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The diffusion properties of a wide range of impurities (transition metals and Al, Si, and P) in ferritic alloys
are here investigated by means of a combined ab initio–atomic diffusion theory approach. The flux-coupling
mechanisms and the solute-diffusion coefficients are inferred from electronic-structure calculations of solute-
defect interactions and microscopic jump frequencies. All properties except the second-nearest-neighbor binding
energy are found to have a characteristic bell shape as a function of the d-band filling for the 4d and 5d

series, and an M shape for the 3d row because of the out-of-trend behavior of Mn. The solute jump frequencies
are governed by compressibility, which makes diffusion of large solutes faster, although this effect is partially
compensated for by lower attempt frequencies and larger correlations with the vacancy. Diffusion coefficients
are predicted in a wide temperature range, far below the experimentally accessible temperatures. In accordance
with experiments, Co is found to be a slow diffuser in iron, and the same behavior is predicted for Re, Os, and Ir
impurities. Finally, flux-coupling phenomena depend on the iron jump frequencies next to a solute atom, which
are mainly controlled by similar electronic interactions to those determining the binding energies. Vacancy drag
and solute enrichment at sinks systematically arise below a solute-dependent temperature threshold, directly
correlated with the electronic-level interactions at the equilibrium and the saddle-point states. Early transition
metals with repulsive second-nearest-neighbor interactions also diffuse via vacancy drag, although they show a
lower temperature threshold than the late metals. This confirms that drag is the most common solute-vacancy
coupling mechanism in iron at low temperatures, and this is likely to be confirmed as well for impurity diffusion
in other transition metals.
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I. INTRODUCTION

Ferritic and ferritic-martensitic (F/M) alloys are widely
used in many industrial applications. They consist of body-
centered-cubic (bcc) iron alloys with varying concentrations
of several impurities, most of which are purposely included
in order to improve the alloy mechanical properties. Impurity
diffusion plays a crucial role in determining such properties
during fabrication, processing, and operation. Correlations
with crystal defects can severely affect the diffusion process
and hence the material macroscopic behavior. The effects in
irradiated materials are even greater because of the strongly
increased concentration of vacancies and self-interstitial atoms
(SIA). For instance, the arising of solute drag by vacancies
has been shown to be among the main causes for radiation-
enhanced or -induced solute precipitation [1–3], as well
as for solute segregation at defect sinks [4–6], which in
turn are responsible for hardening and embrittlement [7,8].
Solute-defect correlations can also substantially affect defect
migration. As an example, the swelling-rate reduction in FeCr
alloys with increasing Cr content has been ascribed to the
strong correlation between Cr atoms and self-interstitial loops:
diffusion of SIA’s is slowed down by the correlation with
solutes, and the recombination with vacancies is therefore
enhanced [9]. A similar effect has been postulated for Mn
impurities [10,11].

*messina@kth.se

Kinetic correlations between solutes and vacancies can
lead to vacancy drag, i.e., to a coupled flux of solutes and
vacancies in the same direction, as opposed to the inverse-
Kirkendall diffusion mechanism [12]. Recent studies in dilute
iron alloys have shown that vacancy drag can systematically
arise in a wide range of conditions [13–15]. These studies are
based upon the calculation of transport coefficients through
the self-consistent mean-field (SCMF) method [16], which
proved to be considerably more accurate than the traditional
multifrequency models [17–19]. SCMF theory was applied
for a systematic investigation of vacancy drag in bcc and face-
centered-cubic (fcc) alloys [13,20]. In these works, the authors
highlighted the predominant role of kinetic correlations over
thermodynamic interactions in controlling and determining
the arising of vacancy drag. This entails that the character of
solute-vacancy interactions is not sufficient for an accurate
prediction of flux coupling, but a full kinetic characterization
of each single alloy is necessary. However, the conclusions
therein are based on simple thermodynamic models, which are
not necessarily representative of the behavior of “real” alloys.
Such kind of kinetic studies can be performed with a higher
accuracy if ab initio methods are applied in the calculation of
microscopic jump frequencies, on which the SCMF method
relies.

Several examples of ab initio-based studies of impurity
diffusion in bcc iron can be found in the literature [21–24].
However, such studies cover a limited set of impurities
and do not treat flux-coupling phenomena. Flux coupling
was more extensively investigated in [15,25], limitedly to
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some impurities that are of importance for the microstructure
evolution of reactor pressure vessel (RPV) F/M steels. By
means of a combined ab initio SCMF approach, vacancy drag
was found to systematically occur for most impurities (Cu,
Mn, Ni, P, Si) below a solute-dependent temperature threshold
that is usually above 1000 K [15]. This could be directly linked
to the observed formation of solute precipitates, even in the
apparent absence of thermodynamic driving forces [3,8].

Flux coupling is a complex kinetic phenomenon that
depends on a large set of jump frequencies, for which clear
physical trends have not been identified yet. The coupling
strength and the threshold temperature could be correlated to
first- and second-nearest-neighbor (nn) solute-vacancy inter-
actions only in a qualitative way in [13]. However, the variation
of the 2nn solute-vacancy binding energy from one solute to
another, as well as its effective impact on flux coupling, are not
totally understood. The presence of a 2nn binding interaction
in bcc crystals is usually regarded as a necessary condition
for vacancy drag to take place [26,27]; however, it was shown
in [13] that vacancy drag can occur even in the presence of
some repulsive interactions, either at 1nn or 2nn. The objective
here is hence to improve the understanding of the binding
energies, the jump frequencies, and flux coupling in dilute
Fe(X) alloys by studying these properties at the electronic
scale. Group-specific trends have already been evidenced for
the cohesive energy, the bulk modulus, and the equilibrium
atomic volume [28], for the solute-vacancy binding energies
in Fe [26], for the solute-vacancy [27] and divacancy binding
energies [29] in W, and for solute diffusion in Ni [30,31].
While the variation of many physical properties across the
transition-metal series has a simple bell-shaped behavior with
a maximum approximately in the middle of the series, 2nn
binding energies have a linear behavior in contrast to the
parabolic trends [26,29]. It is then interesting to investigate
the effect of this anomalous trend on diffusion properties.

In addition, transport coefficients allow for an accurate
first-principle-based calculation of low-temperature solute
tracer diffusion coefficients. The latter are essential quantities
for the modeling of radiation-response phenomena, but are
usually not accessible experimentally below 750 ◦C. Recently,
thanks to an advanced atom-probe technique [32], it was
possible to improve the spatial resolution and accurately
measure diffusion coefficients at temperatures stretching down
to 550 ◦C. However, many applications of irradiated materials
require the knowledge of solute-diffusion coefficients at lower
temperatures since the increased defect population accelerates
diffusion phenomena that would otherwise be very slow. Given
the lack of low-temperature data, diffusion coefficients are
usually extrapolated from high-temperature measurements. In
ferritic alloys, however, the extrapolation is normally based on
a limited temperature range in the ferromagnetic (FM) region,
and can therefore lead to errors of several orders of magnitude.
Conversely, the transport coefficients calculated in this work,
combined with a proper magnetic-transition model, allow for
a reliable estimation of solute-diffusion coefficients for all the
transition metals (TM), over a wide range of temperatures.

This work presents therefore an electronic study of vacancy-
assisted diffusion for all TM impurities in iron-based dilute
alloys. Other solutes (Al, Si, and P) are also included in this
analysis since they are often present in many types of F/M

steels, for a total of 26 impurities. The adopted dilute limit
entails that impurity transport by vacancy clusters, as well
as possible multisolute effects on the transport coefficients,
are neglected. For each binary alloy, microscopic jump
frequencies are computed with an ab initio method. The
trends of binding energies, migration barriers, and attempt
frequencies as functions of the d-band filling are discussed.
Afterwards, the transport coefficients are obtained with the
SCMF method, and are used to determine the arising of
vacancy drag and solute-segregation tendencies, as well as
to provide diffusion coefficients in the low-temperature range.
The several recurrent trends revealed by this systematic study
allow for a deeper understanding of the physics of impurity
diffusion in iron.

