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Direct measurement of coherent subterahertz acoustic phonons mean free path in GaAs
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The phonon mean free path is generally inferred from the measurement of thermal conductivity and we are still
lacking precise information on this quantity. Recent advances in the field of high-frequency phonons transduction
using semiconductor superlattices give the opportunity to fill this gap. We present experimental results on the
attenuation of longitudinal acoustic phonons in GaAs in the frequency and temperature ranges 0.2–1 THz and
10–80 K respectively. Surprisingly, we observe a plateau in the frequency dependence of the attenuation above
0.7 THz, that we ascribe to a breakdown of Herring processes.
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I. INTRODUCTION

A large renewed interest appeared recently in theoretical
and experimental studies of phonons mean free paths (MFP)
in semiconductors. Thermal transport in optoelectronic and
microelectronic devices and engineering of new thermoelectric
systems are strongly dependent on this parameter, which is still
not very well known. A series of recent experiments using
thermal conductivity spectroscopy technique [1–6] showed
that phonons contributing to thermal conductivity have a large
distribution of MFP. It can be suspected that low-frequency
phonons may have MFP in the micrometric range at room
temperature and thus could play a large role in heat transport
in nanosystems [7–9]. In addition, first-principles calcula-
tions [10–12] proved that the simplistic kinetic theory based
on an averaged phonon MFP value can be very misleading.
In this context accurate and direct MFP measurements for
well-defined individual subterahertz phonon modes would
be useful. In this paper, we present experimental measure-
ments of the attenuation of coherent longitudinal acoustic
waves propagating along [100] with frequencies going from
0.2–1 THz in the temperature range 10–80 K. Direct phonon
MFP measurements in the subterahertz range cannot be done
with a good accuracy by inelastic neutron and x-ray scattering
and is out of reach for standard light scattering methods.
Picosecond ultrasonics methods combined with metallic films
as transducers have been used up to 0.1 THz for MFP
determinations in bulk samples [13–16] and a few hundreds
of GHz in strongly absorbing amorphous thin films [17,18].
Recently, semiconducting superlattices (SL) proved to be
very efficient emitters and detectors of subterahertz coherent
acoustic waves [19–26] and have also been used for phonon
MFP measurements [27–29]. Excited by a femtosecond laser
pulse with an energy above the electronic band gap, a SL can
emit a discrete set of frequencies determined by its period
superimposed on a low-frequency spectrum extending up to
a few tens of GHz. The discrete frequencies correspond to
the lower edges of phonon energy gaps at the center of the
Brillouin zone qac = 0 where qac is the acoustic wave vector.
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These SLs may also resonantly detect any mode satisfying the
selection rule qac = ki + kd where ki and kd are the incident
and scattered electromagnetic wave vectors. Furthermore, the
detection is strongly enhanced if the probe laser wavelength
is tuned closed to a SL electronic interband transition [30].
In spite of this wave vector mismatch between emission
and detection, it is possible to emit and detect phonons
using a single SL configuration but this is not the optimal
way to perform experiments. A series of measurements was
conducted in different configurations in order to access the
attenuation of longitudinal phonons at several frequencies up
to 1 THz as a function of temperature. A striking feature was
obtained with the observation of a plateau in the frequency
dependence. We analyze the different absorption processes
that exist in these temperature and frequency domains, with
a special attention on Herring processes [31]. The paper
is organized as follows. In Sec. II, experimental methods
and studied samples are introduced. Section III presents
experimental results and a discussion on the data.

