[20]. The pressure-induced spiral-to-ferromagnetic transition
was confirmed by subsequent experiments using inductance
measurements [21], electrical resistivity measurements, and
measurements of Hc [22], although the two reports disagreed
on the order of the phase transition. In Ref. [21], the transition
is of the second kind and occurs over a pressure range of
12–20 kbar, while in Ref. [22] it is of the first kind and occurs
at 13 kbar. This contradiction was never resolved and remained
an open question.

The J1-J2 Heisenberg model, which can explain the
stability of the spiral state, predicts that the transition must
be of the second kind. However, general investigations of
the classical one-dimensional Heisenberg model show that
including the third nearest-neighbor term J3 leads to regions
of parameter space with first order phase transitions [23,24].
Further neighbors, such as J4, change the area of parameter
space where first-order transitions occur [24]. It follows then
that if a system were to sit near the boundary in parameter
space separating first- and second-order phase transitions, then
variations in material quality could shift the system towards
one region or the other.

We argue that this is the case for MnAu2. We support
this claim using DFT calculations to simulate the effects
of pressure, charge doping, and variation in the strength of
electronic correlations via a Hubbard-like U . We calculate
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the magnetic energies and fit them with a classical, one-
dimensional Heisenberg model with coupling between the
first four nearest-neighbor Mn planes. We confirm that ideal,
stoichiometric MnAu2 sits close to a boundary separating
first- and second-order phase transitions, and that varying
the pressure and doping shifts MnAu2 across this critical
boundary. This suggests that the two pressure experiments
are not in conflict, but instead the MnAu2 samples from each
are located in two separate portions of phase space. The spiral
angle θ is also found to be responsive to applied pressure and
doping, which holds promise for integration of MnAu2 into
spintronic devices.

II. COMPUTATIONAL DETAILS

We employed DFT to solve the electronic structure of
MnAu2 and calculate the total energy of magnetic config-
urations. To perform these calculations, we used the all-
electron code ELK [25], which is an implementation of the
full-potential linear augmented planewave method, and also
projector augmented wave potentials implemented in the code
VASP [26,27]. We used the local spin-density approximation
(LSDA) [28] for our calculations, and for correlation effects
we used the DFT + U method in the fully localized limit [29],
in which we introduce a Hubbard-like U on the 3d orbitals of
the Mn atoms. We used two values of U , U = 3.12 eV and
4.7 eV, and J was set to 0.7 eV.

MnAu2 has a tetragonal crystal structure with I4/mmm

space group symmetry. The experimental lattice parameters
are a = 3.370 Å and c/a = 2.599, yielding a volume of 49.741
Å3/formula unit, and the Wyckoff positions for Mn and Au
are 2a and 4e, respectively, with the internal experimental
height for Au zAu = 0.34 (fractional coordinates) [30,31]. To
simulate pressure, we began with the MnAu2 unit cell from
experiment with tetragonal symmetry and varied the lattice
parameters a and c to set the volume [32]. We then fixed
the volume and performed structural relaxations in VASP to
optimize the c/a ratio and the internal parameter zAu. After
the relaxation, we performed total energy calculations in VASP

with the tetrahedron method and calculated the pressure using
the formula P = −dE/dV . We then imported the relaxed
structures into ELK for calculating the magnetic energies.

We employed two methods to simulate charge doping, (1)
adding electrons directly to the system along with a uniform
positive charge background (hereafter referred to as “charge
dosing”), and (2) using the virtual crystal approximation
(VCA). The VCA involves replacing the Au ions with fictitious
ions of fractional charge in order to add electrons or holes to
the system. We used the experimental lattice parameters of
MnAu2 in our doping calculations, while for calculations with
simultaneous charge doping and applied pressure we used the
relaxed cells obtained with VASP.

We used the spin spiral method implemented in ELK to
calculate the total energy as a function of the spiral angle. This
method defines a wave vector q = (0,0,qz) that is applied
to a primitive cell to simulate spirals. In our previous study
of MnAu2 [19], we found good agreement between the
calculated energies obtained via this method and noncollinear
calculations of spirals in supercells. In this study, our procedure
was to calculate the energy as a function of the wave vector

for the range 0 < qz < 2π/c as we varied the pressure, charge
doping, and Hubbard U . We then used θ = qzc/2 to convert
the wave vector to an angle.