II. METHODOLOGY

A. Mean-field model

The kinetic analysis of this work is based on the calculation
of transport coefficients (Lij ). The latter describe the kinetic
response of the system to a thermodynamic driving force, and
can be expressed as

Ji = −
N∑

j=1

Lij

kBT
∇μj , (1)

where Ji is the flux of species i and ∇μj is the chemical
potential gradient of species j . The off-diagonal terms Lij

(i �= j ) describe the correlation between the fluxes of i and j .
The transport coefficients (also called the Onsager coef-

ficients) are obtained here in the framework of the SCMF
theory [16]. In this theory, an alloy is described through a set
of kinetic pair interactions, which embody a small perturbation
from the thermodynamic equilibrium state. Such kinetic inter-
actions are calculated by solving the corresponding kinetic
equations in steady-state conditions. A detailed explanation
of this method can be found in [13,16], and its extension to
nonhomogeneous driving forces is introduced in [33].

The key input parameters for the SCMF theory are the
atomic jump frequencies in the local atomic environment
(LAE) around the solute-vacancy pair. In analogy with the
regular multifrequency models [17–19], the size of the LAE
(and therefore the amount of jump types to be distinguished)
is determined by a cutoff distance R, beyond which all
thermodynamic interactions are neglected. Once R is defined,
the jumps to be distinguished are those occurring within or
across the borders of the LAE. In [15], the cutoff radius
was set to the 5nn, and the results showed that, in those
binary alloys, a cutoff to the 2nn is necessary and sufficient
to provide an acceptable description of flux coupling and
diffusion coefficients. 1nn models in bcc are not suitable
because the 2nn site plays a relevant role in vacancy-solute
coupled diffusion, whereas the cutoff extension to the 5nn
only slightly improved the results, to the cost of a considerable
increase of the computational time. For this reason, the cutoff
radius is set in this work to the 2nn, leading to the typical
nine-frequency configuration depicted in Fig. 1. It is worth
pointing out that in precedent 2nn multifrequency models the
kinetic interactions are not fully accounted for, whereas the
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FIG. 1. Nine-frequency model enforced in this work for the
calculation of the transport coefficients, in a 2nn thermodynamic
model. The numbers in the circles mark the possible nearest-neighbor
positions of the vacancy before the jump. The background iron jump
frequency (ω0) outside the solute LAE is not shown.

application of SCMF theory yields the correct flux-coupling
tendencies, as was shown in [15].

Each migration is modeled as a thermally activated event
with frequency:

ωij = νx exp

(
−E

mig
ij

kBT

)
. (2)

The migration energies E
mig
ij and attempt frequencies νFe, νx

are obtained by means of density functional theory (DFT)
ab initio calculations. Given the high computational cost
required by attempt frequency DFT calculations, the attempt
frequencies for iron jumps in the vicinity of a solute atom
(ωij �= ω0, ω2) are assumed to be equal to νFe.

The SCMF method requires the transition rates to be
calculated in conditions of thermodynamic equilibrium, and in
such conditions each elementary transition must be balanced
by its reverse process (detailed-balance principle). A manip-
ulation of the DFT migration barriers is therefore necessary.
It is achieved by adding the DFT-computed binding energy
Eb

z to each migration barrier of type E
mig
zy , with z > R and

y � R, so to set Eb
z to zero. For instance, since DFT yields

Eb
3(Mo) = −0.02 eV (attractive), the migration energy of the

jump ω31 is lowered by 0.02 eV in order to remove this residual
interaction at 3nn. Clearly, this procedure has little effect on
the results as long as the residual interactions beyond R are
small [15].

Once the set of jump frequencies is obtained, the transport
coefficients are computed in the SCMF framework with the
3nn-3nn kinetic model, which includes the kinetic interactions
among atoms within the 3nn of 3nn sites (with respect to
the vacancy initial and final position). The matrix formulation
of this model is to be found in the Appendix of [13]. The
vacancy-drag coefficient is defined as Lxv/Lxx , with Lxv =
−(LFe,x + Lxx). This coefficient is positive under vacancy-
drag conditions, and negative otherwise.

The transport coefficient matrix allows also for the pre-
diction of radiation-induced segregation (RIS) profiles. In
thermal-equilibrium conditions, solutes might segregate on
defect sinks (e.g., dislocations or grain boundaries) in case
of an attractive thermodynamic interaction with the sink. This
phenomenon is referred to as equilibrium segregation. Under

irradiation, the net flux of defects towards sinks is nonzero,
hence, the kinetic coupling with impurities can lead to an
additional enrichment or depletion tendency, superposed on
the equilibrium segregation profile (as for example in [34]).
Here, the RIS due to solute coupling with vacancies is analyzed
in terms of partial diffusion coefficient (PDC) ratio [35], which
can be written in the dilute limit as

dxv

dFe,v
= lFe,x + lxx

L0
Fe,Fe

, (3)

where lFe,x = LFe,x/cx and lxx = Lxx/cx . L0
Fe,Fe is the uncor-

related, solute-independent part of the LFe,Fe coefficient, and
cx is the atomic solute concentration. The PDC ratio enters the
general RIS balance equation [15]

∇cx

∇cv
= cFecxdFe,vdFe,i

(cFedFe,iDx + cxdxiDFe)

(
dxv

dFe,v
− dxi

dFe,i

)
, (4)

where the indices v and i stand for vacancies and interstitials,
respectively. Equation (4) is valid for ideal sinks, i.e., sinks
with infinite defect absorption capacity and no bias. The full
derivation and the definition of the interdiffusion coefficients
DFe, Dx can be found in [15,35]. Here, the amplitude prefactor
is neglected and the PDC ratio for interstitials is set to 1. This is
equivalent to neglecting the enrichment or depletion tendency
induced by interstitial transport, which might be significant
for solutes that form stable dumbbells such as P, Mn, and
Cr [21,26].

The solute tracer diffusion coefficient is calculated as

D∗
x = Lxx

ncx

, (5)

where n is the iron atomic density. In the dilute limit, Lxx

(as well as LFe,x) is directly proportional to the probability of
forming a vacancy-solute pair, which is in turn proportional
to cx and cv. D∗

x is therefore independent of cx . It can be
equivalently expressed as [36]

D∗
x = a2

0cvfxω2 exp

(
−Eb

1nn

kBT

)
, (6)

where cv is the vacancy concentration, fx the solute-diffusion
correlation factor, and Eb

1nn the 1nn solute-vacancy interac-
tion energy (taken as positive when repulsive and negative
otherwise). The correlation factor takes into account the
probability that atomic jumps do not occur randomly in each
direction because of geometric reasons as well as solute-
vacancy correlations. Therefore, the whole effect of kinetic
correlations on solute diffusion is included in this factor. The
correlation factor fx yielded by SCMF theory is provided in the
Appendix as a function of the jump frequencies. Contrary to the
commonly used Le Claire’s formula [17], this expression does
not assume that ω42 = ω0, thus allowing for a more accurate
calculation of fx . The tracer self-diffusion coefficient can be
obtained with the same methodology, by introducing a “mock”
solute atom with null binding energy and jump frequency ω0.

The vacancy concentration cv is here taken to be that of
nonirradiation thermodynamic-equilibrium conditions

cv = ceq
v = exp

(
− Ef

v

kBT

)
exp

(
Sf

v

kB

)
, (7)
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FIG. 2. (Blue squares) Correcting factor exp[αH (T )] to self-
diffusion and solute-diffusion coefficients due to the finite-
temperature magnetic transition. (Red circles) Relative excess
magnetic enthalpy obtained with the Hillert-Jarl model [38]. TC =
1043 K marks the Curie temperature in iron.

for the sake of consistency with diffusion experiments. The
formation enthalpy and entropy Ef

v and Sf
v are obtained as well

via DFT calculations. The variation of Ef
v due to the solute

concentration can be neglected in the dilute-limit calculation
of vacancy-solute flux coupling. In irradiated materials, the
vacancy concentration is fixed by the external irradiation and
the dynamic balance with other defects. At any rate, since each
transport coefficient is proportional to cv, the flux-coupling
tendencies here obtained are not affected by an increased
vacancy population.

As to account for the effects of ferromagnetic to param-
agnetic (PM) transition in iron, a finite-temperature model
inspired by the work of Sandberg et al. [37] is here adopted.
The total vacancy diffusion activation energy in pure iron
QF

0 = Ef
v + Em

v decreases proportionally to the magnetic
excess enthalpy H mag:

Q(T ) = QF
0 − αH (T ), (8)

with α = QF
0 − QP and H (T ) = 1 − H mag(T )/H mag(0 K).