II. SAMPLES AND EXPERIMENTAL DETAILS

The interaction of a femtosecond laser pulse with a SL
results in the emission of a coherent acoustic pulse, which
is launched into the underlying substrate. The pulse contains
a few narrow frequency components mostly defined by the
period of the SL. After propagation, it can be detected either
by another SL grown on the opposite side of the substrate or by
the same SL after a round trip through the wafer. In both cases,
the acoustic strain induces a change of reflectivity, measured by
a probe laser light. We use a femtosecond Ti:Sapphire mode-
locked laser providing 80 fs pulses (∼200 fs pulses incoming
on the sample), operating at a wavelength that has been tuned
between 680–820 nm, depending on the SL period, with a
repetition rate of 80 MHz. The pump is modulated at 1 MHz
to allow synchronous detection through a lock-in amplifier.
The control of the sample temperature is carried out using a
He cryostat in exchange gas. Light beams are focused to a
diameter of 60 μm, and typical energies per pulse amount to
0.5 nJ for the pump and 0.2 nJ for the probe.

We used four different configurations: (i) reflection exper-
iments on a single SL (S400), which acts both as a phonon
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TABLE I. Characteristics of the samples. LP is a superlattice with a large period. DS400 to DS1000 contain two SLs on each side of the
substrate, one of which presents a thickness gradient of all layers. The characteristics done here correspond to the uniform SL. RT denotes
round trip, Trans denotes transmission, and (i) to (iv) refer to the description of experimental configurations.

qac = 0 mode Studied Thicknesses Substrate Propagation
frequency frequency GaAs/AlAs Number thickness Experimental distance

Sample (THz) (THz) (nm) of periods (μm) configuration (μm)

LP 0.202 0.202–0.243 17/113a 20.5 375 RT (iii) 750
S300 0.292 0.292 12.2/4.8 26.5 364 RT (ii) 738
S400 0.394 0.394 8.6/3.9 80 346 RT (i) 692
DS400a 0.394 0.394 8.9/3.5 100 360 Trans (iv) 360
DS400b 0.394 0.356–0.394 8.9/3.5 100 983 Trans (iv) 983
DS700 0.715 0.715 4.71/1.83 175 368 Trans (iv) 368
DS800 0.787 0.787–0.819 4.35/1.72 200 361 Trans (iv) 361
DS1000 1.008 1.008 3.48/1.38 250 368 Trans (iv) 368

aThe reflectors layers are GaAs/Ga0.2Al0.8As.

emitter and detector; (ii) reflection experiments on a single
SL (S300) embedded in an optical cavity, which strongly
modifies the selection rule [32–34]; (iii) reflection experiments
on a SL (LP) with a large period � such as ki + kd = 0
(mod 2π/�); and, lastly, (iv) transmission experiments with
slightly different SLs deposited on the opposite sides of a wafer
in order to satisfy simultaneously the emission and detection
selection rules (DS400a up to DS1000).

AlAs/GaAs superlattices were grown by molecular beam
epitaxy on (001) oriented two-sided polished GaAs substrates.
In all samples (except LP) the thicknesses d1 and d2 were
chosen to have 3

4λ GaAs and 1
4λ AlAs layers, where λ is

the wavelength of the emitted longitudinal acoustic wave; this
condition gives the largest width for the first zone-center gap.
Sample S300 is made of a single SL (working at 0.292 THz),
which is embedded in an optical cavity, whose reflectors are
formed by 56/65 nm GaAs/Al0.2Ga0.8As distributed Bragg
reflectors (three pairs for the top mirror and ten pairs for
the bottom mirror). Samples labeled S400a up to S1000 are
formed by two nearly identical SLs grown on both sides of
the GaAs substrate. The growth is performed in two steps, one
SL after another. The first SL has a uniform period but during
the second SL growth, the suppression of the substrate wafer
rotation yields to a gradient in the thickness of all layers, which
is estimated to be of the order of 20% for the whole 2-in wafer.
The presence of the thickness gradient on one SL allows to
tune the detection spectral response to optimize the detection
of the phonon generated by the uniform SL, after propagation
through the substrate [24]. The role of emitter/detector of
the SLs could be inverted in sample DS800, that explains
that two values of frequencies could be reached (0.787 and
0.819 THz). At last, the sample labeled LP is a SL with a large
period of 130 nm (labeled LP) made of 113/17 nm period
Ga0.2Al0.8As/GaAs building block. The characteristics of the
samples and the nine frequencies at which our experiments
have been performed are summarized in Table I.

