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Metadynamical approach to the generation of amorphous structures: The case of a-Si:H
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We present a dynamical approach to generate defect-free continuous-random-network (CRN) models of
hydrogenated amorphous silicon (a-Si:H). Using the atomic coordination number of silicon as a collective variable
and few configurational constraints, we have shown that classical metadynamics can be used to construct CRN
models of a-Si with arbitrary concentrations of dangling-bond coordination defects. These defective networks
have been subsequently hydrogenated to produce high-quality models of a-Si:H using ab initio total-energy
calculations to generate hydrogen (H) microstructures for H concentrations from 7 to 22 at. %. The structural,
electronic, optical, and vibrational properties of the models are examined, and the microstructure of the hydrogen
distribution is analyzed and compared with experimental data from neutron scattering, spectroscopic ellipsometry,
infrared spectroscopy, and nuclear magnetic resonance studies. The results obtained from the models are found
to be in excellent agreement with the experimental data.
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I. INTRODUCTION

Atomistic models of many amorphous semiconductors are
well represented by continuous random networks (CRNs) [1].
Despite the simplicity of the CRN model, the dynamic
modeling of high-quality CRNs (i.e., with low strain and
few structural defects) has proved to be particularly difficult.
While a few event-based approaches, such as the Wooten-
Winer-Weaire (WWW) [2] and activation-relaxation (ART)
techniques [3], can address the problem satisfactorily, we
are not aware of any molecular-dynamical approaches that
can produce high-quality continuous random networks for
modeling tetrahedral semiconductors. Conventional ab initio
molecular dynamics (AIMD) [4–7] and Car-Parinello (CP)
approaches [8] have been employed successfully to study
structural glasses via traditional “melt-quench” approaches,
but their use is limited mostly to amorphous solids with strong
glassy behavior. For amorphous materials with no or weak
glassy behavior (e.g., a-Si, a-Ge, and a-Si:H), MD simulations
either produce highly defective configurations or tend to
crystallize the system during quenching from molten states
at high temperature. The large computational cost of AIMD,
combined with the resulting high defect concentrations, has
been a major obstacle for accurate first-principles studies of
amorphous solids with no or weak glassy behavior, especially
on the intermediate-range length scale.

In this paper, we present a dynamical approach for
structural modeling of hydrogenated amorphous silicon (a-
Si:H), an important electroactive and photovoltaic material
of technological importance [9–12]. Recent developments
of high-efficiency solar cells, based on a-Si:H/c-Si het-
erojunctions with intrinsic thin-layer (HIT) technology, are
indicative of the continuous importance of the material in
photovoltaics [13–16]. Here, we have shown that a dynamical
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approach can be developed to generate amorphous networks
by including a bias potential in the total energy using a
variant of accelerated molecular-dynamics simulations, known
as metadynamics [17,18]. The resulting networks can be
passivated with hydrogen to produce hydride configurations
of amorphous silicon. A notable feature of the approach is its
ability to control the coordination number of the atoms in order
to produce different silicon-hydrogen bonding configurations,
which are consistent with experimental data from infrared
(IR) spectroscopy [19–22] and nuclear magnetic resonances
(NMR) [23–26]. This renders the generation of high-quality
a-Si:H models possible with no defects for a range of hydrogen
concentration and system sizes of up to several thousand
atoms. While the emphasis of the present work is on a-
Si:H, the approach can be readily generalized to produce a
variety of binary and ternary amorphous networks in two and
three dimensions, and amorphous/crystalline heterojunctions.
Below, we briefly mention the existing modeling methods and
their disadvantages before addressing the new approach and
its application to a-Si:H.

The conventional routes to structural modeling of a-Si:H
are mostly dominated by static approaches coupled with ab
initio relaxations [4–8,27–29]. Here, one usually proceeds
by building models of a-Si, via WWW [2], ART [3], or
otherwise [30–32], which are subsequently hydrogenated
and relaxed to obtain configurations at stable local minima
using ab initio total-energy optimizations. However, in the
absence of thermal motion, hydrogen atoms can relax only
locally and are unlikely to move between different trap
centers, leading to a poor distribution of hydrogen in the
network [33]. The standard remedy is to subject the system
to a medium-temperature (600–800 K) ab initio molecular
dynamics run, so that hydrogen in the network can be
redistributed to attain an “equilibrium” distribution. Ab initio
molecular dynamics, however, is computationally expensive,
and it is unclear whether the short-time dynamics (of several
picoseconds for large systems) would suffice to capture the
standard picture of hydrogen migration, namely hopping of
hydrogen atoms from traps to high-energy transport sites
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and back into traps again [34,35]. A consensus is that ab
initio simulations with a simulation time of a few tens of
picoseconds might be sufficient for small systems to produce
the correct global physical observables (such as 2- and 3-body
correlations, the average coordination number, and electronic
density of states [7]), but for large systems, the approach is
computationally infeasible and unlikely to produce correct
local properties, such as vacancies [36,37], voids [31,32,38],
and molecular hydrogen [31,39]. In summary, the major
disadvantages of current dynamical approaches include the
high computational cost and the production of a large density of
coordination defects. Since device-quality samples of a-Si:H
have a typical defect concentration of order 1016 cm−3 (i.e.,
1 in 107 atoms), ideal models of a-Si:H must be practically
free from any defects in order to represent laboratory-grown
samples realistically. To this end, we present here a dynamical
approach, which is capable of producing large realistic models
of a-Si:H with practically no coordination defects for a wide
range of hydrogen concentrations.

The plan of the paper is as follows. In Sec. II, we
address the generation of amorphous-silicon networks using
metadynamics, which is followed by hydrogen passivation,
equilibration, quenching, and relaxation of the hydrogenated
networks. Section III discusses results for structural, elec-
tronic, optical, and vibrational properties by comparing our
results with neutron diffraction [40], nuclear magnetic reso-
nance [23–26], spectroscopic ellipsometry [41], and infrared
spectroscopy [21,42] studies. This is followed by conclusions
of the work in Sec. IV.

II. COMPUTATIONAL METHOD

The dynamical approach developed here consists of the
following steps: (1) adaptation of classical metadynamics us-
ing appropriate collective variables to generate a-Si networks
with coordination defects to incorporate hydride configura-
tions consistent with experimental data; (2) hydrogenation of
dangling bonds (1-, 2-, and 3-fold coordinated Si atoms); (3)
ab initio molecular dynamics comprising equilibration of the
resulting hydride configurations at 800 K for 20 ps, followed
by quenching the systems from 800 K to 300 K in 25 ps (5
ps per 100 K); (4) ab initio total-energy relaxations via the
conjugate-gradient method to obtain the final structure at a
stable local minimum.