QP is the vacancy diffusion activation energy in a fully PM
state (QP = 2.26 eV according to recent ab initio calcula-
tions [37]). The magnetic excess enthalpy is calculated by
means of the Hillert-Jarl model [38], reported in the Appendix.
Equation (8) was developed for self-diffusion in iron, but can
be also applied to solute diffusion, under the assumption that
one solute atom has a negligible effect on the correlation
between the magnetic state and vacancy migration properties.
The minor electronic contribution to the activation energy
treated in [37] is here neglected. The vacancy mobility, and
hence the self-diffusion and solute-diffusion coefficients, are
increased by the temperature-dependent factor exp[αH (T )]
shown in Fig. 2. The same figure reports as well the value of
the factor H (T ). The discontinuity at the Curie temperature
is due to the two different Hillert-Jarl expressions for the
magnetic excess enthalpy used in the FM and PM regions.
Short-range ordering is represented by the residual magnetic
enthalpy above the Curie temperature.

B. Ab initio method

The DFT calculations are performed with the Vienna ab
initio simulation package (VASP) [39–41] on a plane-wave
basis, by making use of projector augmented wave (PAW)
pseudopotentials [42,43]. The exchange-correlation func-
tion is modeled with the Perdew-Burke-Ernzerhof (PBE)
parametrization [44] of the generalized gradient approxi-
mation. The plane-wave cutoff is set to 300 eV and the
Brillouin zone is sampled with a 3 × 3 × 3 k-point mesh.
The calculations are spin polarized and are performed in a
127-atom supercell (unless otherwise specified), allowing for
atomic relaxations but restraining the cell shape and volume.
Standard potentials from the VASP library are employed
for all the elements included in this study. The migration
barriers are calculated with the nudged-elastic band (NEB)
method [45,46] and the climbing image algorithm [47], using
three intermediate images. In this way, the migration barriers
can be determined to an accuracy of 5 meV or less. More
details can be found in [15].

The vacancy formation and migration energies in pure
iron were calculated in [15] and are here unchanged. The
solute-vacancy binding energy for a given i-nn configuration
is obtained as

Eb
inn = EN−2

v+x (inn) − EN−1
v − EN−1

x + EN, (9)

where the terms on the right-hand side refer to the supercell
energy with a vacancy and a solute atom, one vacancy, one
solute atom, and with no defects nor solutes, respectively.

The vacancy formation entropy and the attempt frequencies
for iron and solute migration are determined by means of DFT
frozen-phonon calculations. In the harmonic approximation to
transition-state theory (TST), the vacancy formation entropy
in pure iron is obtained from the vibrational frequencies of the
defected (I) and undefected (U) supercell [48]

Sf
v

kB

= −
[

ln

(
3N−3∏
k=1

νI

)
− N

N + 1
ln

(
3(N+1)−3∏

k=1

νU

)]
, (10)

and the attempt frequency of a given migration event is derived
from the vibrational frequencies of the initial (I) and saddle-
point (S) configurations [49]

νx =
∏3N−3

k=1 νI
k∏3N−4

k=1 νS
k

. (11)

N is the number of atoms (127 in a 4 × 4 × 4 supercell),
and the index k scans through the degrees of freedom of
the system. The vibrational frequencies are computed in the
quasiharmonic approximation by diagonalizing the Hessian
matrix. Each element kij of this matrix is given by the
derivative of the force on atom i with respect to a small
displacement of atom j in one of the three spatial directions:

kij = 1√
mimj

∂Fi

∂rj

. (12)

Four displacements of ±0.015 and ±0.030 Å are applied on
each atom in each direction, and the force is interpolated
with the least-square method. Given the extreme sensibility
with respect to the force convergence criterion, the initial
and undefected configurations are relaxed so that the force on
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each atom is lower than 0.001 eV/Å. This value is one order
of magnitude higher than in similar calculations performed
by Lucas et al. [50]. Tests on 15-atom cells with varying
cutoff and k-point mesh size confirmed that the vibrational
properties are quite well converged at 0.001 eV/Å. With this
fixed force-convergence criterion, the phonon calculations in
pure iron are run in simulation cells of increasing size, in order
to check the box-size effect. For this purpose, simulation cells
of 15, 53, 127, and 249 atoms are used, and the k-point mesh
is adjusted accordingly (7 × 7 × 7 for 15 atoms, 5 × 5 × 5 for
53 atoms, and 3 × 3 × 3 for 127 and 249 atoms), with a fixed
cutoff energy of 350 eV. Because of the large computational
cost, the solute attempt frequencies are calculated in a 53-atom
supercell only. At the moment, the same computation-time
limitation prevents the possibility of calculating the attempt
frequency of pure Fe in a 249-atom cell.

III. RESULTS AND DISCUSSION

A. Bulk-iron properties

The bulk properties of iron obtained or adopted in this
work are listed in Table I. The lattice parameter and the
vacancy activation energy in FM state were already shown
to be in agreement with experiments and previous DFT cal-
culations [15]. The PM activation energy was DFT calculated
in [37], as an average over a set of several randomly assigned
spin configurations, so to simulate the PM state.

The phonon-related quantities (Sf
v and νFe) are calculated

in simulation cells of increasing size, and in both cases they
reach an acceptable convergence. Based on these values, it
is possible to assess the accuracy of the calculations to less
than ±0.2kB and ±1 THz, respectively. The obtained vacancy
formation entropy of 4.6 kB is larger than early calculations
using semiempirical potentials (SEP) and ranging between 1.5
and 2.6 kB [51–53]. It is, however, in better agreement with
previous DFT calculations (Sf

v = 4.08 kB) [50], confirming
the qualitative difference between DFT and SEP. In addition,
this value is also compatible with the estimation provided
in [54] based on a TST-based analysis of self-diffusion
data. According to this analysis, the sum of the vacancy
formation and migration entropy should be lower than 5 kB .
As for the attempt frequency, the calculated value is
in very good agreement with recent DFT calculations
(12 THz) [55].

B. Solute-vacancy interactions

The calculated solute-vacancy interaction energies are
shown in Fig. 3. They are in good agreement with previous cal-
culations [23,26,56,57] performed with various first-principles
methods, and with the experimental values listed in [15,26].
With the exception of the 2nn, the interaction is always
attractive, reaching particularly strong values at the two ends of
the band. Three types of 1nn-2nn solute-vacancy interactions
can be therefore distinguished: binding-repulsive (early TM’s),
binding-binding (late TM’s), and weak interactions (the metals
in-between, except Mn). To the second category belong also
P and Si, whereas Al can be included into the first class.
According to the traditional assumptions, the early TM’s
should not be dragged by vacancies because of the 2nn
repulsion, in spite of the (in some cases) very strong 1nn
binding interaction. The diffusion behavior of the early TM’s
is therefore suitable for confirming or disproving this theory.

Co and Ni are anomalous as they are characterized by
a higher binding energy at 2nn than 1nn. Such anomalies,
repeatedly found in past works [26,57], can now be explained
thanks to the peculiar shape of the 2nn group trend, i.e., a
somewhat linear descent from repulsion to attraction. Similar
calculations of solute-vacancy interactions in bcc tungsten also
showed an anomalous 2nn d-band trend, as well as a separation
in behavior between early and late TM’s [27].

On the other hand, the group trends of the other nn
interactions follow a parabolic curve for 4d and 5d metals, and
an M-shaped curve for the 3d series. Such shapes are observed
in many TM properties such as cohesive energy [58], bulk
modulus [58], solute size factor in Fe [26], or solute migration
energy in Ni [30], and will reappear as well in the diffusion
properties presented in the later sections of this paper. The
parabolic trend was shown to be associated with the second
moment of the density of states (DOS), in the framework of a
tight-binding model [28,59]. Conversely, the behavior of the
3d metals in Fe is strongly affected by magnetic interactions,
which are absent in the 4d and 5d series [26]. In particular,
the M shape is determined by the atypical behavior of Mn.
This was shown to be also the case for interactions in a Ni
matrix [30]. While Ti and V show an analogous behavior
to the early 4d and 5d TM solutes, and Cu that of a late
TM solute, one can note that the 3d solutes with significant
magnetic coupling diverge from the 4d and 5d trends. Namely,

TABLE I. Bulk properties in pure iron, computed or adopted in this work.