Below 0.4 THz the amplitude of the acoustic waves having
made a round trip in the sample has been measured as
a function of temperature. Above 0.4 THz, the reflection
coefficient of acoustic waves on the sample backside can
be strongly affected by its quality and cleanness. To avoid
reflection losses, the acoustic attenuation for the highest

frequencies has been obtained recording the high-frequency
component just transmitted through the sample and detected
with a SL deposited on the wafer backside [24].

III. RESULTS AND DISCUSSION

In our experimental configuration, we can only measure
the relative change with temperature of the sound absorption
coefficient �α, defined by

�α(T ) = 1

d
ln

(
A(T0)

A(T )

)
, (1)

where d is is the propagation distance, A(T0) the amplitude
of the discrete Fourier component at frequency νac of the
time-resolved detected signal, at the lowest temperature we
could achieve (about 10 K), and A(T ) the same amplitude at
temperature T . Experimental results are shown in Fig. 1.
For frequencies up to 0.4 THz, the attenuation increases
with temperature and frequency as can be expected [35].
Surprisingly, above 0.7 THz, a plateau appears in the frequency
dependence. In order to get rid of possible artifacts, comple-
mentary experiments were undertaken. Indeed, this feature
could also be attributed to (i) nonlinear interactions between

FIG. 1. Deviational sound absorption curves �α(T ). The colored
full lines are a guide for the eye.
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FIG. 2. Deviational sound absorption curves �α obtained at
0.4 THz for different propagation distances.

the discrete high frequencies of the generated spectrum and
its lower continuous part, however, pump laser power has
been varied by a factor 30 and no difference was observed;
or (ii) to the proximity of the probe wavelength to a SL
electronic transition where photoelastic coefficients are very
high [30]. We indeed can suspect that the SL properties slightly
change with temperature. This would affect the measured
acoustic wave amplitude signal. To check this point several
tests were carried out. First, we renormalized the amplitudes of
high-frequency components of the spectrum by the amplitude
of low frequency (amplitude of echoes envelopes observed
with an interferometric detection or Brillouin component at
40 GHz) for which �α is negligible on our temperature range.
In another set of measurements, the signal was optimized for
each temperature by tuning the wavelength. In both cases, no
significant difference was observed on the values of �α. Last,
a more crucial test was performed by comparing experiments
done at 0.4 THz for three different propagation distances.
Any dependence of the emitters and detectors efficiencies on
temperature would have had the most important effect for the
shorter distances. As it can be seen in Fig. 2, the three sets of
data obtained for the three different distances give the same
results for �α within an error bar of roughly 15%.

Having discarded most probable experimental sources of
error, we have investigated the possible mechanisms responsi-
ble for this unexpected behavior. Two attenuation mechanisms
have to be considered in the very low temperature limit. The
spontaneous anharmonic decay of phonons gives a contribu-
tion αsd (μm−1) = 1.31 × 10−4ν5 as estimated by Berke [36],
where the acoustic frequency ν is expressed in THz. The
second mechanism (when the dopant concentration is low)
is the isotopic scattering which gives a contribution [37]
αiso(μm−1) = 7.5 × 10−4ν4. Both contributions are rapidly
overtaken by scattering processes and fission processes when
temperature increases; thus the experimental values we ob-
tained for �α at the highest temperatures we achieved should
be very close to the absolute value of the inverse phonon
MFP and provide unique experimental data to be compared to
existing models for acoustic attenuation.