A. Metadynamics

The first step involves metadynamical simulations of
amorphous-silicon networks with a requisite defect density.
This can be readily implemented once a set of collective
variables is identified for the problem. Metadynamics [17,18]
is a nonequilibrium MD approach for an accelerated sampling
of the events on the free-energy surface (FES) associated
with a set of collective variables. The collective variables,
�(RN ), are continuous and differentiable functions of the
system coordinates RN , the choice of which is guided by
the physical events to be studied in a problem. Once the
collective variables are determined, the accelerated sampling
is achieved by adding a history- and time-dependent bias
potential, V (�,t), to the total energy of the system. The bias is

applied adaptively during the time evolution of the system by
adding a repulsive Gaussian potential centered on the current
position of � at a regular time interval of τG. The accumulation
of the Gaussian-bias potentials progressively flattens the FES,
and facilitates the system in overcoming the energy barriers or
escaping from the potential minima at an accelerated rate. The
presence of a history-dependent bias constrains the system
to explore new regions of the FES. Thus, by choosing a
set of appropriate collective variables, it is possible to study
the desired configurations of interest for the problem. For an
arbitrary value ξ , of � at time t , the Gaussian-bias potential
V (ξ,t) is given by

V (ξ,t) =
∑

t ′ = τg,2τg, . . .

t ′ < t

Hg exp

(
−|ξ − �(t ′)|2

2ω2

)
, (1)

where Hg and ω are the Gaussian height and width of the bias
potential, respectively. The basic assumption in metadynamics
is that the free-energy function is Gaussian-representable; i.e.,
after a sufficiently long time, V (ξ,t) cancels the underlying
free energy F (ξ ) along �, and is given by the negative of the
accumulated bias up to a constant value,

F (ξ ) ≈ − lim
t→+∞ V (ξ,t) + constant. (2)

Here, we have used the average coordination number of silicon
atoms as a collective variable to generate an ensemble of con-
tinuous random networks with varying (coordination) defect
concentrations. This enables us to produce a-Si networks with
a requisite number of dangling bonds to construct SiH/SiH2

configurations via hydrogenation, which are consistent with
experimental data from infrared spectroscopy [20,22,38,42].
For a system with N silicon atoms, the collective variable ξ

can be written as

ξ = 1

N

N∑
i=1

N∑
j=1
j �=i

�(rij ) (3)

where

�(rij ) =

⎧⎪⎨
⎪⎩

1, if rij � r1,
1
2

[
1 + cos

(
π(rij −r1)

r2−r1

)]
, if r1 < rij � r2,

0, if rij > r2,

(4)

is a continuous nearest-neighbor function that decays mono-
tonically beyond the first shell of neighbors, and r1 and
r2 are the upper and lower limits of the first and second
nearest-neighbor distances, respectively [43].

All metadynamical runs were performed with a system
size of N = 1000 silicon atoms using the modified Stillinger-
Weber potential [44,45]. Starting from a random initial
configuration, the system was equilibrated at a constant initial
temperature of 1600 K for 250 ps with a time step of 1 fs
using a chain of Nosé-Hoover thermostats [46–48]. Next,
the temperature of the system was reduced from 1600 K
to 1000 K in two steps (300 K per step). At each step,
the temperature was kept constant for a period of 250 ps.
At the end of the 1000 K run, the Gaussian potential was
switched on to initiate metadynamics using the following
(metadynamics) parameters: Gaussian-addition rate 1/τG =
1 ps−1 (i.e., addition of a Gaussian kernel or function at
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FIG. 1. The free energy of a-Si from metadynamical simulations
at 1000 K as a function of the collective variable ξ . The thin red curve
indicates the region (of ξ ) from where the configurations of a-Si have
been sampled for hydrogenation.

a time interval of 1 ps), Gaussian height HG = 0.1 eV,
Gaussian width ω = 0.1, and the cutoff distances (for the
nearest-neighbor function) r1 = 2.7 Å and r2 = 3.15 Å (see
Eq. (4) and Ref. [43]).

During metadynamical runs, several hundred configura-
tions of the system along the trajectory with 4-, 3-, and 2-fold
coordinated Si atoms were collected to generate a-Si:H models
for a range of concentrations. Metadynamics can produce
configurations with under- and over-coordinated defects, so
care was taken to ensure that the configurations collected
for hydrogenation contained only under-coordinated defects.
Specifically, the configurations consisted of at least 77% 4-fold
coordinated atoms, 21% 3-fold, and 2% 2-fold coordinated
atoms, which were sufficient to generate models in a wide
concentration range of 7–22 at. % of hydrogen. Figure 1 shows
a plot of the free-energy function F (ξ ) of a-Si as a function
of the collective variable ξ from metadynamical simulations.
The thin red curve denotes the region, 3.75 � ξ � 4, of the
free energy from where the aforementioned configurations
were collected for subsequent hydrogenation. This region of
ξ corresponds to mostly 3-fold coordinated dangling bonds
with an admixture of a few 2-fold and 1-fold coordinated Si
atoms [49]. While several hundreds of such configurations
were collected for statistical purposes, we confined ourselves
to seven representative configurations for each hydrogen
concentration of interest for the purpose of configurational
averaging of the physical quantities presented here.

It should be noted that the free-energy values, associated
with the collective variable ξ , shown in Fig. 1 are not necessar-
ily converged. Since the purpose of metadynamics simulations
here is to generate configurations with specific topological
properties (e.g., dangling-bond defects), our metadynamic
simulations ended as soon as an appropriate number of specific
configurations were collected. Thus, the free-energy values
presented in Fig. 1 do not necessarily reflect the limiting
value of V (ξ,t) in the long-time limit as required by Eq. (2).
Furthermore, the total number of Gaussian functions that is
necessary to produce the required configurations may vary
significantly. This depends on the height and width of the
Gaussian potential, the complexity of the potential energy
landscape, and the stability of initial configurations to be used
for metadynamics simulations.

FIG. 2. Hydrogenation of a 3-fold dangling bond. A hydrogen
atom (red) is placed on the surface of a central sphere (gray), whose
center coincides with that of a defective Si atom (yellow), such that
the Si-H bond retains the maximal tetrahedral character of the site.