Quantity Value

Lattice parameter a0 2.831 Åa

Vacancy formation enthalpy Ef
v 2.18 eVa

Vacancy migration energy E
mig
v 0.70 eVa

Ferromagnetic activation energy QF
v 2.88 eVa

Paramagnetic activation energy QF
v 2.26 eVb

Entropic quantities (this work) 15 at. 53 at. 127 at. 249 at.
Vacancy formation entropy Sf

v (kB) 4.90 4.54 4.83 4.62
Attempt frequency νFe (THz) 4.19 10.8 11.6
Vacancy diffusion prefactor D0

Fe (cm2/s) 0.45 0.81 1.16

aReference [15].
bReference [37].
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FIG. 3. DFT-calculated solute-vacancy interaction energies in iron (full symbols), and computed by neglecting the relaxation of the cell
due to the solute presence (open symbols). Negative values stand for attractive interactions.

the antiferromagnetic solutes (Cr, Mn) have a purely binding
behavior, to an extent that clearly depends on the magnetic
moment. On the other hand, the FM solutes (Co, Ni) are
strongly bound at 2nn only, and their behavior tends to the
late TM’s trend as the magnetic moment decreases.

Solute-defect interactions are usually explained according
to strain-relief arguments: oversized atoms are expected to bind
in compressed positions (1nn, 3nn, 5nn) and repulse in tensile
ones (2nn, 4nn). However, the 2nn interaction of the late metals
contradicts this rule. According to [26], this has an electronic
origin: the late elements perturb the charge distribution around
the vacancy in a different fashion with respect to the early
elements.

In order to rule out the size-strain effects, the electronic
contribution to the total binding energy is also shown in Fig. 3
for 1nn, 2nn, and 5nn (empty markers). This contribution is
obtained by calculating the binding energy without allowing
for atomic relaxations, in order to evidence the solute-size
effect. As can be seen in the figure, the electronic contribution
is clearly the dominant factor, as has already been shown
for some of the impurities [56]. The difference between the
electronic contribution and the total interaction increases with
solute size, again in agreement with [56]. On the other hand,
the size effect seems to be negligible for the 3d metals, which
are fairly close matched in size with Fe. The interaction is
nearly independent of solute size also for the p elements, as
was already mentioned for P [21].

The effect of ionic relaxations cannot be rationalized
with simple size arguments. For instance, the 1nn interaction
becomes stronger for Zr and Hf, and increasingly weaker for
the other elements. This is surely due to additional effects
of the electronic rearrangement after relaxation, and might
also be affected by the larger substitution energy of the late

TM’s [26]. Moreover, the linear trend of the 2nn interaction has
a clear electronic origin, and the total energy is systematically
more binding than the electronic contribution, in spite of
the tensile character of the 2nn strain field [26]. Following
the tight-binding model of [28], the linear shape of the 2nn
interaction is caused by the contribution of higher-than-second
moments of the DOS, which in turn can be related to a
strong angular character of the electronic interactions. Such
character might also explain the deviation from the trend of
the large-sized elements (Zr, Hf on one side and Ag, Au on the
other side). It is worth mentioning that some anomalies in the
properties of Ag and Au have already been observed [26].

Figure 3 shows as well a residual interaction at 3nn and
especially at 5nn. In the latter case, the iron atom between the
solute and the vacancy might be playing an important role. This
is in disagreement with previous DFT-PW91 calculations [26],
which yielded negligible 3nn and 5nn interactions. However,
additional testing of such potentials confirms this residual
interaction. The box-size effect was found to be negligible (no
more than 0.02 eV) by repeating the binding-energy calcula-
tions in a 249-atom supercell for some selected large solutes.
This proves that indeed large-sized solutes are characterized by
a long-ranged interaction with vacancies, which is dominated
by electronic effects of the second-moment type. This finding
suggests that, for such solutes, a 2nn diffusion model might not
suffice to fully describe the solute-vacancy kinetic interactions.

C. Migration barriers

The solute migration barriers (for jump ω2) as functions
of the d-band filling are depicted in Fig. 4, alongside the
corresponding attempt frequencies. The group trends have very
similar shapes to those of the 1nn binding energy: a parabolic
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FIG. 4. DFT-computed solute migration barriers and attempt frequencies (ω2). In the above-left panel, experimental bulk moduli of the
pure elements [58]. The dashed lines represent the values in pure Fe.

function for the 4d and 5d elements, and an M-shaped curve
for the 3d ones. These shapes suggest that large solutes
diffuse faster, as their migration barrier is lower. On the other
hand, also the small solutes (P and Si) have a lower barrier.
This general trend is very similar to that of solute migration
barriers in a nickel matrix [30]. Although the effect is partially
compensated by the opposite trend in the attempt frequencies,
it can be also observed in the experimental diffusion data of
solutes in Fe (see Fig. 12).

That large atoms are faster is surely counterintuitive, as one
would expect smaller atoms to induce less strain in the crystal
and have therefore an easier way while migrating. Janotti
et al. [30] explained this phenomenon in terms of solute com-
pressibility. They demonstrated that the saddle-point energy is
not much affected by the misfit strain, but is instead dominated
by how much the solute can be compressed at the saddle-point
position. This was also the case for solute migration in Al [60],
and holds here as well in an iron matrix, because of the
electronic origin of this effect. Band-center solutes are less
compressible because of the presence of directional bonds,
which are not there for the band-end solutes. For comparison,
the experimental bulk moduli of each element (in the pure
material) are reported in the above-left panel of Fig. 4. It is
clear that the shapes of the migration barrier trends for all the
TM series are correlated with the solute bulk moduli, or their
compressibilities. The lower compressibility of the 5d row
with respect to the 4d row is the cause for the systematically
higher migration barriers of 5d metals, in spite of the similar
chemical properties, and the difference increases towards the
center. From a tight-binding standpoint, the parabolic behavior
of the bulk modulus, and as a consequence of the migration
barrier, is determined by the DOS second moment. As was
the case for the Ni matrix [30], the saddle-point distance
between the migrating solute and the 1nn iron atoms is only
weakly dependent on the solute type, which confirms the low
influence of the size factor. The asymmetry of the curve,
which was observed as well in Ni, can be attributed to the
higher substitution energy [26] and to the lower cohesive

energy [58] of the late TM’s. Certainly, the size factor that
is commonly proposed as argument to explain interactions
and migration barriers provides a negligible contribution. For
what concerns the 3d metals, the crossing with the 4d and 5d

curves is observed for both the bulk modulus and E
mig
2 , but

their behavior cannot be explained by compressibility only.
It is most likely affected by complex magnetic interactions.
For the same reasons as the binding energy case, the peculiar
electronic interactions of Mn determine the local minimum
and the M shape of the 3d trend.

A few elements are characterized by a higher migration
barrier than Fe, namely, Co, Ru, Rh, and all 5d metals from
W to Pt. However, as will be discussed in the next sections,
this does not entail necessarily a slower diffusion than self-
diffusion. On the other hand, a few early TM’s, especially Zr,
have very small migration barriers (0.08 eV). The behavior
of this solute tends to the limiting case of yttrium, whose
binding with a vacancy is so strong that it is not located in
a substitutional position, rather it relaxes towards the middle
of two vacant spaces. The “migration barrier” of Y is so low
(below 0.01 eV) that the diffusion mechanism is no more an
exchange with a monovacancy, but rather a migration of the
whole Y-vacancy complex [61]. The Zr-vacancy configuration
is very stable since Zr relaxes quite far into the middle of
the vacant space (0.4 Å, or 16% of the 1nn distance), and
the probability of vacancy escape is negligible (the escape
barriers for ω12, ω13, and ω15 are much higher than ω2, and
the reassociation barriers ω31 and ω51 are much lower than
ω0). This suggests that the vacancy is actually trapped next to
a Zr solute up to high temperatures, and diffusion could take
place with a mechanism similar to that of Y, in which case the
diffusion model here applied would be inaccurate.