Contribution of fission processes to the MFP temperature
dependence remains small compared to scattering processes
such as LA + TA → LA and LA + TA → TA, where LA

(TA) denotes longitudinal (transverse) acoustic phonons. The
latter process is forbidden when elastic isotropy is assumed
but Herring [31] suggested that it should be very efficient in
anisotropic systems. For such crystals, Herring showed that a
longitudinal phonon, with energy �ωac can interact with much
higher-frequency slow and fast transverse thermal phonons
(STA and FTA respectively) close to a symmetry axis along
which there is degeneracy. A general expression for the sound
absorption coefficient related to this process can be written as

αH (ωac)

= �

128π2ρ3vl

∫
BZ

|�q,q′,q+q′ |2[n(ω′) − n(ω′ + ωac)]

ωacω′(ωac + ω′)

× δ[ωac + ω(q′,st) − ω(q + q′,f t)]dq′, (2)

where �q,q′,q+q′ is a coupling parameter, ρ the specific mass,
vl the longitudinal sound velocity along [100], q′ the STA wave
vector and �ω′ = �ω(q′,st) its energy; the indices st and f t

mean slow and fast transverse, respectively, and n(ω′) is the
phonon population. Neglecting phonon dispersion, and using
an elastic continuum approximation for the coupling parame-
ter, Herring predicted an asymptotic behavior BνpT 5−p for αH

in the limit of low frequencies and low temperatures, where
the exponent p depends on the crystal symmetry. Later on,
Simons [38] derived an expression for the Herring processes
contribution to sound attenuation in cubic crystals: in that
case p = 2 and the prefactor B can be expressed in terms of
second- and third-order elastic constants. The calculation for
a longitudinal wave propagating along [100] gives

αHasy. = 3ζ (3)

8π2vlv
3
t

k3
B

�2

[E(h) − (1 − h2)K(h)]

h2(A2 − 1)

× (C155 + 2C44 − C144)2

C11C44(C11 − C44)
ω2T 3, (3)

where A = C44+C12
C11−C44

, ζ (3) is the Rieman ζ function of ar-

gument 3, h =
√

2A+1
A+1 , K(h) and E(h) are the complete

elliptic integral of the first and second kind [39]. Using the
values C11 = 121.07, C12 = 54.77, C44 = 60.36 GPa [40],
and C155 = −269, C144 = 2 GPa [41] for the GaAs second-
and third-order elastic constants respectively, the contribution
is

αHasy.(μm−1) = 3.96 × 10−8ν2T 3, (4)

where the acoustic frequency ν is expressed in THz. Herring
himself [31] pointed out that this asymptotic behavior could be
very limited. This appears clearly through the fact that Eq. (3)
diverges when the crystal is isotropic (A = 1) while we expect
a zero contribution from Herring processes in that case. We
show in the Supplemental Material [42] how to solve this
paradox and how limitation of the asymptotic limit depends
strongly on the anisotropy factor A. Using expression 4 of
αHasy. in Fig. 3, it can be seen that αHasy. prediction strongly
underestimates the attenuation at 50 K up to 1 THz. This is
not surprising since the asymptotic expression αHasy holds for
a very limited frequency and temperature range as we shall
see now. The exact calculation of αH could be achieved using
a microscopic model or ab initio calculations for the phonon
dispersion and coupling parameters. However, calculation of
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FIG. 3. Experimental frequency dependence of �α(T ) at 50 K
(red circles). The thin black line is a frequency square fit, which
works well up to 0.4 THz. Experimental data departs strongly from
the estimation of Herring processes contribution with the asymptotic
formula of Simons [38] (solid blue line).

Herring processes occurrence for subterahertz longitudinal
phonons would require a very fine mesh of the Brillouin zone.
This work is beyond the scope of this paper but we will show
that interesting information about the frequency behavior of
αH can be learned by considering the behavior of the two
phonon density of states for Herring processes defined by

ρH (ωac) =
∫

BZ

δ[ωac + ω(q′,st) − ω(q + q′,f t)]dq′. (5)

Let us define the spherical coordinates (q ′,θ,ϕ) of the
wave vector q′. If we still neglect phonon dispersion, the
energies �ω(q′,st) and �ω(q + q′,f t) can be rescaled by
the acoustic energy �ωac. The calculation of ρH (ωac) requires
then the determination of the values x = ω(q′,st)/ωac, which
satisfy energy conservation x(θ,ϕ) = ω(q + q′,f t)/ωac − 1.
The calculated density of these solutions ρ2(x) is given by