B. Hydrogenation

Hydrogenation proceeds by passivating dangling bonds. As
mentioned earlier, none of the configurations collected during
metadynamical simulations has over-coordinated bonds, but
mostly 2- and 3-fold coordinated dangling bonds. Thus, to
passivate a configuration efficiently, the defect sites were
identified and a hypothetical sphere of radius 1.0–1.2 Å was
constructed around each site [50]. Next, hydrogen atoms were
placed on the surface of the sphere such that the tetrahedral
character of the defect site was maintained maximally. To this
end, an ensemble of unit radial vectors was generated in a fine
mesh within a cone of solid angle �, and a direction vector
was identified for placing a hydrogen atom along the vector
(see Fig. 2). The latter was chosen to ensure that the average
bond angle and its root-mean-square (rms) deviation at the
defect site remained as close as possible to 109.5◦ and less
than 12◦, respectively, to maintain the tetrahedral quality of
the network. The rms deviation was varied from 5◦ to 12◦
by 0.5◦ increments in each sweep (of radial vectors) until a
suitable direction was identified. This was done by calculating
the average bond angle and its rms deviation for the defect
site for each direction until they satisfy the criteria mentioned
above. The procedure is illustrated in Fig. 2 by passivating a
dangling bond with a hydrogen atom. For a dangling bond with
two missing Si atoms, two H atoms were added successively
to ensure that the tetrahedral character of the defect site was
maintained. The procedure was repeated for all defect sites to
complete the hydrogenation process.

C. Ab initio dynamics and relaxation

Upon successful hydrogenation, the configurations were
subjected to the following steps: (a) relaxation of the total
energy to reduce the strain associated with the addition of hy-
drogen atoms; (b) equilibration of the resulting configurations
at 800 K for 20 ps to facilitate hydrogen migration; (c) cooling
the equilibrated configurations from 800 K to 300 K in 25 ps
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to obtain an equilibrium distribution of hydrogen; (d) a further
total-energy relaxation via the conjugate-gradient method to
obtain a stable local minimum. Step (c) was performed by
reducing the temperature of the systems from 800 K to 300 K
in steps of 100 K in 5 ps. The annealing and quenching of the
hydrogenated networks were performed within the framework
of density-functional theory using the code SIESTA [51]. A time
step of 1 fs was used to integrate the equations of motion. The
temperature of the system was controlled by the Nosé ther-
mostat [46]. SIESTA uses pseudopotentials and localized basis
functions for solving the Kohn-Sham equations. We employed
double-ζ basis functions to expand the Kohn-Sham orbitals for
silicon and hydrogen. Electronic correlations were taken into
account via the local-density approximation (LDA) [52] using
the Perdew-Zunger formulation [52]. SIESTA employs norm-
conserving Troullier-Martins pseudopotentials [53], which are
factorized into the Kleinmann-Bylander form [54]. Due to
large system sizes (> 1000 atoms) and long MD simulation
times (45 ps per configuration), the Kohn-Sham equations
were solved in a non-self-consistent manner using the Harris
functional [55]. To obtain the final structure and equilibrium
mass density for each concentration, the atomic positions
and cell-lattice vectors were simultaneously relaxed using the
conjugate-gradient method until the force on each atom was
less than 0.005 eV/Å and the stress was less than 0.1 GPa.

III. RESULTS AND DISCUSSION

This section addresses structural, electronic, optical, and
vibrational properties of the models for different hydrogen
concentrations. Microstructural properties of hydrogen dis-
tributions are examined, and addressed by comparing the
results from the models with those from nuclear magnetic
resonance [23–26] and infrared absorption [20–22,42] studies.

A. Structural properties

We begin by addressing the variation of the mass density of
a-Si:H with hydrogen concentration. Theoretical studies often
ignore this variation by assuming the experimental density
of a-Si:H as a simulation parameter. However, the density of
a-Si:H depends on the hydrogen concentration and should be
treated as a variable in simulations. Figure 3 shows the density
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FIG. 3. Mass density of model networks of a-Si:H versus hydro-
gen concentration. Experimental data from Ref. [56] are included for
comparison.

TABLE I. Summary of structural properties of a-Si:H models:
system sizes (N ), atomic H concentration (Hconc), density (ρ), average
Si-Si bond length (rSi-Si), average Si-H bond length (rSi-H), average
bond angle (〈θ〉), rms deviation of bond angles (�θrms), and the
percentage of 4-fold Si atoms (CNSi).

N ρ Hconc rSi-Si rSi-H �θrms 〈θ〉 CNSi

(g cm−3) (at. %) (Å) (Å) (degrees) (%)

1074 2.236 6.9 2.38 1.51 9.44 109.20 99.9
1090 2.233 8.3 2.38 1.52 9.63 109.19 99.9
1118 2.217 10.6 2.38 1.51 9.22 109.17 99.8
1142 2.205 12.4 2.38 1.51 9.23 109.16 100
1172 2.196 14.7 2.38 1.51 9.31 109.12 99.9
1218 2.174 17.9 2.37 1.51 9.54 109.11 100
1282 2.165 22.0 2.37 1.51 10.04 109.02 99.8

of a-Si:H models for different hydrogen concentrations, along
with the experimental density of variously prepared a-Si:H
films reported in Ref. [56]. Although the exact density
of a-Si:H films depends upon the method of preparation,
history of the samples, and the deposition conditions, infrared
measurements suggest that the density of a-Si:H decreases
with an increase of the hydrogen content [56]. A comparison of
our results with the experimental data from Fourier-transform
IR measurements [56] confirms that the variation is correctly
reflected in our results. We should mention at this point that
the use of double-ζ basis functions for Si and H atoms is
very important for producing the correct density of a-Si:H, as
observed in experiments for varying hydrogen concentrations.
Our present and earlier works [57] suggest that a single-ζ basis
(for Si) can produce reasonably good structural and electronic
properties provided one uses the experimental density (for
a given concentration) as an input simulation parameter in
the construction of the simulation cell for a given number of
atoms.

Table I lists the key structural properties of the models for
concentrations from 7 to 22 at. % of hydrogen. The models
are practically free from coordination defects (see CNSi in
column 8, Table I), and the average values of the bond angles
are close to the ideal tetrahedral value of 109.47◦, with an rms
deviation of 9.4◦–10.1◦. The latter matches closely with the
computational [58] and experimental [59] values of 9.8◦ and
9.6◦, respectively.

In Fig. 4, the correlation function [60] T (r) = J (r)/r ,
where J (r) is the total radial distribution function, is shown,
together with the results from neutron scattering experiments
by Wright et al. [40]. The agreement between computed values
and experimental data is quite remarkable, which ensures the
reliability of the models as far as the 2-body correlations are
concerned. This observation can be combined with the results
from Table I to conclude that the structural properties of a-Si:H
have been produced accurately in our approach.