The iron migration barriers in the vicinity of a solute
atom are shown in Fig. 5, according to the jump-frequency
nomenclature of Fig. 1. For these jumps, the iron attempt
frequency is assumed to be independent from the LAE of the
migrating atom. In general, it is possible to observe a very
strong association tendency (low migration barriers for the
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The dashed lines mark the values in pure Fe (νFe). In the middle panels, the saddle-point contribution to each migration barrier, obtained by
removing the initial-state binding energy and the pure-Fe vacancy migration barrier (ESP

ij = ESP
ji ).

reverse jumps ω31 and ω51) and also a strong resistance against
dissociation for the early TM’s (high barriers for the ω12 and
ω13 jumps). Given also the low solute migration barriers, very
strong solute-vacancy correlations are expected for the early
TM’s. For Co, the lack of 1nn interaction and the combination
of the iron jump frequencies show that the Co-vacancy 2nn
configuration can represent a trapping configuration, which
makes Co diffusion in iron considerably more difficult.

The group trends can be explained by separating the saddle-
point energy properties from the binding energy influence. For
this purpose, the saddle-point (SP) contribution to the total
migration barrier can be isolated by removing the initial-state
binding energy in the following way:

ESP
ij = E

mig
ij − E

mig
0 − Eb

i , (13)

where E
mig
0 = 0.70 eV is the migration energy in pure iron.

ESP
ij embodies therefore the deviation from the saddle-point

energy in pure Fe, due to the interactions of the solute with the
hopping vacancy. Moreover, since E

mig
ij − E

mig
ji = Eb

j − Eb
i

due to the detailed-balance principle, it is easy to derive that
ESP

ij = ESP
ji .

ESP
ij is shown for each jump type in the middle panels of

Fig. 5. The trends show a smooth variation with the d-band
filling that closely resembles that of the binding energies.
Namely, ESP

13 and ESP
15 are very similar to the 1nn binding

energy, whereas ESP
12 and ESP

24 are remarkably close to Eb
2nn.

Even the magnitude of ESP
12 matches that of Eb

2nn, while the
magnitudes of the other jumps are dampened. This suggests
that the saddle-point electronic interactions are similar to those
occurring in the corresponding end states, and that the 2nn
interaction dominates for the transitions to and from the 2nn
configuration. Such interactions progressively fade out for
saddle points that are further away from the solute.

The final shapes of the migration energy trends are then
determined by the combination of the SP trends and the binding
energy ones. For the ω13 and ω15 jumps, the 1nn binding
energy contribution is opposed, leading to values close to the
background ω0, with the exception of the early TM’s for which
the 1nn binding energy is very strongly attractive. The situation
is more complex for the ω12 and ω21 jumps. For the former,
the superposition of SP and 1nn binding energy yields smooth
trends with very high barriers, whereas for the latter the 2nn
binding energy contribution has opposite sign and causes a
very sharp-cornered behavior. These jumps, which are very
important for vacancy drag, are therefore determined by a
complex balance between SP properties and binding energies.

D. Attempt frequencies

The solute attempt frequencies (for the ω2 jump) are shown
in Fig. 4. The results refer to calculations in 53-atom cells only
because of the high computational cost required. However, the
attempt frequencies for Fe and Al were computed in 127-
atom cells as well. It was found that in both cases the attempt
frequency in the bigger simulation cell is about 10% larger.
For this reason, the values shown in Fig. 4 are considered to
be affected by an uncertainty of ±10%.

The shapes of the group trends are again similar to those
found previously for binding energies and migration barriers,
although the behavior is here more irregular. The 3d row is M
shaped once again because of the odd behavior of Mn, whereas
the expected parabolic behavior of the other rows is disturbed
by the uncertainty in the attempt frequency calculations (5d)
and the out-of-trend value of Ru (4d).

In general, it is evident that solutes with a low migration
barrier are also characterized by a lower attempt frequency.
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This compensation effect is in qualitative agreement with
the Meyer-Neldel rule (MNR), which was reported for the
first time to describe conduction processes in disordered
materials [62], and has thereafter been observed for several
thermally activated processes, not limited to condensed-
matter physics [63]. For what concerns diffusion phenomena,
the MNR has been successfully applied to surface self-
diffusion [64] and adatom diffusion [65] in Cu. In both cases,
the activation energies and the prefactors were obtained by
means of molecular dynamics simulations and were found to
be linked by the following relationship:

νx = ν0 exp

(
E

mig
x

ε0

)α

, (14)

where the process-dependent constants ν0 and ε0, as well as
the exponent α, were used as fitting parameters. ε0 is also
referred to as the Meyer-Neldel energy (MNE) [63]. Hence,
according to the MNR, when plotting (Emig)α versus ln(ν), the
data should lie on a straight line. For migration processes, the
exponent α determines what types of phonons are involved.
According to some phenomenological models [66,67], an
exponent α between 0.5 and 1 implies the main contribution
by acoustic phonons.

It is therefore interesting to investigate if solute migration in
an iron matrix can be also quantitatively described by Eq. (14).
The fitting could not be performed on the whole set of data, but
it was at any rate successful on the single rows individually.
The fitting results are shown in Fig. 6. An exponent α = 0.98
was found to fit best the 4d elements and some of the 3d

elements, whereas α = 1.5 was found to describe well the 5d

row. The fitting could not be performed on the 3p elements
because of the limited amount of data points. The fitting led to
the same ν0 = 3 THz for both rows, but with a different MNE,
namely, ε0 = 0.52 eV (4d) and ε0 = 0.73 eV (5d). Such values
are considerably higher than the Debye temperature in iron
(0.04 eV), and also larger than what was reported by previous
works (ε0 = 0.074 eV) [64,65]. In addition, the difference is
similar to the difference in solute migration energy between the
4d and 5d elements. In some models [63], the ratio Emig/ε0

is claimed to be related to the mean number of excitations
that are necessary for a solute jump. Here, this quantity is
seemingly constant between the 4d and 5d series. Finally, the
noble metals Ag and Cu are found to lie out of the trend
(the 4d fitting was performed by neglecting the Ag data
point). Therefore, it can be concluded that this set of data
can be also quantitatively fitted into the MNR, although with
some exceptions, in particular the 3d elements and the noble
metals. The higher exponents found here with respect to the Cu
diffusion studies [64,65] might indicate that solute diffusion
is actually guided by local optical modes, which are strongly
related to the solute-vacancy chemical bonding.

E. Solute-vacancy drag

The vacancy-drag tendencies as functions of temperature
are shown in Fig. 7(a). The wind factor Lxv/Lxx is positive
when drag occurs, and negative otherwise. As was already
highlighted for some impurities [15], all curves are S shaped,
going from vacancy drag at low temperature to the inverse
Kirkendall mechanism at high temperature. The flux-coupling
strength determines the transition temperature, shifting the
curve along the temperature axis.

It is possible to observe a strong correlation between drag
tendencies and 1nn and 2nn binding energies. Solutes with 1nn
and 2nn attractive characters with vacancies are dragged up
to higher temperatures, with a smooth transition; conversely,
solutes with a 1nn binding interaction and a 2nn repulsive one
are characterized by a sharper transition and a lower transition
temperature. This proves that vacancy drag can occur also in
presence of a repulsive 2nn interaction, contrary to previous
statements [26,27], as a consequence of the combination of the
ωij jump frequencies. In addition, vacancy drag does not occur
for weakly interacting elements such as Cr and V, whereas Co
is dragged below 450 K, in spite of the absence of a 1nn
binding interaction. Hence, vacancy drag, although minimal,
can occur even thanks to attractive 2nn interactions only. It is
possible therefore to conclude that the 1nn binding interaction
is surely the dominant factor, if present, but does not represent
a necessary condition for vacancy drag. Conversely, a binding
2nn interaction can considerably extend the vacancy drag
range, but a repulsive one is definitely negligible if paired
with an attractive 1nn one.

For the 4d and 5d elements, the curves of Fig. 7(a) are
coupled in order to show that elements with the same number
of electrons in the outermost d band are also characterized
by very similar flux-coupling behaviors, thanks to the similar
binding-energy trends. Drag is systematically stronger for the
4d metals because of the stronger 1nn binding. It is worthwhile
noticing that the drag tendency is completely independent from
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the solute jump frequency. It is also necessary to point out that
the (already strong) drag tendency of the band-end elements is
most likely underestimated because of the 5nn solute-vacancy
interaction, which is neglected in this SCMF model.