Convergence for the spin spiral calculations was carefully
checked in the primitive cells, and the following parameters
were necessary to achieve convergence: k-mesh = 16×16×16,
nempty = 8, rgkmax = 8.0, gmaxvr = 12, lmaxapw = 8,
and the smearing function width was set to 0.0001 Ha.

III. SUMMARY OF 1D HEISENBERG MODEL

The magnetic interactions in MnAu2 are typically modeled
using the Heisenberg model:

H =
∑
i �=j

Jij m̂i · m̂j . (1)

Note that Jij = J̄ij |m|2, where J̄ij is the magnetic coupling
and |m| is the moment amplitude. DFT calculations confirm
that Mn is in the high spin state with S = 5/2, which makes the
classical Heisenberg model suitable for studying the magnetic
interaction. The magnetic moment is also assumed to be
constant, which is reasonable as the Mn moment amplitudes
do not vary by much as a function of θ .

The spiral state of MnAu2 is completely described by the
parameter θ . As a result, we can simplify the Heisenberg model
to one dimension:

E(θ ) = H

N
= const. +

m∑
n=1

Jn cos(nθ ), (2)

where N is the total number of Mn planes and m is
the maximum number of nearest-neighbor couplings to be
included in the model. The interplanar coupling determines the
spiral state stability, and below we discuss the phase diagram
for the models which include two (J1-J2 model, m = 2), three
(J1-J2-J3 model, m = 3), and four (J1-J2-J3-J4 model, m = 4)
nearest-neighbors in Eq. (2).

The J1-J2 model is the simplest possible model with a
stable spiral state, which occurs when J1 �= 0, J2 > 0, and
|J1| < 4|J2|. The angle θ is plotted as a function of J2/|J1|
in Fig. 1(a), and the spiral-to-ferromagnetic phase transition
is of second order. What has not been appreciated in previous
studies of MnAu2 is that this model cannot explain how the turn
angle could collapse under pressure in a first-order transition,
as measured in Ref. [22].

Including the third nearest-neighbor coupling yields the
J1-J2-J3 model, which can be solved analytically (see Sup-
plemental Material [33]) [23,24]. The phase diagram of θ for
this model as a function of J2/|J1| and J3/|J1| is depicted in
Fig. 1(b). There are two regions in the parameter space, the
ferromagnetic region in the lower left and the spiral region in
the rest of the diagram, with the contour plot corresponding to
the magnitude of θ . The phase boundaries separating the two
regions are [23]:

J3 =
{ 1

9 (|J1| − 4J2) 0 � J2/|J1| � 2/5
J 2

2
4(J2−|J1|) J2/|J1| > 2/5

. (3)

Importantly, this model contains both first- and second-order
phase transitions, which are distinguished by the kind of
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FIG. 1. Phase diagrams for the one-dimensional Heisenberg model of Eq. (1). (a) The phase diagram of the J1-J2 model. (b) The phase
diagram of the J1-J2-J3 model, where the contour plot corresponds to θ . The thick black line indicates a first-order phase transition and the
thick white line indicates a second-order transition. (c) The phase diagram of the J1-J2-J3-J4 model for J4/|J1| = −0.0346, plotted in the same
manner as panel (b). The white star indicates where ideal stoichiometric MnAu2 with U = 3.12 eV sits in the phase diagram. (d) The critical
values of J2/|J1| (contour plot), J3/|J1|, and J4/|J1| for the spiral-to-ferromagnetic phase transition. The red line divides parameter space into
two regions, where first-order phase transitions occur north of the line, and second-order transitions occur south of it. The red and white stars
represent where ideal, stoichiometric MnAu2 sits for U = 3.12 eV and U = 4.7 eV, respectively.

degeneracy that occurs on the borders in Eq. (3). A first-order
phase transition occurs when there is a degeneracy between
the ferromagnetic solution (θ = 0) and a finite angle (θ > 0),
while the second order phase transition corresponds to a
smooth, continuous connection between ferromagnetic and
spin-spiral regions and is found by taking a second-order
Maclaurin series expansion of Eq. (2) and equating it with
the ferromagnetic solution in the limit θ → 0. Second-order
transitions correspond with the 0 � J2/|J1| � 2/5 result and
are depicted as the thick white line in Fig. 1(b), while first
order transitions correspond to the J2/|J1| > 2/5 result and
are depicted as the thick black line. From this, it is clear
that a small ferromagnetic coupling between third-neighbor

planes (relative to |J1|) can change the order of the phase
transition.