The effect of hydrogen on the connectivity of a-Si:H
networks has been analyzed by studying the distribution of
irreducible rings [34] and the number of tetrahedral units and
their volume distribution associated with silicon atoms. The
addition of hydrogen in a-Si networks leads to the formation
of large ring structures, especially at high H concentrations. As
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FIG. 4. Neutron-weighted correlation functions (atoms/Å2) of a-
Si:H from a 1000-Si-atom model (blue) with 22 at. % hydrogen
and experiments. Experimental data (red) correspond to 22 at. % of
hydrogen from Ref. [40].

more hydrogen atoms begin to bond with silicon atoms at high
H concentrations, irreducible closed paths (or rings) associated
with singly-coordinated H atoms become longer. Thus, the
ring distribution can be expected to be correlated with the
concentration of hydrogen and the density of SiHn (n = 1,
2, 3) configurations. This is reflected in Fig. 5—although
in a subtle way—where the irreducible-ring distributions for
two models are plotted as a function of their ring sizes. A
comparison of the ring-size distributions at low (6.9 at. %)
and high (22 at. %) H concentrations shows that the number
of large rings has increased slightly as the concentration of
hydrogen increases and supports this assumption. The minor
changes in the ring distributions can be explained as being
due to the absence of significant numbers of di- and trihydride
configurations. In a recent publication [31], we have shown
that the change is particularly noticeable in large models at
high H concentrations where the hydrogen microstructure is
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FIG. 5. Irreducible-ring distribution versus ring sizes for two
models with different H concentrations. Hydrogenation causes a
subtle change in the number of rings at a high concentration of
hydrogen.

FIG. 6. Tetrahedral units associated with Si4-nHn configurations
for n = 0, 1, 2, 3. Silicon and hydrogen atoms are shown in yellow
and white colors, respectively.

characterized by the copious presence of di- and trihydride
configurations, as well as microvoids in the network.

While irreducible rings reflect the medium-range topolog-
ical changes in the structure due to hydrogen incorporation,
structural changes associated with the nearest neighbors
of silicon atoms can be quantified by the distribution of
tetrahedral volumes of local silicon tetrahedra (formed by the
four nearest neighbors of each Si atom). Since the volume
of an irregular tetrahedron depends on the length of its six
edges (via the four nearest-neighbor distances) and the six
angles subtended by the four vertices at the center of the
tetrahedron, the volume distribution of silicon tetrahedra is
a reflection of the disorder associated with the bond-length
and bond-angle distributions. Furthermore, the total number
of such tetrahedra is indicative of the presence of coordination
defects. For models with no coordination defects, all Si atoms
are 4-fold coordinated, and the number of tetrahedra is equal
to the number of Si atoms. Thus, the volume distribution of
the tetrahedra can be considered as a form of reduced 4-body
correlation function, which is sensitive to bond lengths, bond
angles, and the coordination number of an atom.

Figure 6 shows various tetrahedral units formed by different
silicon-hydrogen bonding configurations that can be used
to represent the network structure of a-Si:H. Silicon and
hydrogen atoms are shown in yellow and white colors.
The volume distribution of these tetrahedra provides useful
information regarding the change of the local structure and
ordering associated with hydrogen passivation. Depending on
the presence of mono-, di-, and trihydride configurations, the
network may consist of Si3H, Si2H2, and SiH3 tetrahedra. The
volume distributions of these tetrahedra for an a-Si:H model
with 17.9 at. % H, along with a 1000-atom model of pure
a-Si, are plotted in Fig. 7. The peak areas are proportional
to the number of different Si4-nHn tetrahedra for n = 0, 1,
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FIG. 7. The volume distributions of individual Si4−nHn tetrahedra
for a model of a-Si (red) and a-Si:H (blue). The contributions from
different H-bonded tetrahedra (see Fig. 6) are indicated. The vertical
line (at 6.8 Å3) corresponds to the volume of an ideal Si4 tetrahedron
in the crystalline-silicon environment.

and 2. A careful examination of the distributions in Fig. 7
reveals a subtle change associated with the volume of primary
Si4 tetrahedra upon hydrogenation. The tetrahedral volume
distribution of pure a-Si is slightly wider than its hydrogenated
counterpart. This appears to suggest that the hydrogenation of
a-Si not only passivates the dangling bonds but also modifies
the entire network to produce a narrower distribution of
primary (i.e., Si4) tetrahedral volumes in a-Si:H. Since the
volume distribution of Si4 tetrahedra for a-Si is obtained from
a 100% 4-fold CRN model of the highest quality [3], this
small deviation can be seen as an indicator of the local changes
associated with the Si4 tetrahedra in a-Si:H. To treat both the
data sets on an equal footing from a computational point of
view, we have relaxed the CRN model of a-Si using a double-ζ
basis in SIESTA. Finally, the volume of a perfect tetrahedron
from the crystalline-silicon structure is indicated as a vertical
line at 6.8 Å3. Once again, we have relaxed the crystalline Si
structure using a double-ζ basis in SIESTA for consistency in
our calculations. The crystalline volume of 6.8 Å3 corresponds
to an equilibrium nearest-neighbor distance of 2.367 Å in the
diamond structure.

B. Hydrogen distribution and NMR line spectra

In this section, we present an approximate calculation of
the shape of nuclear magnetic resonance spectra for device-
quality models (i.e., 7 to 14 at. % of H with a very few
defects) of a-Si:H by examining the real-space distribution
of H atoms, and compare the results with experimental NMR
spectra [23–26]. Experimental data from NMR [23,24] and
multiple-quantum NMR measurements [26] suggest that, at
low concentrations, the dipolar interaction between spins
(i.e., H nuclei) yields a narrow spectrum, which is often
approximated by a Cauchy-like distribution near the resonance
frequency. This indicates the presence of H atoms in a dilute or
sparse environment. However, a broad spectrum results in high
concentrations of hydrogen, which is generally interpreted as
being due to the presence of small hydrogen clusters (4–8 H
atoms) within a region of 3–5 Å radius [26,61]. To study the
shape of the resonance curve, we have calculated the NMR
spectra for two models with 6.9 and 14.7 at. % H using

the Van Vleck moments [62] of the spin distribution [61].
In the moment-based approach, an NMR spectrum can be
approximated as a linear combination of truncated Gaussian
(broad) and Cauchy (narrow) distributions, which are defined
via the first two nonzero Van Vleck moments. The distributions
are weighted by appropriate mixing parameters, which are
deduced from the number of hydrogen atoms present in the
clustered and dilute phases in the model. The widths of the
Gaussian and truncated Cauchy distributions are characterized
by the second and fourth moments of the spin (H nuclei)
distribution in real space. Following Van Vleck [62], the
second and fourth moments of a system of N randomly
distributed spins can be expressed as

