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Long-range random transverse-field Ising model in three dimensions
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We consider the random transverse-field Ising model in d = 3 dimensions with long-range ferromagnetic
interactions which decay as a power α > d with the distance. Using a variant of the strong-disorder
renormalization group method we study numerically the phase-transition point from the paramagnetic side.
We find that the fixed point controlling the transition is of the strong-disorder type, and based on experience with
other similar systems, we expect the results to be qualitatively correct, but probably not asymptotically exact.
The distribution of the (sample dependent) pseudocritical points is found to scale with 1/ ln L, L being the linear
size of the sample. Similarly, the critical magnetization scales with (ln L)χ/Ld and the excitation energy behaves
as L−α . Using extreme-value statistics we argue that extrapolating from the ferromagnetic side the magnetization
approaches a finite limiting value and thus the transition is of mixed order.
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I. INTRODUCTION

In nature there are magnetic materials in which ordering is
due to long-range (LR) interactions which decay as a power
α = d + σ with the distance. The best known examples are
dipolar systems, such as the LiHoF4. Putting this compound
into an appropriate external magnetic field we obtain an
experimental realization of a dipolar quantum ferromagnet [1].
Similar systems have been experimentally realized recently
by ultracold atomic gases in optical lattices [2–6] and studied
theoretically [7–17].

Concerning the phase-transitional properties of LR systems
it has been known for quite some time that the universality class
depends on the decay exponent, σ [18–22]. For a sufficiently
large value of σ > σU the transition is the same as in the
short-range (SR) model, for intermediate values, σL > σ >

σU , the critical behavior is nonuniversal and σ dependent,
while for σ < σL we have mean-field critical behavior. In
low-dimensional systems LR forces could result in magnetic
ordering and phase transitions, even if these are absent with
SR interactions [23].

In the present paper we consider quantum magnets with LR
interactions in the presence of quenched disorder. Such type of
system is realized by the compound LiHoxY1−xF4, in which
a fraction of (1 − x) of the magnetic Ho atoms is replaced
by nonmagnetic Y atoms [1,24]. A related, but somewhat
simplified [25] quantum model which describes the low-
energy properties of this system is the random transverse-field
Ising model with LR interactions given by the Hamiltonian:

H = −
∑
i �=j

bij

rα
ij

σ x
i σ x

j −
∑

i

hiσ
z
i . (1)

Here, σx,z
i are Pauli matrices, rij denotes the distance between

site i and j , while the parameters bij and transverse fields hi are
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independent identically distributed quenched random variables
drawn from some distributions p0(b) and g0(h), respectively.
In the following we restrict ourselves to ferromagnetic models,
so that bij > 0 and hi > 0.

We consider the system at zero temperature, when in
the ground state there are two different phases: for strong
(weak) enough transverse fields, ln h > θ̃ (ln h < θ̃), the
system is in the paramagnetic (ferromagnetic) phase. (Here
and in the following we use · · · to denote averaging over
quenched disorder.) The properties of phase transitions in
random quantum Ising magnets with SR interactions are
known to some extent [26–29], mainly due to strong-disorder
renormalization group (SDRG) [30,31] studies. These results
are then checked by numerical investigations in one [32,33]
and two dimensions [34,35]. The main conclusion is that the
critical behavior of SR random quantum Ising magnets at any
finite dimension is governed by a so-called infinite-disorder
fixed point (IDFP) [31,36], at which the dynamics is ultraslow:
the length scale ξ and the time scale τ are related as follows:
ln τ ∼ ξψ , where the exponent ψ is dimension dependent.
This is in contrast with the scaling behavior at a conventional
random fixed point: τ ∼ ξz, thus the dynamical exponent, z,
is formally infinite at an IDFP.

The low-energy properties of the Hamiltonian in Eq. (1)
in one dimension have already been studied through variants
of the SDRG [37] (see also studies of the related hierarchical
Dyson model [38] and that in Ref. [39]. In contrast to the SR
case the critical behavior is found to be controlled by a strong-
disorder fixed point, the critical dynamical exponent being
finite: zc � α. Qualitatively similar observations are found
from the preliminary numerical SDRG results on the two-
dimensional system in Ref. [40].