The analysis is more complicated for four or more neighbor
couplings since an analytic solution for θ is not available.
Despite this, some properties can still be analytically solved
(see Supplemental Material [33]) [24]. The phase boundary for
second order transitions is J2 = (|J1| − 9J3 − 16J4)/4. The
criterion for a first order phase transition is

J3/|J1| < −1 + 64J4/|J1|
15

. (4)

Note that the expression for the second order phase boundary
and Eq. (4) are valid when J3,J4 > 0. If one of the parameters
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is negative, then the expressions still hold as long as the
antiferromagnetic couplings dominate [24], such as J3 > 0,
J4 < 0, and |J3| � |J4|. What’s clear is that a relatively small
fourth neighbor coupling can have a dramatic effect on the
location of the first order and second order phase boundaries.
To illustrate this, we numerically calculate the phase diagram
for the J1-J2-J3-J4 model with J4/|J1| = −0.0346, which we
plot in Fig. 1(c). Comparing panels (b) and (c), we clearly
see that the length of the second order phase boundary (white
line) has changed, despite the relative weakness of the fourth
neighbor coupling. We also calculate the exchange parameters
for ideal, stoichiometric MnAu2 with U = 3.12 eV, which are
J2/|J1| = 0.3840, J3/|J1| = −0.0043, J4/|J1| = −0.0346,
and indicate where MnAu2 sits with the white star. The material
sits very close to the first order transition, and a small variation
in J3/|J1| would drive the system towards ferromagnetism.

In Fig. 1(d) we plot a contour map of the critical values
of J2/|J1|, J3/|J1|, and J4/|J1| for the spiral-to-ferromagnetic
transition in the one-dimensional J1-J2-J3-J4 model. We only
consider J2 � 0 in this figure. The contour plot shows the
surface in (J2/|J1|, J3/|J1|, J4/|J1|) space that separates
ferromagnetic and spiral order. For example, if you calculate
the exchange parameters for MnAu2 and those parameters
place the system “inside” the surface (J2 < Jc

2 ), then the
ground state magnetic order is ferromagnetic. If instead the
parameters place MnAu2 on or outside the surface (J2 � J c

2 ),
then the magnetic order will be a spiral state. Note that the
light yellow region corresponding to J c

2 = 0 means that the
system has spiral order for all J2 � 0. Finally, if you can
tune the parameters, such as by applying pressure or adding
holes/electrons, then the system can cross the surface and
undergo a phase transition.

As we saw in panels (b) and (c) of Fig. 1, phase transitions
can either be first or second order. The parameters (J3/|J1|,
J4/|J1|) control the kind of phase transition that occurs when
you cross the surface depicted in Fig. 1(d). The red line
separates the first- and second-order transition regions. If
you cross the surface while north of the line, then the phase
transition is second order; if you cross the surface while south
of the line, then the phase transition is first order. Having
established this, it is now instructive to indicate where ideal,
stoichiometric MnAu2 sits in (J3/|J1|, J4/|J1|) space for
U = 3.12 eV (red star) and U = 4.7 eV (white star). For both
systems, J2 > Jc

2 , so they have spiral order. What is striking
here is how close MnAu2 sits to the dividing line, especially
when U = 3.12 eV. This shows that changes in the exchange
parameters induced through pressure, doping, or impurities
could place the system north of the red line. Since the system
sits close to the dividing line, this could explain the discrepancy
in experimental pressure studies discussed in Sec. I.