The group trends of the wind factor at 600 K and of
the transition temperature are shown in Figs. 8(a) and 8(c),
respectively. Because of the strong correlation with the binding
energy, the trends are very similar: a parabolic shape for the
4d and 5d TM’s, and a W-shaped curve for the 3d metals. Flux
coupling for Mn is considerably stronger than its neighbors on
the periodic table. The only exception is represented by Cu, for
which the transition temperature is markedly lower than the

other noble metals. Conversely, the neighboring solute (Ni)
matches the drag tendency of the corresponding metals (Pd
and Pt). This is a direct consequence of the anomaly observed
in the 2nn binding energy for the noble metals (Fig. 3), which
is reflected onto a lower ω24 barrier (Fig. 5). This anomaly
implies a higher escape frequency from 2nn in FeCu, and
therefore a weaker drag tendency. In a previous study [15], this
anomaly was erroneously ascribed to the stronger Ni-vacancy
2nn interaction with respect to the 1nn one, but the systematic
approach of this work clarifies that the exception is actually
represented by Cu. It is also remarkable that a seemingly small
difference in the ω24 frequency, which is often disregarded in
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flux-coupling studies, has such a large effect on the Cu drag
transition temperature (600 K lower than Ag, Au).

The effect of the 2nn binding is visible in Fig. 8(c), as the
transition temperatures are slightly higher for the late TM’s
than the early ones. In order to take into account the effect
of both the 2nn binding energy and the saddle point, this
asymmetry is discussed in terms of a combination of jump
frequencies. In first approximation, the drag tendency depends
on the ratio ω12/(ω13 + ω15), as ω12 allows the vacancy to
turn around the solute, whereas ω13 and ω15 cause the pair to
dissociate. It can be observed from Fig. 5 that such ratio is
lower for the early TM’s and higher for the late ones.

In conclusion, vacancy drag is the most common solute-
diffusion mechanism at low temperatures for all impurities
except Cr and V. Any low-temperature model assuming an
inverse Kirkendall mechanism and neglecting flux coupling is
therefore likely not to yield the correct transport properties.
The found strong correlation with 1nn and 2nn interaction en-
ergies confirms that drag tendencies can indeed by qualitatively
inferred from such energies, although the Onsager matrix
must be always calculated in order to determine the strength
and extent of vacancy drag. However, transport properties
are in first place determined by kinetics, or in other words
by the saddle-point properties. It was shown in Fig. 5 that

such properties show the same trends as the binding energies,
which justifies why it is possible to correlate the flux-coupling
tendencies with thermodynamic interactions. Moreover, given
the electronic origin of both trends that was discussed in the
previous sections, it is also expected to find similar vacancy-
drag tendencies in other bcc transition metals, confirming that
vacancy drag might be a widespread phenomenon not limited
only to iron-based dilute alloys.

F. RIS tendencies

In irradiated materials, flux coupling can produce RIS at
defect sinks because of the permanent production of defects.
When vacancy drag occurs, vacancies diffusing to sinks carry
solute atoms, causing the solute species to enrich for instance
on grain boundaries or dislocations [35]. In the absence of
drag, instead, the solute and matrix atoms diffuse away from
the sink surface at a relative speed given by the PDC ratio
[Eq. (3)]: if this ratio is smaller than 1, solute atoms are slower
and enrichment still occurs, whereas depletion is observed in
the opposite case.

The RIS tendencies due to vacancy diffusion only (thus
assuming a neutral contribution from SIA’s and neglecting
the prefactor of Eq. (4)) are shown in Fig. 7(b) as functions
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of temperature. It is possible to distinguish two types of
behavior. Most elements switch from an enrichment tendency
due to drag at low temperature, to a depletion tendency in
the high-temperature range, passing through a short interval
of enrichment without drag. This is not uncommon: switch of
RIS tendency from enrichment to depletion as a function of
temperature has been observed, for instance, in FeCr alloys [5].
On the other hand, a few elements, namely, Co, Re, Os, and Ir,
are slower than Fe at any temperature and hence enrichment
always occurs, independently from the flux-coupling sign.
Such elements are the “slow diffusers” in Fe, and the reason
for their behavior is discussed in the next section.

For the “fast diffusers,” the trends are obviously correlated
to vacancy drag. The early TM’s, with a repulsive 2nn
interaction, are characterized by a sharp transition from
enrichment to depletion, whereas the late TM’s have a
smoother transition and a higher switchover temperature. The
weakly interacting elements such as Cr and V deplete at all
temperatures because of the absence of drag. An analogous
shift between corresponding 4d and 5d metals can be observed,
for the same reason that was mentioned for the drag tendency.

The switchover temperature as a function of the d-band
filling is shown in Fig. 8(f). Elements that are consistently
enriched are not shown (for P the switchover temperature is
very high). In spite of the missing elements, it is possible to
recognize the same curve shapes, which are closely related
to the vacancy drag trends of Fig. 8(c). Again, Cu has an
exceptionally low critical temperature because of the same
aforementioned anomalies. On the other hand, the critical
temperature for Ni is much higher than the corresponding
metals (Pd, Pt), in spite of comparable drag tendencies. This
is related to a nontrivial combination of the ωij frequencies,
which highlights the importance of kinetics in solute-diffusion
modeling.

The outcome of this flux-coupling study in model dilute
alloys can be qualitatively discussed in regard to several
observations of solute transport in irradiated ferritic and
F/M alloys, neglecting any multisolute interactions that are
likely to occur in real multicomponent and nondilute alloys.
Vacancy drag can explain the nucleation of solute clusters
containing Mn, Ni on preexisting Cu clusters [8,68], interstitial
loops [3,69,70], and dislocations [71], as well as the formation
of Cu-vacancy clusters [72]. In RPV surveillance materials,
precipitation of impurities such as Mn, Ni, Si, Cu, and P was
observed with atom-probe tomography [8], and can also be
explained by vacancies dragging solute atoms towards small
sinks such as invisible interstitial loops, as suggested in [3,11].
In these clusters, however, no Mo is found, in spite of its
nonnegligible concentration. This work shows that the drag
transition temperature of Mo (593 K) is very close to that
of RPV operation (573 K), hence confirming the weakness
of the flux coupling with respect to the other mentioned
impurities. In addition, several experiments have shown the
segregation of P [8,71] and Mn [70] on grain boundaries
and dislocations, as well as the enrichment profiles at grain
boundaries of other elements such as Si, Ni, Cu, and Cr [5].
The Cr RIS tendency cannot be comprehensively discussed
here because of the stability of the Fe-Cr mixed dumbbell,
which suggests that the interstitial contribution to the RIS
tendency cannot be neglected. As for Si, Ni, and Cu, the

bell-shaped enrichment tendencies observed in [5] as functions
of temperature are compatible with the trends of Fig. 7(b). At
low temperature, there should be strong vacancy drag and
therefore a marked enrichment tendency according to this
work’s model; however, at such temperatures defects are very
slow, and defect recombination is enhanced. Therefore, even
in steady-state conditions, no RIS occurs and no change of
solute concentration is found. With increasing temperature, the
enrichment tendency decreases due to the PDC ratio, whereas
defect mobility is enhanced, consistently with the experimental
observations. However, this represents only a secondary effect,
as RIS is mostly dampened and eventually stopped by the
vanishing difference between point defect saturation and the
corresponding equilibrium values.

G. Solute-vacancy correlations

The solute correlation factor fx appearing in Eq. (6)
accounts for the solute “slowing down” due to the probability
of performing two consecutive exchanges with a neighboring
vacancy (forward and backward), which do not contribute to an
effective displacement of the solute atom. In a noninteracting
bcc alloy (or in a pure bcc metal), this corresponds to the
geometric factor f0 = 0.727 [17]. fx can range from 0 to 1,
and tends to f0 as temperature increases, since correlations are
smoothened by the Boltzmann factor 1/kBT .

The correlation factors are here obtained by means of
Eq. (A1) and are shown for each solute group in Fig. 8(b) at
600 K. The temperature-dependent factors are provided for
each solute in the Supplemental Material [73]. It should be
pointed out that the correction provided by Eq. (A1) with
respect to the previously available formula [17] does not sig-
nificantly affect the value of the solute-diffusion coefficients.