In this paper we extend these investigations to the exper-
imentally more realistic three-dimensional system. Here we
apply a numerical version of the SDRG method, which is
expected to present physically correct results in the critical
point approaching from the paramagnetic side. We find that the
fixed point controlling the transition is of the strong-disorder
type, and based on the experience with other similar systems,
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KOVÁCS, JUHÁSZ, AND IGLÓI PHYSICAL REVIEW B 93, 184203 (2016)

we expect the results to be qualitatively correct, but probably
not asymptotically exact. We study in detail the distribution
of the sample-dependent critical points, the scaling behavior
of the magnetization, and that of the low-energy excitations.
The SDRG results are then interpreted in the frame of
extreme-value statistics (EVS) [41], which is then used to
make conjectures about the scaling behavior of the different
quantities at the ferromagnetic side of the transition point.
Most surprisingly the average magnetization is expected to
approach a finite limiting value, thus the transition is of mixed
order.

The rest of the paper is organized as follows. In Sec. II
we recapitulate the basic features of the SDRG method and
discuss its particular form for LR systems. In Sec. III we
present our results of the numerical SDRG analysis, which
is then interpreted within the frame of EVS in Sec. IV. Our
results are discussed in Sec. V.

II. SDRG METHOD FOR LR INTERACTIONS

In the SDRG method the decimation procedure is per-
formed locally in real space according to the value of the
excitation energy. At each step of the renormalization the
largest local parameter of the Hamiltonian is eliminated and
between the remaining degrees of freedom new, renormalized
parameters are calculated perturbatively. Let us consider a
general graph with vertices denoted by i,j,k,l, . . . . After
decimating the strongest coupling, Jij , (in our case Jij = bij

rα
ij

)

the two sites i and j form a cluster of spins in an effective
transverse field: h̃ = hihj/Jij . On the contrary, if the strongest
transverse field, hi , is decimated, then between sites, j and k—
which are originally nearest neighbors to i—a new coupling
is created: J̃jk = max(Jjk,JjiJki/hi). Here in the last step the
so-called maximum rule is applied, which is essential in the
fast algorithm [29] we use in the numerical calculation. In
the starting steps of the decimation the maximum rule can be
a crude approximation; however, it becomes more and more
correct by approaching the fixed-point distributions. Generally
we can say that the use of the maximum rule is correct in the
paramagnetic phase and asymptotically correct at an IDFP. If
the fixed point under consideration is just a strong-disorder
one, then the maximum rule is a good approximation, which
generally does not modify the qualitative behavior of the
model. We note, however, that the maximum rule is certainly
not correct in the ferromagnetic phase, in particular for LR
models.

In the numerical application of the SDRG method we
start with some initial disorder; in our case we have used
box distributions: the parameters of the model were chosen
uniformly from the intervals bij ∈ (0,1] and hi ∈ (0,h], so
that the control parameter is defined as θ = ln(h). Now let us
assume for a moment that our model is short ranged, i.e., in
Eq. (1) bij

rα
ij

is replaced with bij and the first sum runs over

nearest neighbors. At the critical point of the SR model (θSR
c )

the decimation procedure is asymptotically symmetric in one
dimension (1D): couplings and transverse fields are decimated
with the same fraction. The resulting cluster structure is
illustrated in Fig. 1. In higher dimensions the ratio of the
frequency of coupling and transverse-field decimations has a

FIG. 1. Illustration of the spin clusters formed during the SDRG
process at the critical point of the 1D short-range random transverse-
field Ising model for two samples at L = 256. The fate of a spin cluster
is either to be decimated out (indicated by vertical spikes) or to be
fused together with an other spin cluster (horizontal lines). Higher
trees indicate clusters being present at later stages of the SDRG
procedure, corresponding to the low-energy modes of the system.
The magnetic moment is related to the size of the largest cluster,
scaling as μ(L) ∝ Ldf , where the fractal dimension is df =

√
5+1
4 ≈

0.809 [26].