One final point to note is that this analysis assumed
that the local moments always have an in-plane orientation.
Neutron diffraction experiments confirm that spin spirals in
MnAu2 are oriented in-plane [2], and our calculations of the
magnetocrystalline anisotropy energy for MnAu2 with U =
3.12 eV give E(001)–E(100) = 0.35 meV [34], indicating the
in-plane direction is the preferred axis. Yet, it is less clear what
would happen on the first order transition boundary, where zero
and finite angle configurations are degenerate. We checked this
possibility by considering conical solutions. We added a canted

angle ϕ and a uniaxial magnetocrystalline anisotropy term to
Eq. (2),

E(θ,ϕ) = const + D sin2(ϕ)

+
m∑

n=1

Jn

[
1 − 2 sin2(ϕ) sin2

(
nθ

2

)]
. (5)

In this expression, the angles θ and ϕ remain decoupled
and the solutions for θ are unaffected by canting and
simple uniaxial magnetocrystalline anisotropy. If we now
restrict ourselves to the first-order phase transition boundary,
the energy difference between the conical spirals and the
ferromagnetic configuration is

E(θ,ϕ) − E(0,ϕ′) = D[sin2(ϕ) − sin2(ϕ′)]. (6)

Therefore in the absence of magnetocrystalline anisotropy
there is a continuous degeneracy of the canting angle. This
degeneracy is lifted with the magnetocrystalline anisotropy
term, although we should note that the magnetocrystalline
anisotropy parameter is small, D = 0.35 meV ∼ 4 K, and
since the pressure experiments [5,21,22] were performed at
temperatures of 77 K and at room temperature, it is possible for
the ferromagnetic orientation to align along the c axis. It could
also be used as a continuous pathway to make θ drop to zero (at
finite θ the moments can align parallel to c while on the first-
order boundary, and then as you move away from the boundary
they can drop back to being in-plane with θ = 0). This means
that the phase transition may not be truly first order. However,
it should be noted that such a transition entails a rapid change in
the canting angle, which would be difficult to distinguish from
a first-order transition in experiment. For the rest of the discus-
sion, we will continue to refer to this as a first-order transition
with the caveat that it may correspond to a rapid change in the
canting angle. Regardless, it remains distinct from the second-
order transition, where θ continuously decreases to zero.

IV. DFT RESULTS AND DISCUSSION

Having established in Sec. III that MnAu2 sits close to
a dividing line that separates first and second order phase

FIG. 2. MnAu2 lattice parameters as a function of pressure.
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transitions, we now use DFT to perform a systematic set of
spin-spiral calculations to simulate the effects of pressure
and doping, and the effect of varying U . This will reveal
how applying pressure and doping makes MnAu2 evolve in
parameter space. Each set of spin spiral calculations results in
a E(θ ) curve, and all curves are similar to what was obtained
in our previous paper [19]. Each curve was fitted using the
J1-J2-J3-J4 model, and from these we extract the exchange
constants (see Supplemental Material [33]).

It should be noted that these calculations and their subse-
quent analysis are all done at zero temperature, a choice that we
should justify. Measurements of the saturation magnetization
at low temperatures (T � 10 K) and at room temperature
[35,36], along with measurements of the susceptibility and
the critical magnetic field Hc [35], show a very weak
dependence on temperature. As discussed in Sec. I, the

temperature dependence of the spiral angle as a function of
pressure, obtained using neutron diffraction measurements
at 77 K and at room temperature, is also weak [5,6]. The
weak temperature dependence of these material parameters
suggests that the internal energy determines the important
qualitative features of the magnetic phase diagram of MnAu2,
and that including thermal fluctuations will result in only minor
changes to the area of the spiral and ferromagnetic regions
and the length of the first and second order phase boundaries.
Therefore, it is reasonable to expect that our conclusions about
the spiral-to-ferromagnetic phase transition obtained at zero
temperature hold at finite temperatures.

For the pressure calculations, we constrained the volume of
our cell and relaxed the structure as described in Sec. II, and
then calculated the pressure using the formula P = −dE/dV

(see Supplemental Material [33]). Using the LSDA functional

TABLE I. Values of the exchange parameters as a function of pressure, charge dosing, the VCA, and U . Pressure and doping results for
U = 3.12 eV and U = 4.7 eV are reported in the first two sections of the table, where the first five columns are the pressure results and the
last six columns are the doping results. The “type” column indicates whether the doping was performed using charge dosing or the VCA. The
parameters as a function of U are reported in the last section of the table.