Once again, the group trends are M shaped for the 3d metals
and bell shaped for the 4d and 5d metals. The top of the
curves is flat because the correlation factor cannot exceed 1.
These trends are clearly correlated to the solute migration
barrier, which is characterized by the same shape and the
same type of asymmetry. The very low migration barriers
of the early TM’s make the correlation factor (and hence
the solute-diffusion coefficient) decrease by several orders of
magnitude, and this effect grows stronger at low temperatures,
up to 10−13 for Zr at 300 K. The compensation provided by
the solute attempt frequency is secondary, and negligible at
low temperatures. Solute-vacancy correlations can therefore
make solute diffusion considerably slower, as the solute can
effectively “trap” the vacancy in a 1nn position. Moreover,
they introduce deviations from the Arrhenius behavior at low
temperatures, contributing to the inaccuracy of extrapolations
from high-temperature diffusion data.

This qualitative description can be completed by comparing
ω2 with the other jump frequencies. The correlation strength
can be connected with the probability of the complementary
jumps to ω2, namely, the jumps leading to a dissociation of
the solute-vacancy pair at 1nn. One can define an average
dissociation frequency ω1∗ as

ω1∗ = 1
7 (3ω12 + 3ω13 + ω15), (15)

where the average is weighed upon the available dissociation
paths. The ratio ω1∗/ω2 represents therefore the probability
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Fe (f0 = 0.727).

of escaping the 1nn configuration and allowing the vacancy
to access the paths around the solute atom to produce a
net solute displacement. In Fig. 9, the calculated correlation
factors at 600 K are compared to the ω1∗/ω2 ratio at the same
temperature. The astounding match between the two highlights
that solute-vacancy correlations are indeed controlled by this
frequency ratio, in accordance to Manning’s early formulation
of fx [74]. For the early TM’s, hence, the strong correlation
is not determined only by the low migration barrier, but is
enhanced by the high barriers for the ω12 and ω13 jumps, which
is not the case for the late TM’s. It can be therefore concluded
that solute-vacancy correlations are stronger for the band-end
elements, and particularly strong for the early ones, because of
the combined effect of low solute migration barriers, high 1nn
solute-vacancy binding energy, and the saddle-point electronic
interactions.

With the same argument, it is possible to explain why some
elements, such as Co, Ni, and the middle-row elements of
the 4d and 5d bands, show a “negative correlation,” i.e., their
correlation factor is above the geometric factor f0. For these
elements, the ω1∗/ω2 ratio is larger than 1, which entails that
in the 1nn configuration the vacancy has a larger probability to
escape than to exchange with the solute. Hence, the correlation
factor approaches 1 because the vacancy tends to “avoid” the
solute, or anyway not to undergo repeated exchanges. This
efficiency of the diffusion process from a kinetic standpoint is
anyway counterbalanced by thermodynamics since for these
elements, the 1nn binding energy is small and thus so is the
probability to have a vacancy next to the solute, which is a
necessary condition for solute diffusion to occur. On the other
hand, for the strongly correlated solutes the ω1∗/ω2 ratio is
very small and the vacancy does not have the possibility to
leave the solute, therefore impeding solute diffusion because
the vacancy is trapped and cannot move.

H. Solute-diffusion coefficients

The self-diffusion and solute-diffusion coefficients, ob-
tained by means of Eq. (5), are shown, respectively, in Figs. 10
and 11 for the impurities for which experimental measure-
ments are available, and are compared with experimental
measurements [32,75,76] and previous calculations [21–24].
For the sake of consistency with the solute attempt-frequency
calculations, the diffusion coefficients are calculated with the
values for Sf

v and νFe obtained in 53-atom cells. Each diffusion
coefficient is corrected with the magnetic factor of Fig. 2, in
order to account for the effects of the FM-to-PM transition.

Because of the magnetic-related non-Arrhenius behavior, the
fitting in the FM region is extremely sensitive to the chosen
temperature range. In order to provide values of Q and D0

for low-temperature applications, the fitting results in the
temperature range 400–800 K are reported in Fig. 8(d) (Q)
and 8(e) (D0). The numerical values of Q and D0, as well
as the solute-diffusion coefficients in the temperature range
800–1800 K for all solutes are to be found in the Supplemental
Material [73].

There is an overall satisfactory agreement with experi-
ments. The perfect match with self-diffusion measurements
proves the quality of the magnetic model, which did not
entail any fitting procedure. The solute-diffusion coefficients
are also well matched with experiments, for what concerns
the activation energy Q (i.e., the slope in the Arrhenius
plot) and the change of slope across the Curie temperature,
with the exception of Mn. The accuracy in the Q value
confirms the reliability of this model in the prediction of
low-temperature solute-diffusion coefficients. Moreover, the
comparison with previous calculations in iron with Al [23],
P [21], Cu [22], Mo [24], and W [24] solute atoms shows
that the values obtained in this work are always in better
agreement with experiments, although the difference with
the calculations in [24] is minimal. The mismatch in the
Mn diffusion coefficient makes the extrapolation to low
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FIG. 10. Tracer self-diffusion coefficient calculated in this work,
and comparison to experimental measurements [76].
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FIG. 11. Solute tracer diffusion coefficients calculated in this work, and comparison to experimental measurements [32,75,76] and previous
calculations [21–24]. The dashed lines mark the Fe tracer self-diffusion coefficient, as shown in Fig. 10.

temperatures unreliable, and shows the inadequacy of the
pure-Fe magnetic model for this peculiar system. In order
to properly describe solute diffusion across the Curie tem-
perature, the direct effect of magnetism on the solute PM
activation energy should be carefully modeled, hence calling
for further investigations of the Mn solute magnetic behavior
in Fe.

On the other hand, for a few solutes the agreement in
the diffusion prefactor is not as satisfactory. The prefactor is
consistently overestimated, although the difference is in most
cases limited, and it does not exceed one order of magnitude,
approximately. In Fig. 12, the diffusion coefficients here calcu-
lated are compared to experimental measurements at 1100 K. It
can be observed that the mismatch is small for the middle TM’s
(except Mn) and progressively increases towards the band

ends, which might suggest the presence of a systematic error.
This error might be due to the assumption νij = νFe for all iron
jumps, or to the inadequacy of a 2nn thermodynamic model
for the large-sized solutes, which are characterized by a non-
negligible 5nn interaction. It is also worthwhile mentioning
that some entropic contributions, such as the binding entropy
or the electronic entropy, are here neglected. The effect of
lattice expansion at nonzero temperature might also play a
role, although this effect would be temperature dependent.
Since the mismatch affects the prefactor only, the accuracy of
the calculated solute-diffusion coefficients at any temperature
can be improved by simply shifting the curve down by the
mismatch factor, inferable for instance from Fig. 12. The
mismatch values can also be found in the Supplemental
Material [73].

184302-14



SYSTEMATIC ELECTRONIC-STRUCTURE INVESTIGATION . . . PHYSICAL REVIEW B 93, 184302 (2016)

10–16

10–15

10–14

10–13

10–16

10–15

10–14

10–13

MnTi V Cr Fe Co Ni CuAl P Si TcZr Nb Mo Ru Rh Pd Ag ReHf Ta W Os Ir Pt Au

1100 K

D
iff

us
io

n 
co

ef
fic

ie
nt

 [m
2 /s

]

FIG. 12. Solute tracer diffusion coefficients at 1100 K, as calculated in this work (full symbols) and from experimental measurements
(open symbols) [32,75,76].

The activation energies shown in Fig. 8(d) follow the
same group trends observed for many other quantities in this
work. These trends, which are also visible in the experimental
coefficients of Fig. 12, are analogous to those obtained for
solute diffusion in Ni [30] and Al [60]. Since they are
mainly determined by the solute migration barrier trends of
Fig. 4, it is possible to state that the activation energy for
solute diffusion is controlled by the saddle-point interactions
discussed in the previous section. However, the Q curve
is more symmetric than Emig because of the compensation
effect given by the correlation factor, and to a smaller extent
by the attempt frequency, in accordance with the MNR. As
previously discussed, solute-vacancy correlations are stronger
for the early TM’s and reduce the diffusion coefficient by
several orders of magnitude, especially at low temperature. As
a consequence, the effective activation energy of the late TM’s
is comparable to that of the early TM’s.

On the contrary, the D0 trends are not trivial to explain,
as they are affected by fx and the less smooth behavior of
the solute attempt frequency [Fig. 4(b)]. However, the usual
M-shaped and bell-shaped trends can be obtained by applying
the aforesaid correction to the prefactor, based on the mismatch
with the experiments (under the assumption that the mismatch
is bell shaped also for solutes with missing experimental
measurements).