μ2

γ 4�2
= 1

2N

N∑
i<j

b2
ij , (5)

μ4

γ 8�4
= 3

16N

N∑
〈ikl〉

b2
ikb

2
il − 1

36N

N∑
〈ikl〉

b2
ik(bil − bkl)

2

+ 1

72N

N∑
〈ikl〉

bikbkl(bil − bik)(bil − bkl) + 1

8N

N∑
i<k

b4
ik,

(6)

where

bij = 3

2

(1 − 3 cos2 θij )

r3
ij

and θij is the angle between the vector rij and the direction of
the applied magnetic field. In Eq. (6), the symbol 〈ikl〉 implies
a triple summation with no two indices being equal, and γ is the
gyromagnetic ratio of hydrogen nuclei. For an ideal Gaussian
function, � = μ4/μ

2
2 = 3 and the full width at half maximum

(FWHM) is given by
√

8 μ2 ln 2. This reflects a complete
random distribution of spins at high concentration. Likewise,
in the dilute limit, a random distribution of spins produces
a narrow Lorentzian or Cauchy-like distribution near the
resonance frequency. In practice, the shape of an experimental
resonance curve is neither a Gaussian nor Lorentzian. The
presence of correlation between hydrogen atoms, which is
evidenced from the H-H pair-correlation function, modifies
the resonance curve considerably and produces an intermediate
shape between the two limits. To proceed further, we make the
approximation that the resonance curve can be expressed as
a linear combination of a Gaussian and a truncated Cauchy
function [63]:

f (ν) = αfg(ν) + βfl(ν). (7)

Here α and β are the parameters indicating the total fraction
of clustered and dilute H atoms in our model a-Si:H networks,
respectively, and fg(ν) and fl(ν) are the Gaussian and
truncated Cauchy functions, respectively. In the spirit of the
analysis of experimental IR data, we choose β = 1 − α. This is
equivalent to the assumption that a hydrogen atom that does not
belong to clusters contributes to the dilute phase. The functions
fg,l(ν) above are defined via the first two nonzero moments of
the spin distribution. To calculate the configurational-average
line spectra, we have used several magnetic field directions.
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FIG. 8. Comparison of 1H-NMR spectra from simulations (red
and blue) and experiments (black). Simulated spectra correspond to
a-Si:H models with 6.9 at. % (blue) and 14.7 at. % (red) of hydrogen.
Experimental data are from Ref. [25] and correspond to a sample of
a-Si:H with 10–15 at. % hydrogen.

It should be noted that the shape of the resonance curve
obtained in this manner is an approximation of the true
resonance curve, especially at very dilute concentrations,
and that the experimental data can deviate significantly,
depending on the concentration of hydrogen, history of the
samples, and the degree of inhomogeneities associated with
the distribution of hydrogen in the models. Furthermore,
the spectrum constructed from the NMR moments is purely
classical, which involves only the dipolar interaction between
spins, and does not include any effect of the electron-
mediated spin-spin interaction in solids. Additionally, the
moment-based approach breaks down at very dilute concen-
trations when the resonance function is almost Lorentzian,
leading to divergence of the second- and higher-order
moments.

Figure 8 shows the calculated NMR spectra for two a-Si:H
models with 6.9 at. % and 14.7 at. % of hydrogen, along
with the experimental data from Ref. [25], which correspond
to 10–15 at. % H. For comparison, the simulated data from
Eq. (7) are multiplied by an appropriate normalization factor
so that both the experimental and simulated data have an
identical zeroth moment or area under the plots. Although the
simulated spectra from the moment-based approach appear
to deviate from the experimental data, this minor deviation
is not unexpected in view of the approximate nature of the
moment-based method. The reconstructed spectrum depends
not only on the truncated distributions but also on the relative
weight or the mixing parameter, α. The latter depends on the
density of the clustered phase of H atoms, which characterizes
the 3-dimensional distribution of hydrogen in a-Si:H. Figures 9
and 10 show several such clusters of hydrogen in a spherical
region of radius 3.8–4 Å at low and high concentrations,
respectively. The presence of such clusters, consisting of 5–8
H atoms in a spherical region of radius 3–5 Å, is consis-
tent with the conclusions from nuclear magnetic resonance
studies [23,24,26]. For clarity of visualization, a hypothetical
Gaussian surface is shown around each cluster [64].

FIG. 9. Distribution of H clusters (white) in a 1000-Si-atom
model with 17.9 at. % H. For visual clarity, individual clusters are
enclosed within a hypothetical Gaussian isosurface (orange).

C. Hydrogen distribution: Density of clustered and isolated
phases

In the preceding section, we have seen that the shape of the
resonance curve provides useful information on the real-space
distribution of H atoms in the network. However, since an
NMR spectrum provides a one-dimensional representation of
a hydrogen distribution, it cannot be used to uniquely charac-
terize the full three-dimensional distribution of H atoms in real
space. Further characterization of the hydrogen distribution
is possible by comparing the distribution of Si-H bonding
configurations in model networks with the results from IR
measurements [19,21,22,42]. Experimentally, the frequencies
associated with the stretching peaks in the IR spectra can be
obtained via deconvolution of the high-frequency region of the

FIG. 10. A few H clusters (white) in a 1000-Si-atom model with
10.6 at. % H. For visual clarity, a hypothetical Gaussian isosurface
(orange) is constructed around each cluster.
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spectra using Gaussian functions. The hydrogen involvement
in a vibrational mode is determined from the integrated
absorption strength and the matrix element of the mode.
Ouwens and Schropp [42] obtained estimates for the densities
of clustered and isolated hydrogen atoms using different
oscillator strengths and refractive indices of H atoms in the
clustered and isolated phases. By analyzing the integrated
absorption strengths of stretching modes at 2000 cm−1

and 2100 cm−1 from infrared measurements, these authors
conclude that up to 4 at. % of total hydrogen can be dissolved
into the amorphous matrix to form an isolated/distributed
phase, which is independent of the methods of preparation and
the deposition conditions of their samples. Similar conclusions
followed from the work of Acco et al. [22], who studied the
evolution of the hydrogen concentration profile and bonding
configurations using secondary-ion-mass spectrometry and
infrared spectroscopy.