Pressure J1 J2 J3 J4 Doping Type J1 J2 J3 J4

(kbar) (meV) (elec/Au) (meV)

U = 3.12 eV

0.000 −20.1394 9.8339 −0.9823 −0.7333 −0.050 Dosing −12.5109 6.7832 −0.5134 −0.6678
12.977 −22.3635 9.9571 −0.7869 −0.7692 VCA −14.1347 7.1857 −0.5786 −0.6446
38.109 −26.5047 10.1130 −0.4949 −0.7711 −0.025 Dosing −16.2810 7.1840 −0.2603 −0.6489
67.892 −31.1437 10.2032 −0.2159 −0.6435 VCA −17.1181 7.3614 −0.3046 −0.6662
88.298 −34.1544 10.3499 −0.1301 −0.6544 0.000 Dosing −20.2505 7.7762 −0.0861 −0.7000
108.353 −37.0067 10.4056 −0.0440 −0.5633 VCA −20.2505 7.7762 −0.0861 −0.7000
169.709 −44.9705 10.4817 −0.3415 −0.5701 0.025 Dosing −24.5855 8.2909 0.3200 −0.7065

VCA −23.5647 8.1775 0.3180 −0.6913
0.050 Dosing −29.1444 8.4463 0.9843 −0.5759

VCA −26.9893 8.2059 0.8370 −0.6678

U = 4.7 eV
0.000 −5.5435 6.4037 −0.6415 −0.9926 −0.050 Dosing −0.6574 3.6749 −0.7146 −0.6583
67.892 −13.4226 7.7049 −0.2128 −1.0301 VCA −1.6202 4.0940 −0.7442 −0.7241
169.709 −24.2692 9.1221 0.0078 −1.0323 −0.025 Dosing −3.1144 4.3517 −0.3170 −0.9235
200.000 −27.4309 9.6846 0.0290 −1.0575 VCA −3.6679 4.5317 −0.3207 −0.9799
240.000 −31.4087 10.4061 0.1081 −1.1649 −0.010 Dosing −4.8464 4.7346 −0.1601 −0.9704
317.691 −39.3228 11.3247 0.2179 −1.1539 −0.005 Dosing −5.4763 4.9005 −0.0754 −0.9132

0.000 Dosing −6.1229 5.0350 −0.0480 −0.9103
VCA −6.1229 5.0350 −0.0480 −0.9103

0.005 Dosing −6.7465 5.2203 0.0486 −0.8760
0.010 Dosing −7.4455 5.4008 0.1156 −0.8414
0.025 Dosing −9.6007 5.9304 0.3580 −0.7010

VCA −8.8932 5.7378 0.3137 −0.6957
0.050 Dosing −13.4470 6.5046 0.6154 −0.4418

VCA −11.7329 6.2087 0.6055 −0.4044
U J1 J2 J3 J4

(eV) (meV)

1.7 −37.7314 9.0945 −0.2716 −0.2806
2.2 −31.4231 8.9775 0.0325 −0.4564
2.7 −25.0395 8.5043 0.0267 −0.6542
3.2 −19.4161 7.6273 −0.0997 −0.7022
3.7 −14.3696 6.7687 −0.0028 −0.7722
4.7 −6.1229 5.0350 −0.0480 −0.9103
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FIG. 3. The dependence of the exchange parameters J2/|J1|, J3/|J1|, and J4/|J1|, see legend, as a function of pressure, doping, and
U . In the charge dosing and VCA panels, positive values on the horizontal axis correspond to electron doping and negative values to hole
doping. (a) Pressure dependence with U = 4.7 eV. (b) Charge dosing dependence with U = 4.7 eV. (c) VCA dependence with U = 4.7 eV.
(d) Dependence on Hubbard U . (e) Pressure dependence with U = 3.12 eV. (f) Charge dosing dependence with U = 3.12 eV. (g) VCA
dependence with U = 3.12 eV.

during relaxation results in overbinding, and so here the
equilibrium volume is predicted to be 6% smaller than
experiment. To account for this, we shift our pressures such that
P = 0 corresponds to the experimental volume, and the lattice
and internal parameters as a function of pressure are shown in
Fig. 2. As the pressure is increased, the parameters decrease
in a smooth way, which contrasts with the experimental
observation in Ref. [5], which seemed to indicate a sharp drop
in the c parameter for P > 6.5 kbar [37].