finite limiting value, rSR = O(1). Now switching on the LR
forces, the renormalization procedure starting from θSR

c will
turn to be more and more asymmetric due to the appearance
of new LR couplings: below some energy scale almost always
couplings will be decimated and the LR model renormalizes to
the ferromagnetic fixed point. Consequently the critical point
of the LR model satisfies the relation θc > θSR

c .
Now let us follow the renormalization procedure of the

LR model starting from its own critical point θc, when three
different regimes can be identified. At the initial period
predominantly nearest-neighbor couplings are involved and
the renormalization proceeds basically as in the SR model.
Since at θc the SR model is in the paramagnetic phase in
the initial period almost exclusively, transverse fields are
decimated and the distribution of the renormalized transverse
fields will approach the known form [31]:

g(h) = d

z
h−1+d/z, (2)

with some effective dynamical exponent, z ≈ zSR(θc) of the SR
model at the control parameter θc. The initial period of the RG
ends when the generated new couplings become in the same
order as the existing LR bonds. In the following intermediate
period predominantly transverse fields are decimated, but
among the renormalized couplings—due to the maximum
rule—there are more and more original LR bonds. As a
result the distribution of the transverse fields will continuously
change, and the value of the effective dynamical exponent
increases further and approaches its asymptotic value at
the critical point, zc. In the final, asymptotic regime in the
decimation mainly transverse fields are involved, but also a
fraction, r , of LR couplings are decimated, too. (As the critical
fixed point is approached r tends to zero; the calculated scale
dependence is shown in Sec. III.) The generated new couplings
are almost always smaller than the existing LR bonds, thus
according to the maximum rule these original couplings play
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TABLE I. Properties of the critical SDRG procedure in the
different regimes (see text).

RG period Decimation Couplings zeff

Initial h SR ≈zSR(θc)
Intermediate h SR and LR zSR(θc) < zeff < zc

Asymptotic h and J LR zc

the role of the renormalized ones. Consequently at the fixed
point the decimation of a transverse-field results in the erasure
of the given site together with the couplings starting from it.
The basic ingredients of the RG procedure in the three regimes
are summarized in Table I. The final cluster structure of the
LR model in 1D is illustrated in Fig. 2: comparing to the
SR model here the clusters have smaller extent and contain
less sites. In higher dimensions, in two dimensions (2D) and
three dimensions (3D) we show in Fig. 3 the structure of the
largest clusters, in which the critical properties of the model are
encoded. Even in higher dimensions these clusters are sparse
and they can be embedded in a quasi-one-dimensional object.
This last property is shared with the largest critical clusters in
SR models.

III. NUMERICAL SDRG ANALYSIS

Here we present our numerical results for the three-
dimensional LR model, which are obtained by the use of the
fast SDRG algorithm in Ref. [29]. In the calculations we used
finite samples with periodic boundary conditions of linear size
up to L = 24 and the LR interaction is truncated at maximum
distance r ∼ L. The number of samples was typically 100 000
(at least 2000 for the largest size) and the box distributions are
used, as described before. We have fixed the decay exponent to
α = 4 and calculated sample-dependent pseudocritical points,
as described in Ref. [28]. In this method we consider two
copies of the same sample, say A. To be specific, we start
with a sample and at an arbitrary position cut the interactions
in each of the three directions with a plane and insert an
equivalent copy into the gap while reconnecting the cut links.
We note, that the obtained replicated sample is unique and does

FIG. 2. The same dendrogram illustration as in Fig. 1 for the
critical 1D long-range random transverse-field Ising model at L =
256. As opposed to the short-range model, mostly transverse fields
are decimated resulting in spikes and smaller spin clusters, following
a scaling of the form μ(L) ∝ ln2 L.

FIG. 3. The large-scale spin clusters of the critical long-range
random transverse-field Ising model appear to be sparse and they can
be embedded in a quasi-one-dimensional object, as illustrated in 2D
(L = 64) and 3D (L = 24). The size of these clusters provides the
magnetic moment following a similar scaling as in 1D as shown in
Eq. (4).

not depend on the chosen gap positions. On this replicated
system we perform the decimation procedure until the last
effective cluster. In the ferromagnetic (paramagnetic) phase
the renormalization histories in the two copies are correlated
(uncorrelated) and the boundary value of the parameter, θc(A),
defines the pseudocritical point of the given sample. The
distribution of the pseudocritical points is shown in Fig. 4: both
the position of the maximum and the width of the distribution
follows a 1/ ln L scaling, from which the true critical point
is estimated at θc = 3.25(15). The scaling behavior of the
distribution of the pseudocritical points is compatible with
an exponential increase of the correlation length, at least from
the paramagnetic side:

ξ ∼ exp [const/(θ − θc)], θ > θc. (3)

At the critical point we calculated the fraction of decimation
steps which involves a coupling and that which involves a
transverse field. Their ratio, rθc

(L), is given by the ratio of
the accumulated distributions of the pseudocritical points on
the two sides of θc. We obtained a logarithmic L dependence:
rθc

(L) ∼ 1/(ln L)ω, with ω ≈ 2, as in the 1D case as illustrated
in Fig. 5.