To calculate the density of distributed H atoms in our
models, we assume that a hydrogen atom is isolated if the atom
does not have any hydrogen neighbor within a spherical region
of radius 4–6 Å. While this particular range may appear to be
somewhat empirical, it is motivated by our desire to compare
the results with the experimental data from Ref. [42], where the
authors obtained an average isolation radius of 5.9 Å based on
the analysis of their experimental data using phenomenological
arguments. Figure 11 presents the results for the percentage
of isolated H atoms (with respect to total hydrogen) for two
models with 10.6 at. % and 17.9 at. % of hydrogen for isolation
radii between 4–6 Å. The results suggest that the density of
isolated hydrogen atoms does not exceed 4 at. % of total
hydrogen for a radius of 4 Å for a device-quality model with
10.6 at. % of H. Similarly, at high concentration, there are a
few distributed H atoms (< 2%) present in the network. These
results are consistent with the experimental results obtained by
Acco et al. [22] and Ouwens and Schropp [42]. An example of
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FIG. 11. Density of distributed H atoms (in percentage of total
hydrogen) at low and high concentrations with a varying isolation
radius. The hydrogen concentration of a-Si:H models is indicated in
the plot.

FIG. 12. An example of a distributed SiH configuration (red) in
a 1000-Si-atom model of a-Si:H with 10.6 at. %. The radius of the
spherical region shown above is 5.9 Å.

a distributed H atom (i.e., an isolated monohydride) is shown
in Fig. 12 with an isolation radius of 5.9 Å. It may be noted
that, for a perfectly homogeneous distribution consisting of
Nh hydrogen atoms in volume V , the hydrogen-hydrogen
separation cannot be more than l0 = 3

√
V/Nh. This translates

into a maximal distributed radius of 4.3 Å and 6.9 Å for 22
at. % and 6.9 at. % of H, respectively. Since, for comparison
with experimental data [42] l0 � 5.9 Å, a condition that is
not satisfied by the models at high concentrations of H, our
results at high concentrations are somewhat affected by the
small size of the models. Here, we have used a value of 4.5 Å
as an isolation radius for the calculation of the density of
isolated/distributed atoms.

The density of clustered hydrogen can be determined
by introducing a suitable definition of hydrogen clusters.
Following NMR studies [23], one may assume that a hydrogen
atom belongs to a clustered phase if it is surrounded by at
least nH = 5–7 or more H atoms in a spherical region of
rc = 3.5–4.5 Å. For the present calculations, we have chosen a
value of nH = 5 H atoms and rc = 3.8 Å to define a cluster. The
latter is approximately equal to the average separation between
two H atoms, which are bonded to two neighboring Si atoms,
such as H-Si-Si-H (see Ref. [65]). The remaining H atoms are
assumed to be distributed in a dilute or sparse phase, which
is neither clustered nor isolated. The corresponding density of
such a dilute phase can be obtained by subtracting the sum of
distributed/isolated and cluster phases from the total density of
H atoms. It may be noted that, depending on the definition of a
cluster, a few small H clusters can reside in a dilute distribution
of hydrogen. It is appropriate to mention at this point that IR
studies often do not distinguish between isolated and dilute
phases, an assumption that we have already employed in
the reconstruction of an NMR spectrum. Hydrogen atoms,
which are not isolated, contribute to the clustered phase [42].
Figure 13 shows the percentage of total H atoms that appear
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FIG. 13. Density of clustered H atoms (in percentage of total H)
as a function of total H concentration for a set of a-Si:H models. A
hydrogen cluster is defined as a group of five or more H atoms in a
spherical region of radius 3.8 Å.

in the clustered environment for different concentrations of
hydrogen.

Table II provides the statistics of hydrogen distributions by
listing the number density of H atoms in isolated (Ciso) and
clustered (Cclus) phases with respect to total hydrogen content,
as well as the percentage of H atoms (MSiHn

) associated with
SiHn bonding configurations. For the calculation of the density
of isolated H atoms (in Table II), we have used a radius of
4.5 Å. Similarly, as mentioned in Ref. [65], a hydrogen cluster
is defined as a group of 5 or more H atoms in a spherical
radius of 3.8 Å. A comparison of Ciso between simulated
values from Table II and experimental results from Refs. [22]
and [42] suggests that our results are well within the range of
experimental values obtained for device-quality models. The
densities of H atoms (with respect to total H) associated with
mono- and dihydride configurations are also listed in Table II
as MSiH/SiH2 .

D. Electronic and optical properties

Having studied the structural properties of the models,
we now address the electronic and optical properties. The
optoelectronic properties crucially rely on the electronic

TABLE II. Statistics of hydrogen distribution in a-Si:H. System
sizes (N ), hydrogen concentration (Hconc), hydrogen contents of SiHn

(MSiHn
), and clustered/isolated hydrogen Cclus/iso are listed. MSiHn

=
[ nNn

Nh
] × 100, where Nn is the number of SiHn configurations and Nh

is the total number of H atoms.

N ρ Hconc MSiH MSiH2 MSiH3 Ciso Cclus

(g cm−3) (at. %) (%) (%) (%) (%) (%)

1074 2.236 6.9 100 0 0 8.1 8.1
1090 2.233 8.3 96.7 3.3 0 5.55 6.6
1118 2.217 10.6 98.3 1.7 0 2.54 10.2
1142 2.205 12.4 97.9 2.1 0 4.22 25.3
1172 2.196 14.7 93.0 7.0 0 1.74 35.5
1218 2.174 17.9 87.2 12.8 0 0.46 53.2
1282 2.165 22.0 77.0 19.9 3.1 0.00 71.0
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FIG. 14. Electronic density of states (DOS) of a-Si:H models in
the vicinity of the band gap near the band edges for different hydrogen
concentrations. The full valence and conduction bands are shown in
the inset. The Fermi level is located at 0 eV.

density of states (EDOS). The band-gap region, in particular,
is very sensitive to the concentration of defects and the
degree of disorder in the networks. The presence of defects
introduces gap states in the EDOS, whereas disorder influences
the states near the valence- and conduction-band tails. These
affect the optical and electronic properties of the material.
For example, the size of the optical gap (obtained via Tauc
plots [66]) and the electronic conductivity (obtained via the
Kubo-Greenwood formalism) depend on the distribution of
valence- and conduction-band tail states, and the magnitude
of the gap. In Fig. 14, we have plotted the EDOS for four
a-Si:H models with hydrogen concentrations of 8.3, 12.4,
14.7, and 17.9 at. % of hydrogen obtained from SIESTA using
a double-ζ basis and the local density approximation (LDA)
for the calculation of the exchange-correlation energy.