The fitted exchange parameters as functions of pressure,
charge dosing, the VCA, and U are reported in Table I. We find
that J1 becomes more ferromagnetic with increasing pressure,
electron doping, and decreasing U , and that it is also the
most sensitive to these parameters. At 28 kbar of pressure,
the absolute value of J1 grows by 3.0 meV ∼ 35 K for U =
3.12 eV and 4.5 meV ∼ 52 K for U = 4.7 eV. In Ref. [21],
the critical transition temperature (Néel or Curie, depending on
the magnetic state at the given pressure) increases by ∼40 K

FIG. 4. The spiral angle θ as a function of (a) pressure, (b) charge dosing, (c) the VCA, and (d) U . Panels (a), (b), and (c) include results
for U = 3.12 eV and 4.7 eV, see legend. The angle θ is obtained by minimizing the J1-J2-J3-J4 model.
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going from zero pressure to 28 kbar, so these changes in J1 are
of the correct order.

To evaluate the spiral-to-ferromagnetic phase transition in
the context of the phase diagrams in Fig. 1, we plot the scaled
exchange parameters, ji ≡ Ji/|J1|, in Fig. 3. We find that in all
cases j2 is always antiferromagnetic and is the most sensitive
to pressure, doping, and variation in U . j2 decreases with
increasing pressure, electron doping, and decreasing U . The
exchange couplings j3 and j4 are closer to zero, and do not
respond to pressure, doping, and U in the same way as j2.
Applying pressure suppresses j3, and for U = 4.7 eV the cou-

pling becomes slightly antiferromagnetic for P � 170 kbar.
Charge dosing and VCA doping have a stronger effect,
where j3 becomes more ferromagnetic with hole doping (for
U = 4.7 eV, the coupling becomes enhanced at the large hole
doping of −0.05 electrons per Au) and turns antiferromagnetic
with electron doping. However, j3 is insensitive to U , staying
close to zero for all considered values. j4, unlike j3, remains
ferromagnetic in all cases, and often |j4| > |j3|. Pressure
affects j4 in a similar way as j3, and for U = 4.7 eV so does
doping, but for U = 3.12 eV, j4 is less sensitive to doping than
j3. Finally, decreasing U suppresses j4, going from moderate

FIG. 5. Parametric plots of the MnAu2 exchange parameters as a function of pressure, doping, and U . The parametric curves are visualized
on top of the contour plot from Fig. 1(d). The plot marker shapes indicate the magnetic order of MnAu2, with stars corresponding to spiral
order and circles to ferromagnetic order. See legend for the values of U . (a) Parametric curve as a function of pressure. The reference point is
the P = 0 unit cell, see Fig. 2 for lattice parameters. The arrow indicates the direction of increasing pressure. (b) Parametric curve as a function
of charge dosing. The reference point is a unit cell with experimental lattice parameters and no doping. The arrows indicate the direction for
increasing electron/hole doping. (c) Parametric curve as a function of the VCA. The reference point is a unit cell with experimental lattice
parameters and no doping. The arrows indicate the direction for increasing electron/hole doping. (d) Parametric curve as a function of U . The
reference point is a unit cell with experimental parameters and U = 4.7 eV. The arrow indicates the direction of decreasing U .
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ferromagnetic coupling at U = 4.7 eV to being nearly zero at
U = 1.2 eV. This indicates that measuring the fourth neighbor
interplanar coupling in MnAu2 would yield information about
the strength of the electronic correlations in this material.