At the critical point, we have also calculated the average
mass of the last remaining cluster μ(L) = Ldm(L), m(L)
being the local magnetization and the characteristic time
scale τ (L) defined as τ = 1/h̃, where h̃ is the last decimated
parameter in a finite sample.
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FIG. 4. Distribution of the pseudocritical points, which are
estimated to cross each other for different L at θc ≈ 3.25, is indicated
by a dotted line. The ratio of the accumulated distributions on two
sides of θc is given by rθc

(L) (see the text and Fig. 5). The inset shows
the rescaled distributions with L0 = 2.

The numerical results indicate that the magnetic moment
μ(L) has a slower-than-algebraic dependence, which can be
written in analogy with the one-dimensional result as

μ(L) ∼ [ln(L/L0)]χ . (4)

Precise determination of χ from the existing numerical results
is difficult, since it is sensitive to the value of the reference
length, L0. The data in Fig. 6 are compatible with χ = 2 with
L0 = 3.2, but a similar fit is obtained with χ = 3 if we choose
L0 = 2 instead.

Calculating the average logarithmic time scale, ln h̃, es-
timates of an effective, size-dependent dynamical exponent,
z(L), has been obtained from two-point fits of the relation

ln h̃ = −z ln L + const. (5)

The extrapolation of z(L) to infinite system size is shown
in Fig. 7. At the critical value of θ = 3.25 the data points
seem to have a 1/ ln L correction and the extrapolated value is
compatible with the expectation zc = α = 4.
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FIG. 5. The scaled decimation ratio, rθc
(L), as a function of the

L size at L0 = 2, indicating a similar logarithmic scaling as in 1D.
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FIG. 6. The average mass of the last decimated cluster plotted
against (ln L/L0)2 with L0 = 3.2. The data has been obtained by
numerical renormalization of the three-dimensional model with decay
exponent α = 4, for different values of the control parameter θ .

The dynamical exponent—according to Eq. (2)—is in-
volved in the distribution of the last decimated transverse fields
[see Eq. (6)], which is illustrated in Fig. 8. At the critical point
[see in Fig. 8(a)], the numerical value of the critical dynamical
exponent is compatible with zc = α. In the paramagnetic phase
the distribution of the last decimated transverse fields is still in
agreement with Eq. (2), but the dynamical exponent is z < zc

[see in Fig. 8(b)].
We close this section by presenting the SDRG phase

diagram of the LR random transverse-field Ising model
obtained with the maximum rule (see in Fig. 9). Here we use
the parameters α/z [z is an effective exponent, which appears
in the distributions of the transverse fields in Eq. (2); see
also in Table I] and r (the ratio of the decimation frequencies
of the couplings and the transverse fields). According to
our numerical calculations the phase diagram has the same
qualitative features in one [37] and two dimensions [40],
too. (In one dimension the phase diagram is related to that
of random Josephson junctions [42]). As seen in Fig. 9
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FIG. 7. Effective dynamical exponents obtained by two-point fits
using Eq. (5) as a function of the system size L. The straight line,
which connects the data obtained for the critical value θ = 3.25 is a
guide to the eye.
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FIG. 8. (a) Distributions of the last decimated transverse fields
at the critical point for different sizes. The straight line indicates
the asymptotic shape of the tail according to EVS, with z = α (see
text). (b) As the dynamical exponent, z decreases, the shape of
the distribution changes in the paramagnetic phase as illustrated at
L = 16.