The absence of coordination defects in the hydrogenated
models has produced a clean electronic gap of size ranging
from 1.2 to 1.3 eV. This value is smaller than the optical
gap of 1.61–1.72 eV extrapolated from the measured optical-
absorption spectra for samples of a-Si:H with 6.5–21.8 at. %
of hydrogen in Ref. [41]. The deviation from the experimental
value can be attributed partly to the use of the LDA with
localized basis functions and the variational nature of the
density-functional calculations, and partly to the parametriza-
tion of the optical functions (e.g., the dielectric function)
for fitting the optical-absorption data from experiments. The
Tauc plot for the model with 12.4 at. % H is shown in
Fig. 15. Due to reasonably large system sizes and the use
of double-ζ basis functions, we have resorted to estimating
the value of the optical gap by extrapolating the joint density
of states (JDOS) using the parabolic approximation for the
band edges and assumed an energy-independent transition
matrix element between the valence and conduction bands.
A linear least-squares fit of the JDOS from 1.5 eV to 4.5 eV
yields an extrapolated value of 1.57 eV for the optical gap in
Fig. 15. This value is somewhat smaller than the experimental
value of 1.66 eV from Ref. [41] but larger than the value of
1.3 eV estimated from the EDOS (in Fig. 14). Since the latter
reflects the energy difference between the highest occupied
and lowest unoccupied energy states, it is often referred to
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FIG. 15. A Tauc plot showing a linear extrapolation from the joint
density of states (blue) to obtain an estimate of the optical gap (1.57
eV above) using a least-squares fit (red).

as the HOMO-LUMO gap, and is generally smaller than the
optical gap due to the presence of a few defect states and the
neglect of the energy-dependent transition matrix elements in
the calculations.

An inspection of the EDOS in Fig. 14 shows a gradual
widening of the gap with increasing hydrogen concentration
except for the model with 8.3 at. % H. This is evident in
Fig. 16, where we have plotted the size of the optical gap with
hydrogen concentration for a set of a-Si:H models with 1000
Si atoms. This widening of the gap with increasing hydrogen
concentration is consistent with the experimental results from
photoelectron spectra by von Roedern and co-workers [67]
and the dielectric measurements of a-Si:H using spectroscopic
ellipsometry by Kageyama et al. [41]. The latter observed a
shift of the entire dielectric function toward high energies with
decreasing substrate temperature, which resulted in a linear
increase of the optical gap of the samples with increasing
hydrogen content. This observation is reflected qualitatively
in Fig. 16, except for the model with 8.3 at. % of H, where
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FIG. 16. Variation of the optical gap (obtained from the Tauc plot)
in a-Si:H with hydrogen concentrations. The widening of the gap with
increasing hydrogen concentration is consistent with experimental
data in Refs. [41,67]. Experimental data shown above are from
Ref. [41].
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FIG. 17. Dielectric function of a-Si:H from experiments (red) and
simulations (blue) using the Tauc-Lorentz model. Experimental data
are from Ref. [41] and correspond to a sample with approximately
11.6 at. % of hydrogen.

the value of the optical gap (for the 1000-Si-atom model)
has increased from 1.45 eV at 6.9 at. % H to 1.6 eV at 17.9
at. % of hydrogen. The widening of the band gap can be
understood in terms of silicon-hydrogen bond formation with
increasing hydrogen concentration. The addition of hydrogen
causes a partial reduction of the states near the valence-band
tail through the formation of SiH and SiH2 configurations
(see Fig. 14). Hydrogen passivates the defect states, located
near the valence tail, by forming Si-H bonds through Si(3p)-
H(1s) interactions [68]. These Si-H configurations reduce
the local strain and disorder through the formation of the
silicon-hydrogen bonding states lying deep in the valence
band. An examination of the local EDOS associated with
H-bonded silicon atoms confirms this observation.

The dielectric function of the a-Si:H model with 12.4
at. % H is plotted in Fig. 17 using the Tauc-Lorentz (TL)
model [69]. In the TL model, the imaginary part of the
dielectric function, ε2,T L(E), is expressed as a product of the
Tauc joint density of states [66] and the matrix element of
a classical damped harmonic (Lorentzian) oscillator in the
presence of an electromagnetic field [70]:

ε2,T L(E) =

⎧⎪⎨
⎪⎩

AE0C(E − Eg)2

(
E2 − E2

0

)2 + C2E2

1

E
, E � Eg,

0, E < Eg,

(8)

where the parameters A,E0,C, and Eg correspond to the
amplitude, broadening, peak transition, and Tauc-Lorentz
optical gap, respectively. For the purpose of calculating the
imaginary part of the dielectric function, we have used the
value of the optical gap Eg = 1.57 eV obtained from the joint
density of states, and values of A = 214.05 eV, C = 2.33 eV,
and E0 = 3.649 from Ref. [41] for the sample with 11.6 at. %
of hydrogen. Figure 17 shows the plot of the dielectric function
ε2,T L(E) as a function of photon energy E. The deviation
from the experimental data near the peak-transition energy
of E0 = 3.65 eV can be understood by noting the behavior
of ε2,T L(E) near E0. For E = E0, ε2,T L(E = E0) = B(E0 −
Eg)2, where B = A/CE0. Since Eg has been underestimated
in our calculations, the deviation is more pronounced near
the peak transition energy E0, and decreases as E goes away
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from the peak. By directly fitting the experimental data using
Eq. (8), Kageyama et al. [41] reported a value of 1.66 eV for
the optical gap for a sample with 11.6 at. % H, which is about
5.5% higher than the estimated value of 1.57 eV for the model
with 12.4 at. % H obtained from the joint density of states in
Fig. 15.