Next we plot θ as a function of pressure, charge dosing,
VCA doping, and U in Fig. 4. We obtain θ by minimizing
Eq. (2) with the fitted exchange parameters [38]. We find that
θ is quite sensitive to pressure, doping, and U . As expected,
applying pressure decreases θ in agreement with Ref. [5], and
at a critical pressure this induces a phase transition, which is
in the range 12.977 � P � 38.109 kbar for U = 3.12 eV and
169.709 � P � 200 kbar for U = 4.7 eV. This indicates that
measurements of the critical pressure provides information
about the strength of the electronic correlations. In addition,
for both charge dosing and VCA doping the rate of change of
θ is independent of U , and θ decreases with electron doping
and increases with hole doping. Finally, in Fig. 4(d) we find
that θ decreases with decreasing U and eventually collapses
to a ferromagnetic state.

The evolution of the magnetic coupling of MnAu2 when
subjected to pressure, doping, and variation in U can be further
visualized using the contour plot in Fig. 1(d). We take the
exchange parameters j3 and j4 and plot them as parametric
curves on top of the contour plot, which captures how they
vary with pressure, doping, and U . For each point, we also
compare the fitted j2 with the critical jc

2 that marks the spiral-
to-ferromagnetic phase transition. If j2 < jc

2 , we plot the point
as a circle, indicating that the system is ferromagnetic, and
if j2 � jc

2 we plot the point as a star, which represents spiral
order. This procedure yields Fig. 5, and on each panel we give a
reference point, which for panel (a) corresponds to the relaxed
cell at experimental volume (P = 0), for panels (b) and (c)
corresponds to the experimental lattice parameters with zero
doping, and for panel (d) corresponds to experimental lattice
parameters with U = 4.7 eV. The arrows with text indicate
the direction that the parametric curves evolve, so following
the curve from the reference point in panel (a) shows how
the parameters change with increasing pressure, in panels (b)
and (c) one direction is electron doping and the other is hole
doping, and for panel (d) U decreases along the curve. If, while
following the curve, the marker symbol changes from a star to
a circle, this corresponds to a phase transition. If this change
in symbols happens while south of the red line, then the phase
transition is first order, and if it happens north of the red line,
then it is a second order.

The parametric path for MnAu2 under pressure in Fig. 5(a)
shows that the spiral-to-ferromagnetic transition is first order
for both values of U . So, for ideal, stoichiometric MnAu2

samples, we expect the pressure-induced phase transition to
be of first order, in agreement with Ref. [22]. Decreasing U at
ambient pressure also induces a first order phase transition.
In contrast, for our considered doping levels MnAu2 does
not collapse to the ferromagnetic state. Doping with holes
stabilizes the spiral state and drives the system deeper into
the first-order parameter region, while doping with electrons
moves MnAu2 closer to ferromagnetism and also towards a
second-order phase transition. Also, the stronger the correla-
tions, the more dramatic the shifts in parameter space with
doping. For both U = 3.12 eV and 4.7 eV an electron doping
of 0.05 electrons per Au places the system at the dividing

TABLE II. Values of the fitted exchange parameters for the
simultaneous pressure and charge dosing calculations. Results are
for a charge dosing value of 0.07 electrons per Au and U = 3.12 eV.

Pressure J1 J2 J3 J4

(kbar) (meV)

0.000 −33.5978 10.2441 0.8442 −0.6193
2.000 −33.9957 10.2223 0.8197 −0.6252
6.000 −34.8238 10.1037 0.8679 −0.6570
10.000 −35.6126 10.0322 0.8756 −0.6331
18.000 −37.0886 9.9025 0.9327 −0.6302
20.000 −37.4883 9.8482 0.9131 −0.6498
24.000 −38.1828 9.7781 0.9236 −0.6241

line between first and second order, and it would be expected
that the application of pressure for this system would induce a
second order transition.

We check the prediction of inducing a second order
phase transition by calculating the pressure dependence of
MnAu2 with U = 3.12 eV and a charge dosing level of
0.07 electrons per Au. The exchange parameters obtained
from these calculations are reported in Table II and the
scaled exchange parameters, pressure dependence of θ , and
a parametric plot of the exchange parameters are plotted
in Fig. 6. As shown in Fig. 6(a) the initial charge dosing
biases j2 to be less antiferromagnetic and for j3 to become
more antiferromagnetic. For the range of pressures considered,
j2 decreases with increasing pressure while j3 and j4 are
unaffected. Figure 6(b) shows the effect this has on the θ

vs pressure curve, where the trend of the charge-dosed curve
is consistent with a second order phase transition, particularly
when compared with the first order transition of the undoped
curve included for comparison. The parametric curve in
Fig. 6(c) shows that the charge-dosed pressure-dependent path
in exchange parameter space is north of the dividing line,
confirming the prediction that applying pressure to electron
doped MnAu2 can induce a second-order phase transition.