ρ2(x) = x2

2π2

∫ 2π

0
dϕ

∫ π

0
dθ sin θδ[x − x(θ,ϕ)]. (6)

This density is displayed in Fig. 4 neglecting phonon disper-
sion. We show, in the Supplemental Material [42], that the
asymptotic value of ρ2(x) restricted to q′ wave vectors close
to the A4 axes of a cubic system is given by

lim
x→∞ ρ2(x) = ρ2,A4 (x)

= 12

π2

δ2
A4(

1 − δ2
A4

)
(A2 − 1)

K

(√
2A + 1

A + 1

)
. (7)

where δ2
A4

= C44
C11

. For GaAs it gives ρ2,A4 (x) = 0.894. We
can see in Fig. 4 that the exact calculation departs rapidly
from this asymptotic value as x decreases. For example,
another important contribution appears at smaller x values
due to transverse phonons close to A3 axes; in that case, the
constant-frequency surfaces in wave vector space do not touch,
as for A4 axes, but just intersect. We show in the Supplemental
Material [42] that the contribution ρ2,A3 (x) of these phonons

1 THz 0.3 THz 0.1 THz0.03 THz

x =ω(q',st)/ωac

0.1 1 10 100

ρ 2(x
)

0

1

2

3

4

FIG. 4. Density ρ2(x) of rescaled phonons energies x =
ω(q′,st)/ωac satisfying the scattering selection rules for Herring
processes LA + STA → FTA (solid black line), neglecting phonon
modes dispersion. The black dashed-dotted line gives the asymptotic
value of ρ2(x). The vertical dotted lines display the integration limits
to obtain the two phonon density of states for different acoustic
frequencies νac assuming a cutoff frequency of 3 THz for the
transverse phonons; densities ρ2(x) for LA + STA → LA (dashed
blue line) and LA + FTA → LA (dash-dotted red line) processes are
weaker but less affected by the cutoff frequency.

is given by

ρ2,A3 (x) = 2

πχ2
A3

∑
±

(1 ± δ)
√

(1 ± δ)2 − δ2χ2
A3

x−1, (8)

where δ = 1
3

√
C11+C44−C12

C11
, χA3 = (A−1)(C11−C44)

9δ2C11
and signs (+)

et (−) are given by the sign of the cosine of the angle
between A3 semi-axes and the [100] axis along which
the acoustic wave under investigation is propagating. For
GaAs it gives ρ2,A3 (x) = 7.62x−1, which is greater than
ρ2,A4 (x) for x < 10. For x = 20, the exact calculation gives
[ρ2(x) − ρ2,A4 (x)]/ρ2,A4 (x) = 80%. The previous analysis
will first help us to define the frequency and temperature
domain where the asymptotic expression αHasy is valid. If
ω′ � ωac, then the phonon population factor in Eq. (2)
writes

n(ω′) − n(ω′ + ωac) = β�ωac

exp(β�ω′)
(exp(β�ω′) − 1)2

(9)

with β = 1/kBT . Integration in Eq. (2) can be done using the
dimensionless quantity z = βhνacx. The temperature behavior
in the asymptotic limit is obtained assuming that we can
integrate z from zero up to infinity. If we want to keep a
lower bound for the integration quite small while satisfying the
condition x > 20, we should fulfill a first condition, namely
the value of frequency νac (expressed in GHz) should be
lower than the value of temperature T (expressed in K):
νac(GHz) < T (K). Moreover, the dispersion on transverse
phonon branches cannot be neglected in GaAs for frequencies
above 1 THz [43]. Thus, temperature should be small enough
to keep phonon populations above 1 THz negligible. This leads
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FIG. 5. Integrated two phonon density of states ρH (νac) for
Herring processes. The maximum is reached at 0.4 THz and Herring
processes clearly break down in the range 0.5–1 THz.