E. Vibrational properties

As a final test of our models, we briefly examine the
vibrational properties of a-Si:H models by diagonalizing the
dynamical matrix in the harmonic approximation [71]. Since
vibrational modes in a-Si:H typically involve an excitation
energy of several tens of meV (for bending modes) to a few
hundreds of meV (for stretching modes), they are very sensitive
to minute structural changes associated with the environment
of silicon and hydrogen atoms. For example, the frequency
positions and vibrational character of stretching modes (SMs)
depend on the hydrogen contents of mono- and dihydride
configurations and their local chemical environment. Infrared-
absorption measurements suggest that the high-frequency
region of the IR spectra in a-Si:H is characterized by
the presence of a narrow band (2000–2040 cm−1) of low-
frequency stretching modes (LSMs), which is accompanied
by a relatively broad band (2060–2250 cm−1) of high-
frequency stretching modes (HSMs) [72–74]. Although the
assignment and the origin of these modes are still not very
clear, it is now widely accepted that monohydrides (SiH) are
largely responsible for the LSMs [22,38,42,74], whereas the
contributions to the HSMs come from dihydrides and a few
monohydrides on internal surfaces or voids [41,75]. Figure 18
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FIG. 18. Atom-projected vibrational density of states of a 1000-
Si-atom model of a-Si:H with 12.4 at. % H along with the inelastic
neutron-scattering data (black) from Ref. [76]. The inset shows the
calculated high-frequency vibrational modes and the experimental IR
spectrum of a-Si:H from Ref. [21]. The lower panel shows the inverse
participation ratio (IPR) of the vibrational eigenstates as a function
of frequency.

shows the vibrational density of states of a device-quality
model with 12.4 at. % H along with the experimental data
from inelastic neutron-scattering experiments [76] on a-Si,
and infrared-absorption measurements [21] on a-Si:H at room
temperature. The high-frequency region of the vibrational
spectrum shows the presence of two distinct bands: (1) a
narrow band from 1960 to 2020 cm−1; (2) a wide band from
2040–2180 cm−1. A real-space analysis of the eigenvectors,
in the frequency range 2040–2120 cm−1, obtained from the
dynamical matrix of the model with 12.4 at. % H indicates
that these modes have 100% stretching character and originate
from both monohydride and dihydride configurations. The
localization character of the vibrational eigenvectors (i.e.,
normal modes) follows directly from the inverse participation
ratio (IPR):

IPR(ν) =
N∑

i=1

[
φ2

ix
+ φ2

iy
+ φ2

iz

]2
, (9)

where φix , φiy , and φiz are the x, y, z components of the
normalized eigenvector φ(ν) or normal mode of frequency ν

projected on atom i and N is the total number of atoms in the
system. For a completely localized mode, centered on a single
atom, IPR = 1, whereas for an ideal extended mode distributed
over all atoms, IPR = 1/N . The plot of the IPR versus
frequency (in cm−1) is shown in the lower panel of Fig. 18.
An analysis of the vibrational modes suggests that most of
the high-frequency stretching modes are strongly localized in
character (with IPR � 0.9). Figure 19 shows an example of
such a high-frequency stretching mode (HSM) associated with
an isolated monohydride configuration observed in a model
of a-Si:H with 12.4 at. % of hydrogen. The frequency of
the mode is given by 2182 cm−1. The mode is found to be
highly localized in real space with an IPR value of 0.95. An
analysis of the eigenvector associated with this mode confirms
that the mode is 100% stretching in character, and that the

FIG. 19. A high-frequency stretching mode (ν = 2182 cm−1)
associated with an isolated monohydride configuration in a model of
a-Si:H with 12.4 at. % of hydrogen. The vibrational motion associated
with this mode is found to be highly localized (with an IPR value of
0.95) and centered on the hydrogen (white) and silicon (yellow) atoms
of the Si-H bond as indicated.
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vibrational motion (of atoms) associated with this mode is
mostly confined to the hydrogen and silicon atoms of the
Si-H bond as shown in Fig. 19. Similar observations have
been found to be true for other high-frequency modes. Thus,
our models correctly produce the characteristic frequency
positions of H atoms, the nature of the vibrational modes,
and the localized character associated with these frequencies,
which have been observed in infrared absorption and inelastic
neutron scattering experiments. The low-frequency localized
modes are mostly due to various bond-bending vibrational
configurations involving Si-H bonds.

IV. CONCLUSIONS

We have presented a dynamical approach to generate
continuous-random-network models of a-Si:H by combin-
ing classical metadynamics with first-principles molecular-
dynamics simulations and total-energy relaxations. Unlike
conventional MD simulations of amorphous solids, where
the absence of strong glassy behavior produces too many
defects, the present approach provides a way to control the
concentration of coordination defects by using the atomic
coordination of constituent atoms as collective variables
along with few configurational constraints in metadynamical
simulations. The ability to control defect concentrations using
collective variables makes it possible to generate nearly 100%
defect-free models of a-Si:H via subsequent hydrogen passi-
vation. A comparison with the existing simulation methods
reveals the following advantages of our approach: (1) The
method provides a systematic way to generate large defect-free
models of a-Si:H over a wide range of concentrations. (2) It
produces a hydrogen microstructure by passivating a random
distribution of defects in a-Si networks. This eliminates any
spurious correlations in the hydrogen distribution, which
might appear in approaches based on the direct insertion
of H atoms via the breaking of weak Si-Si bonds or the
incorporation of experimental data in the generation of models.
(3) The density and distribution (i.e., isolated versus clustered)
of silicon-hydrogen configurations can be controlled quite
accurately by using appropriate configurational constraints

in order to study their effects on electronic and vibrational
properties. (4) The method can be readily employed to gen-
erate structural models of binary/ternary amorphous networks
and amorphous-crystalline heterojunctions for which reliable
classical/semiclassical potentials are available. For multinary
amorphous solids, the approach can be extended to include ab
initio force fields in metadynamical simulations.

An examination of structural, electronic, optical, and
vibrational properties of the models suggests that they are
in excellent agreement with experimental data from infrared,
nuclear magnetic resonance, inelastic neutron scattering, and
optical absorption studies. The microstructure of hydrogen
distributions in the models is characterized by the presence
of isolated and clustered H phases in the background of an
intermediate phase of hydrogen. Approximately 0.5–8 at. %
of total hydrogen atoms have been found to occur in an
isolated environment, which is comparable with the exper-
imental values of 0–4.5 at. % H inferred from infrared
spectroscopy [22,42]. The results are more-or-less consistent
with experimental data, taking into account the limits of
our simulations. The density of clustered hydrogen shows a
monotonic increase with an increase in the hydrogen concen-
tration. This agrees well with the data from optical-absorption
measurements, which show an almost linear increase of the
density (of the clustered phase) with hydrogen concentration.
In conclusion, the metadynamical approach presented here
provides an efficient way of producing large, high-quality,
defect-free models of amorphous solids for further study of
their structural, electronic, optical, and vibrational properties.
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of 1.0–1.2 Å has been found to be optimal for the system to
adjust the average Si-H bond length to be 1.5 Å during the ab
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