Among all TM impurities, Co is the only one known to be a
slower diffuser than Fe. This exception, which is well caught
by the calculations in this work, might be mistakenly ascribed
to the larger migration barrier of Co (0.73 eV) with respect to
Fe (0.70 eV). However, this is also the case for other impurities
such as Ru, Rh, W, Re, Os, Ir, and Pt (Fig. 4). It was suggested
that such behavior might be due to kinetic correlations [57].
This can be checked by analyzing the ratio of solute-diffusion
to self-diffusion coefficient [36]:

D∗
x

D∗
Fe

= fx

f0

νx

ν0
exp

[
−

(
�Emig + Eb

1nn

)
kBT

]
, (16)

where �Emig = E
mig
2 − E

mig
0 . Since the solute attempt fre-

quencies are not very different from νFe, the D∗
x/D

∗
Fe ratio is

controlled by the exponential term and the correlation factor
fx . Moreover, since fx < 1, the exponential term dominates
if fx is larger than f0. Since the correlation factor for all the
aforementioned impurities is close to unity, the exponential
term is dominant and kinetic correlations play a minor role.
Then, the ratio of Eq. (16) is lower than 1 if �Emig > −Eb

1nn.
In other words, the 1nn binding energy counteracts the higher

solute migration barrier because it increases the probability of
having a vacancy next to the solute. Therefore, Ru, Rh, W, and
Pt are faster diffusers than Fe because their 1nn binding energy
is larger than �Emig, as is confirmed by experiments for W. On
the other hand, Co is a slow diffuser because the 1nn interaction
is very weakly repulsive. Therefore, the low Co diffusivity
is due to the (missing) thermodynamic interaction with a
vacancy at 1nn rather than to kinetic correlations. Analogously,
this model predicts that Re, Os, and Ir are slow diffusers as
well, although no experiments have been yet performed to
confirm this prediction. The method proposed in this work
is therefore useful to predict the diffusion coefficients of
impurities for which experimental measurements are missing,
and to provide such quantities in low-temperature ranges that
are not accessible by experiments.

IV. CONCLUSIONS

The aim of this work was to investigate impurity diffusion
in bcc iron with a systematic approach to all the 3d, 4d, and
5d solutes, as well as Al, Si, and P. This was achieved by
combining electronic-structure calculations of solute-vacancy
interactions, jump frequencies, and attempt frequencies with
an accurate mean-field computation of transport coefficients.
From the latter were inferred solute-vacancy flux-coupling
tendencies, correlations, and diffusion coefficients.

Remarkably, the variation of almost all properties with re-
spect to the d-band filling follows similar trends: the properties
of 4d and 5d impurities are bell shaped, whereas 3d elements
are influenced by magnetic interactions and show consistently
an M- (or W-) shaped trend because of the peculiar behavior of
Mn. Such common trends are all determined by the character of
electronic interactions between the solute and the neighboring
atoms next to a vacancy. Common size-factor (misfit-strain)
arguments are shown to play only a minor role, in agreement
with calculations in other matrices. The main exception to the
general trends is represented by the 2nn binding energy, which
varies linearly along the d band. Similar interactions are also
found at the saddle point of a migrating iron atom next to a
solute. The migration barriers are therefore determined by the
combination of saddle-point interactions and binding energies.
Conversely, the solute migration barriers are governed mainly
by the compressibility of the corresponding solid: large atoms
are also more compressible and can hence migrate faster.
However, this is partially compensated by two effects: a
lower attempt frequency, in accordance with the Meyer-Neldel
compensation law, and stronger correlations lowering the
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diffusion coefficient by several orders of magnitude. The
combination of high migration barrier and low 1nn binding
energy makes cobalt a “slow diffuser” in iron, and the same
behavior is predicted for other impurities (namely Re, Os, and
Ir), although experimental measurements for these solutes are
still missing.

Vacancy drag is found to be the dominant flux-coupling
mechanism at low temperature for almost all impurities.
Contrary to common beliefs, drag can occur also for impurities
with repulsive 2nn interactions with vacancies, as the 1nn
binding energy is the dominant factor. The common origin
of binding energies and saddle-point interactions allows the
coupling tendencies to be qualitatively analyzed from binding-
energy trends only, although a quantitative analysis must rely
on the transport-coefficient calculation. Finally, drag causes
a clear solute-enrichment tendency at defect sinks, and a
switchover to depletion across a large range of temperatures.
Conclusions about RIS tendencies are to be corroborated by
the analysis of dumbbell transport.

In conclusion, this systematic investigation has revealed
the common electronic origins of flux-coupling and solute-
diffusion trends, contributing to a deeper understanding
of impurity-diffusion mechanisms in metals and provid-
ing a reliable, ab initio-based kinetic database of diffu-
sion properties. Such common origins are seemingly so-
lute dependent rather than matrix dependent, suggesting
that similar trends might arise as well in other transition
metals. This work has also yielded solute-diffusion co-
efficients in good agreement with experiments, providing
ready-to-use low-temperature values that are not experi-
mentally viable, and even for the missing impurities. The

provided database of diffusion properties represents therefore
a valuable contribution that can be employed in the modeling
of a vast range of diffusion-controlled aging phenomena.
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APPENDIX A: CORRELATION FACTOR

The correlation factor fx appearing in Eq. (6) can be
expressed as a function of the atomic jump frequencies, in
a multifrequency framework such as for instance the ones de-
fined in [36]. Different expressions are available, depending on
the extent of the solute-vacancy interactions and consequently
of the amount of jump frequencies to be considered. The most
complete one [17] includes 1nn and 2nn interactions, but was
developed under the assumption ω42 = ω0.

Thanks to the SCMF theory, it is possible to provide a more
accurate expression of fx in a bcc dilute binary alloy with 1nn
and 2nn solute-vacancy interactions, removing the ω42 = ω0

assumption. It reads as

fx = 1 − 2ω2

2ω2 + 3ω12 + 3ω13 + ω15 − ω12ω21
ω21+ω24

− ω15ω51
ωA

− ωC1ωC2
ωB

+ 2ωB

(
ω13+kω15+ ω0ωC1(1+k)

ωB

)(
ω31+kω51+ ω0ωC2(1+k)

ωB

)
ωB(3ω0+ω31−kωA−2k2ωA)−2ω2

0(1+k)2

, (A1)

where the following factors are introduced:

ωA = ω51 + 7ω0 − 2ω2
0

ω42 + 7ω0
; (A2)

ωB = ω42 + 7ω0 − ω24ω42

ω21 + ω24
− ω2

0

ωA
; (A3)

ωC1 = ω12ω24

ω21 + ω24
+ ω0ω15

ωA
; (A4)

ωC2 = ω21ω42

ω21 + ω24
+ ω0ω51

ωA
; (A5)

k = ω2
0

ωA(ω42 + 7ω0)
. (A6)

The correction provided by this new expression is expected
to be relevant when the association frequency ω42 is consid-
erably different from ω0, which is not the case for the dilute
alloys investigated in this work. At any rate, larger differences
with respect to the previous Le Claire’s formula [17] are also
obtained at very low temperatures.

APPENDIX B: MAGNETIC EXCESS ENTHALPY

The magnetic excess enthalpy due to the magnetic
transition in iron is here calculated by means of the
Hillert-Jarl phenomenological model [77]. According to this
model, H mag(T ) is expressed by

H mag(T ) = RTC ln(B + 1)f (τ ), (B1)

where R is the gas constant, TC = 1043 K the Curie tempera-
ture in iron [58], B the magnetic moment (2.22 Bohr magne-
tons in iron [58]), and τ = T/TC. The function f (τ ) has two
different expressions in the FM and PM regions, respectively:

f (τ )=
{

1
A

[
79

140P
− 474

497

(
1−P
P

)(
τ 4

2 + τ 10

15 + τ 16

40

)]
, if τ < 1

1
A

[
τ−4

2 + τ−14

21 + τ−24

60

]
, if τ � 1.

(B2)

P is a geometry factor equal to 0.40 for bcc crystals, whereas
the parameter A is equal to

A = 518

1125
+ 11692

15975

(
1 − P

P

)
. (B3)
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Finally, the factor H (T ) appearing in Eq. (8) is normalized
with respect to the magnetic excess enthalpy at 0 K, which

can be obtained by setting τ = 0:

H mag(0) = RTC ln(B + 1)
1

A

79

140P
. (B4)
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