We can use the result that applying pressure to electron-
doped MnAu2 induces a second order phase transition to
resolve the contradiction in the pressure experiments. In
Ref. [21], where the authors found a second order phase
transition for MnAu2, they reported that there were trace
amounts of MnAu in their sample, such that the system was
34.3% Mn and 65.7% Au. This excess of Mn in their sample
can lead to an effective electron doping. Let us assume that
the excess Mn atoms are also in the 2+ ionic charge state,
and that the extra electrons they donate are spread homo-
geneously over the system. This would mean that each unit
cell of MnAu2 would have 2 electrons per Mn · (34.3/33.3) =
2.06 electrons per Mn, or an excess of 0.03 electrons per Au.
Assuming that U = 3.12 eV [39] and comparing with the
electron dosing curve in Fig. 5(b), an extra 0.03 electrons
per Au would shift the sample near the second order transition
region of the parameter space, which as we’ve seen can lead to
a second order phase transition upon application of pressure.
While the MnAu domains are not likely to uniformly dope
the material, we see how the variations in sample quality can
influence the kind of phase transition. This stresses both the
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FIG. 6. Plots showing the results of calculations with simultaneous charge dosing and applied pressure. The calculations were performed
using U = 3.12 eV and a charge dosing of 0.07 electrons per Au. (a) The exchange parameters J2/|J1|, J3/|J1|, and J4/|J1|, see legend, as
a function of pressure. (b) The spiral angle θ as a function of pressure with and without charge dosing, see the legend. (c) Parametric plot of
the exchange parameters as a function of pressure visualized on top of the contour plot from Fig. 1(d). The plot markers indicate the type of
magnetic order, see the legend. The reference point is the relaxed P = 0 unit cell. The arrow indicates the direction of increasing pressure.

importance of controlling for impurities in MnAu2 and that
the magnetic properties are also amenable to tuning.

V. CONCLUSIONS

We studied how the magnetic exchange in MnAu2 changes
upon application of pressure and doping using a series of DFT
calculations, as well as varying the electronic correlations with
a Hubbard-like U . We found that the proper model for these
interactions is the one-dimensional Heisenberg model with
coupling between the first four Mn planes (the J1-J2-J3-J4

model), which contrasts with previous studies that only
considered interactions between the first two planes. Within
this model, transitions between the ferromagnetic and spiral
phases can be either first or second order, and J3 and J4

control the order of the phase transition. Our analysis finds that
ideal, stoichiometric MnAu2 sits near a dividing line in (J3,J4)
space that separates first- and second-order phase transitions.
Applying pressure collapses the spiral state as expected, and
for ideal, stoichiometric MnAu2 the transition is first order.
Hole doping the material further stabilizes the spiral and the
tendency towards a first-order transition. In contrast, electron
doping the material makes the spiral less stable and moves

the system in (J3,J4) space closer to a second-order transition.
We confirm with additional DFT calculations that applying
pressure to electron-doped MnAu2 will induce a second-order
phase transition. Therefore, impurities that provide an effective
electron doping, such as excess Mn, can cause the spiral-
to-ferromagnetic phase transition to become second order
under pressure. These results indicate that MnAu2 is tunable,
where the kind of phase transition can be set and the spiral
angle controlled through both pressure and doping, which can
include gate voltages. The ability to control the spiral angle
holds promise for integration of MnAu2 in spintronics devices,
such as in a spin valve. Attaching a thin film of MnAu2 to
the free magnetic layer of a spin valve and then applying a
gate voltage could allow for a current-free manipulation of
the relative orientation between the free and pinned magnetic
layers, which would reduce Joule heating and could help in
developing smaller-scale electronics devices.
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