there is a line of fixed points at r = 0, at which almost
exclusively transverse fields are decimated. For α/z > 1 these
fixed points are stable and control the paramagnetic phase
and the corresponding Griffiths singularities [43], while for
α/z < 1 the fixed points are unstable and the RG flow scales to
r → ∞, which corresponds to the ferromagnetic phase. In this
regime the maximum rule in the SDRG procedure is certainly
not valid. The two regimes of fixed points are separated by
the critical fixed point at α/z = 1. In the following section we

FIG. 9. Schematic SDRG phase diagram obtained through the
maximum rule: the arrows indicate the direction the parameters evolve
as the energy scale is reduced. Fixed points (blue circles) are at r = 0:
the attractive fixed points of the paramagnetic phase (α/z > 1) and
the repulsive ones (α/z < 1) are separated by the critical fixed point
(red circle); see the text.

analyze the scaling behavior of the system in the vicinity of
r = 0 and α/z = 1 through extreme value statistics.

IV. ANALYSIS OF THE CRITICAL BEHAVIOR
TROUGH EVS

A. Critical point

At the critical point in the asymptotic regime of the RG
mainly transverse fields are decimated, but occasionally LR
bonds are decimated, too. Let us consider a finite system of
linear length, L, and concentrate on the largest cluster, which
contains μ + 1 sites. In this cluster altogether μ LR bonds
have been decimated, and let us denote them by Ji = bir

−α
i

where i = 1,2, . . . ,μ is the order of decimation. In this cluster
the transverse fields hi , i = 1,2, . . . ,μ + 1, are not decimated
out, thus Ji � hi , Ji being the only decimated coupling in a
region of linear size ri , while hi is the smallest one out of ∼rd

i

transverse fields. Since the transverse fields in the asymptotic
regime have a power-law distribution, see that in Eq. (2) the hi

is given by EVS as hi � κir
−z
i where κi are random numbers

which are distributed according to the Fréchet statistics:

P (κ) = d

z
κd/z−1 exp(−κd/z). (6)

The effective transverse field of the cluster is given by
h̃ ∼ ∏μ+1

i=1 hi/
∏μ

i=1 Ji ∼ hμ+1
∏μ

i=1(rα−z
i κi/bi). This scales

differently for ln(J ) > ln(h) and for ln(J ) < ln(h), where
the overbar denotes averaging over disorder. Thus at the
critical point α = zc and ln(b) = ln(κ). This result about
the dynamical exponent at the critical point agrees with
our numerical results in the previous section. For the given
cluster at the critical point the effective transverse field is
given by h̃ ∼ ∏μ

i=1 (κi/bi) (since hμ+1 = O(1)). If κi and
bi are not (or just weakly) correlated, then according to the
central limit theorem ln h̃ ∼ μ1/2. More generally we can write
ln h̃ ∼ μ1/χ , what is to be compared with ln h̃ ∼ −α ln L,
which implies μ ∼ (ln L)χ , in agreement with Eq. (4).

B. Paramagnetic side

In the paramagnetic phase, θ > θc, the distribution of the
transverse fields in Eq. (2) involves the dynamical exponent
z < α and in the vicinity of the transition points α − z = δα/d

and δ ∼ θ/θc − 1 � 1. Here the correlation length, ξ (δ), is
defined by the length of the longest decimated bond, rl ,
the corresponding coupling Jl = blr

−α
l being larger than the

smallest transverse field, hl � κlr
−α(1−δ/d)
l . Consequently κl <

ξ−δα/d or Prob(κl < ξ−δα/d ) = O(1), which can be written
using Eq. (6) as

∫ ξ−δα/d

0
P (κ)dκ = 1 − exp(−ξ−δ) ≈ ξ−δ = O(1), (7)

for z ≈ α. Consequently in the paramagnetic phase the
correlation length is given by ln ξ ∼ 1/δ, in agreement with
Eq. (3).