to the second condition: T < 10 K for an error of 20% in the
integration. These two conditions show that the temperature
and frequency domains where α(νac) = 3.96 × 10−8ν2

acT
3

holds are drastically limited.
We will now consider how Herring processes behave

beyond these frequency and temperature ranges. A key point
to answer this question is the fact that transverse phonons
frequencies in GaAs have a cutoff at approximately 3 THz [43].
In order to obtain the two phonon density of states defined by:

ρH (ωac) � ω2
ac

4π〈vt 〉3

∫ xmax

0
ρ2(x)dx, (10)

where 〈vt 〉 is a transverse velocity averaged on the whole
Brillouin zone, the integration has to be limited to a maximum
value xmax=3/νac (νac in THz), indicated by vertical dotted
lines in Fig. 4 for different acoustic frequencies. The resulting
integrated density of states ρH (ωac) is displayed in Fig. 5.
First, it increases rapidly, and then reaches a maximum for
a few hundreds of GHz and at the end drops above 1 THz.
The contribution of Herring processes to the attenuation of
subterahertz longitudinal acoustic waves should be above
the asymptotic prediction given by Simons’s formula, before
reaching a maximum. These Herring processes then break
down above 1 THz. Meanwhile the other scattering processes
LA + STA → LA and LA + FTA → LA, whose contribu-
tions to ρ2(x) are displayed on Fig. 4 should have a negligible
contribution at frequencies below 0.1 THz. They continuously
increase with frequency and could partially compensate for
the Herring processes breakdown above 1 THz. More likely,
the plateau we observed experimentally is the signature of this

breakdown, which is largely due to the characteristic shapes
of transverse phonons curves in GaAs, which become very
flat after the half of the Brillouin zone and have a low cutoff
frequency; this fact is general for crystals with long-range
interactions such as covalent semiconductors. Thus, the same
statement about Herring processes breakdown should also hold
for crystals with equivalent structure and bonding such as
silicon and germanium: our calculations indicate that indeed
two phonons density of states exhibits a maximum at 0.7 THz
in silicon and germanium. This fact has also been shown with
calculations performed for a fcc lattice with nearest-neighbor
central forces [44], which clearly demonstrates saturation of
Herring processes contributions at temperatures much lower
than the Debye temperature for a frequency range in good
agreement with our observations in GaAs.

IV. CONCLUSION

We have measured the anharmonic contribution to the
MFP of subterahertz coherent acoustic phonons in GaAs
at temperatures much below the Debye temperature. Our
experimental results show an unexpected plateau for the
acoustic absorption above 0.7 THz up to 1 THz. We gave
qualitative arguments to demonstrate that Herring processes
give the dominant contribution to this absorption up to
0.3–0.4 THz but become rapidly inefficient, due to the low-
frequency cutoff of transverse phonons in GaAs, giving rise
to the observed plateau. This effect is responsible for the long
MFP [l = (2α)−1 = 50 μm] we measured at 1 THz at 60 K.
An extrapolation with a T −1 dependence at room temperature
leads to a MFP of 10 μm, which is surprisingly large but
could explain the recent indirect observations of long MFP in
crystalline semiconductors, which have been inferred from
measurements with the thermal conductivity spectroscopy
technique [5]; this value is also close to the extrapolation
to low-frequency modes of first-principles calculations of the
phonons relaxation times for normal and umklapp scattering
processes in GaAs [12] and to a rough estimation deduced
from lifetime measurement of an acoustic nanocavity [45].
Thus, while the Herring processes’ contribution to longitudinal
phonon absorption is dominant up to a few hundreds of
GHz, their breakdown, which is a general statement, provides
a frequency window where subterahertz coherent acoustic
waves can propagate over macroscopic distances, even at
room temperatures. These results are particularly appealing
for phonon imaging using nanometric acoustic waves.
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