The dynamical behavior of the system in the paramagnetic
phase is governed by Griffiths singularities, which are due to
rare regions, in which the system is locally in its ferromagnetic
phase. Here we recapitulate the so-called optimal fluctuation
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argument [44] for the SR model and then generalize it to the
LR case. The probability, P (�), to find an ordered domain
of linear size � in the paramagnetic phase is exponentially
small: ln P (�) ∼ (�/ξ )d , but its excitation energy, εSR(�)—
estimated through an �d -order perturbation theory in hi/Jij —
is also exponentially small: ln εSR(�) ∼ (�/l0)d . Combining
these two effects a power-law distribution of εSR is observed,
with a dynamical exponent zSR = d(ξ/ l0)d . In the LR model
we first assume that the rare regions are localized, too, then
the form of P (�) remains the same; however, by estimating
the excitation energy one should take into account the LR
forces, too. Let us assume that the ordered cluster of linear
size � is the largest one (and thus has the smallest excitation
energy) within a region of linear size L, where LdP (�) =
O(1), thus ln L ≈ 1

d
(�/ξ )d . Within this controlled region the

distance between the largest and the second largest cluster is
∼L and the direct LR interaction between them is εLR ∼ L−α .
Now in the LR model the actual value of the excitation energy
in the controlled domain is obtained by comparing the SR and
LR contributions and is given by ε(�) = max[εSR(�),εLR(L)],
or ln ε(�) = max[−(�/l0)d , − α/d(�/ξ )d ]. This means that the
effective volume scale in the SR model, ld0 , is replaced by
max[ d

α
ξd,ld0 ] in the LR model. Consequently the dynamical

exponent in the LR model is given by z = min[zSR,α], i.e., it is
bounded by z = zc = α, which is the value at the critical point,
as observed numerically. Our numerical results in Sec. III are
in favor of our assumption that the rare regions in the LR
models are localized, too.

C. Ferromagnetic side

In the ferromagnetic phase, θ < θc, we analyze the SDRG
solution with the maximum rule, starting from the unstable
fixed points in the vicinity of the critical fixed point (see
in Fig. 9). We expect that the asymptotic results in the
vicinity of the transition point do not depend on the actual
direction—how the transition point is approached from the
ferromagnetic phase. In these fixed points the distribution of
the transverse fields is given in Eq. (2) with z = α(1 + δ/d)
and δ ∼ 1 − θ/θc � 1. In the ferromagnetic phase there is
a giant connected cluster and the length scale, ξ , is defined
by the linear extent of the largest hole in it. This is defined
by the length of the longest decimated bond, rl , so that all
the transverse fields are decimated out within this region.
The strength of this bond now satisfies Jl/hl ∼ r

δα/d

l /κl < 1.
This means, that Prob(κl > ξδα/d ) = P = O(1) and here we
assume once more, that P (κ) can be described by the Fréchet
distribution:∫ ∞

ξδα/d

P (κ)dκ = exp(−ξ δ) = exp(−e−C) = P, (8)

thus ξ ∼ exp(−C/δ). Evidently ξ has different scaling behav-
ior for C < 0 (0 < P < 1/e) and for C > 0 (1/e < P < 1). In
the former case ξ is divergent for δ → 0 as in the paramagnetic
side, but for C > 0 the correlation length in the continuum
description goes to zero and the magnetization is of O(1) for
δ → 0. Here—depending on the possible set of values of P
in the different samples—we can have two different scenarios
concerning the behavior of the average magnetization at the
transition point.

1. Second-order transition

If, for some reason, P is smaller than 1/e in every sample,
then we always have C < 0 and the average magnetization
vanishes at δ → 0, thus the phase transition is of second
order. In this case the average correlation length diverges
exponentially, as in the paramagnetic side.

2. Mixed-order transition

If, however, P is not bounded by 1/e and there is a finite
fraction of the samples with 1/e < P < 1, thus C > 0, then
the average magnetization goes to a finite limiting value as the
transition point is approached from the ferromagnetic side. At
the same time the average correlation length is exponentially
divergent, thus the transition is of mixed order.

At the moment we have no information about the possible
values of P , and with the lack of any known constraints we
are inclined to prefer the mixed-order transition scenario. It is
in the spirit of Occam’s razor, since in this case we have to use
fewer assumptions. Mixed-order transitions often appear in
pure systems with LR forces [45–51]; our model then would
represent such a phenomena in the presence of random LR
interactions.

V. DISCUSSION

In this paper we have studied the critical properties of the
random transverse-field Ising model in 3D with the presence
of LR forces. Our present work completes our investigations
starting in 1D [37] and continued in 2D by announcing
some numerical results [40]. This problem is technically
quite difficult and the only possible method of numerical
investigations at present seems to be the SDRG approach.
Here we used a variant of it based on the so-called maximum
rule, which enabled us to study sufficiently large systems (up
to linear size L = 24) with an appropriate statistics.

Here we should note that although the Hamiltonian is
fully connected, as the coupling strength decays fast enough
(the total interaction energy is extensive) one expects that it
is still sensible to speak about a local order parameter and
to identify ferromagnetic and paramagnetic domains by an
SDRG procedure as for the short-range model. Applying
the SDRG scheme based on the maximum rule in the
paramagnetic phase or in the critical point leads to—the cluster
formations being rare—a sparse distribution of ferromagnetic
clusters, which makes the SDRG procedure at least internally
consistent. This is due to the fact that by decreasing the
energy scale, an overwhelming fraction of the original spins
are eliminated as being locally paramagnetic and not playing
a role in the low-energy physics. For such a sparse distribution
of ferromagnetic domains, which are themselves sparse sets
of original spins, it is a reasonable approximation to keep as
an effective coupling between clusters only the strongest LR
coupling, which is typically the coupling between the closest
spins. This is essentially nothing but the maximum rule. In one
dimension, we went beyond the maximum rule by taking into
account the sum of LR couplings between all pairs of spins
of adjacent cluster (see Refs. [37,40]), but this did not lead to
changes in the results in leading order, so this approximation
(i.e., maximum rule instead of sum rule) is quite good. Also
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the vanishing of the relative frequency of bond decimations
persists in this improved scheme, so it is not an artifact of the
simplified maximum rule. Thus, assuming that disorder plays a
relevant role in determining low-energy properties, our SDRG
method must be a reasonable approximation. We have checked
the consequences of the strong-disorder scenario for the LR
contact process by Monte Carlo simulations in Ref. [40] and
found agreement for not too small values of α. This justifies
indirectly the applicability of the SDRG method.

The obtained RG phase diagram in Fig. 9 has the same
qualitative structure as that in lower dimensions: both the
phase-transition point and the fixed points controlling the
paramagnetic phase with Griffiths singularities are located at
r = 0 and are characterized by parameter-dependent dynam-
ical exponents. In these attractive fixed points almost exclu-
sively transverse fields are decimated and the renormalized
couplings, according to the maximum rule, are selected from
the original LR bonds and their value can be estimated from
EVS. We have found that the average correlation length at
the transition point diverges exponentially [see Eq. (3)], but
the average magnetization—in the spirit of Sec. IV C 2—is
expected to have a finite jump at the transition point. Therefore
we conjecture that the transition is of mixed order. Mixed-order
transitions have already been observed in different systems: in
the classical LR Ising chain with α = 2 [45–51], in models of
depinning transition [52–55], and in percolation models with
glass and jamming transition [56–65] (for a recent review see
Ref. [66]). Our study indicates that such a phenomenon could
take place also in disordered quantum systems with LR forces.

At the transition point the magnetization in a finite sample
scales logarithmically [see Eq. (4)] and the dynamical expo-
nent is finite, zc = α, thus the critical fixed point is a strong-

disorder fixed point, but not an infinite-disorder one. In this
case our analysis does not guarantee that the obtained SDRG
results are asymptotically exact: to prove this one should
have performed a second-order treatment of the perturbation
calculation. However, based on our experience with other
systems having a strong-disorder fixed point [67], we expect
that our SDRG results are very probably qualitatively correct
and also the numerical estimates are reliable. Considering the
application of the maximum rule in our numerical algorithm it
has a negligible effect in the paramagnetic phase, in which the
typical size of ferromagnetic clusters is finite. At the transition
point we expect to have at most logarithmic corrections to
the results obtained by the maximum rule. Finally, at the
ferromagnetic phase the maximum rule does not hold any
longer, but the predicted jump of the magnetization at the
transition point most probably remains true together with the
mixed-order nature of the transition.

Our results are expected to hold for a large class of
disordered LR quantum models having a discrete symmetry,
such as the random quantum Potts and Ashkin-Teller models
[31]. The critical fixed point of the model in Eq. (1) is expected
to govern the critical behavior of some random stochastic
models, such as the random contact process, at least for strong
enough disorder. For SR forces this type of mapping has been
known for quite some time [68,69], and its validity has also
been demonstrated with LR interactions in 1D and 2D [40,70].
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