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Phase of transmitted wave in dynamical theory and quasi-kinematical approximation
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Variation of the phase of the beam transmitted through a crystalline material as a function of the rocking
angle is a well-known dynamical effect in x-ray scattering. Unfortunately, it is not so easy to directly measure
these phase variations in a conventional scattering experiment. It was recently suggested that the transmitted
phase can be directly measured in ptychography experiments performed on nanocrystal samples. Results of such
experiment for different crystal thickness, reflections, and incoming photon energies, in principle, can be fully
described in the frame of dynamical theory. However, dynamical theory does not provide a simple analytical
expression for the further analysis. Here we develop a quasi-kinematical theory approach that allows one to
correctly describe the phase of the transmitted beam for the crystal thickness less than extinction length that is
beyond applicability of the conventional kinematical theory.
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I. INTRODUCTION

It is well known that the propagation of x rays through a
slab of material results in the accumulation of a small phase
shift due to refraction [1]. This phase shift plays an important
role in different applications of x rays, despite x rays having
a small index of refraction typically on the order of 10−5

to 10−7. For example, the focusing of x rays by compound
refractive lenses [2] and phase contrast imaging [3] are based
on refraction. It is also well known from the dynamical
theory [4] that in the case of a perfect crystal, the phase of
a diffracted wave in Bragg geometry changes by π in the
narrow angular range close to the Bragg angle. This is a
manifestation of the x-ray standing wave generated in a crystal
by two coherent transmitted and diffracted waves [5–7]. It
is interesting to note that the phase of the transmitted wave
also has an additional dynamical correction close to the Bragg
angle that depends on the rocking angle. Moreover, due to
dynamical diffraction, this phase correction is different for π

and σ polarization of x rays [8,9]. This effect is used nowadays
to develop quarter- and half-wavelength phase shifters for hard
x rays [10,11] and to produce circular polarized radiation
at third-generation synchrotron sources. Probably the most
recent application of the transmitted beam phase in Bragg
scattering geometry is the generation of self-seeded pulses of
x-ray free-electron lasers [12,13].

It is not easy to measure the phase of the transmitted beam
in the scattering experiment due to the fact that in a typical
scattering experiment, it is intensity—the square modulus
of a complex amplitude—that is measured on the detector.
In Ref. [14], it was proposed to measure dynamical phase
correction using interferometry measurements based on a
Bonse-Hart interferometer [15]. By recombining two coherent
beams passing through empty space and a crystal positioned
close to the Bragg angle, an interference pattern was measured
that could be well described in simulation by the presence
of the phase of the transmitted beam. This was still indirect
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measurement of the phase. Recently developed coherent x-ray
scattering methods, such as ptychography [16,17], can, in
principle, measure the phase by reconstruction of the complex
wave field. Ptychographic methods are highly sensitive to
changes of phase and can be used to reconstruct the phase
of the transmitted beam. Such experiment in which the phase
of the transmitted beam in ptychographic measurements was
determined was performed recently [18] (see layout of this
experiment in Fig. 1).

In this experiment, two detectors were used, i.e., one
in the diffraction and one in the transmission direction.
Ptychographic measurements were performed both on empty
membrane and Au crystalline nanoparticles 100 nm thick at
different rocking angles of the sample. These measurements
provided phase information of the transmitted beam that
contained two components: the main one due to conventional
refraction that does not depend on the rocking angle and an-
other one that is much weaker and has an angular dependence
on the rocking angle.

Though physical principles of generation of the transmitted
wave phase are well understood and can be well simulated
using dynamical theory [4], their solutions can be quite compli-
cated in some special cases and often do not provide analytical
results. The kinematical theory based on the assumption of
a single scattering of the incident beam on the sample is
comparatively easier to understand and interpret. However,
kinematical theory does not describe variations of the phase
close to the Bragg angle in a transmitted beam. To fill this
gap, here we develop a quasi-kinematical theory that provides
a simple analytical description for the phase of the transmitted
beam.

Crystals with the thickness larger than the so-called extinc-
tion length [4] typically have to be described by the dynamical
theory. At the same time, crystals with the thickness much
smaller than this extinction length can be safely described by
the kinematical theory [19]. The extinction length provides
the typical crystal size for which multiple scattering effects,
such as coupling between the transmitted and diffracted wave,
become important. We will show that the quasi-kinematical
approximation developed here gives correct results for the
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FIG. 1. Schematic layout of the ptychography experiment de-
scribed in Ref. [18]. Intensities of the transmitted and diffracted
beams are measured simultaneously by two detectors, while the
crystal is rotated near the Bragg angle. Ptychographic measurements
were performed on a Au 111 crystalline nanoparticle 100 nm thick.
Reconstruction of the complex amplitude of the transmitted beam
allowed one to observe phase variations as a function of the rocking
angle.

transmitted phase for crystal thicknesses up to extinction
lengths significantly beyond the conventional kinematical
theory.

In this paper, we first revisit the concept of the phase
of the transmitted beam for x rays. Using full dynamical
theory, we show how the kinematical case can be generalized
by including refraction and absorption effects. We present
a general dynamical theory expression for the transmitted
phase that is especially transparent in the case of a perfect
crystal. We present simulations based on dynamical theory
of the phase of the transmitted beam for different crystal
types, reflection orders, and incoming photon energies and
introduce a quasi-kinematical approximation to obtain an
analytical solution for the dynamical phase contribution in
the transmitted beam. We finalize our work with the summary
and outlook section.

II. GENERAL CONSIDERATIONS

A. Nonperiodic media

We will first consider the case of scattering of x rays on
nonperiodic media. In this case, refraction coefficient n of
matter for x rays is given by

n =
√

1 + χ0 � 1 + χ0/2, (1)

where χ0 is the zeroth Fourier component of the susceptibility
χ (r,ω) that is connected with the electron density ρ by known
expression [1] χ0 = −reλ

2ρ/π , where re is the classical
electron radius and λ is the x-ray wavelength. Here we took
into account that for x rays, χ0 � 1. The x-ray wave passing
through a slab of material of thickness d will get an additional
phase shift,

Eout(d) = Ein(z = 0)eiϕ(d), (2)

where the total phase ϕ(d) accumulated while passing the
material is given by

ϕ(d) = nkd/γ = (1 + χ0/2)kd/γ. (3)

Here, k = ω/c is the vacuum value of the incidence wave
vector, ω is the frequency of x rays, c is the speed of light, and
γ = cos(n · k) is the direction cosine with n being the inward
normal to the entrance surface of the material. We can see from
that expression that the phase due to refraction in nonperiodic
media is given by a simple expression,

ϕref(d) = χ0kd/(2γ ). (4)

This is a conventional phase shift due to refraction well known
for electromagnetic waves which is proportional to an effective
thickness of the material t = d/γ , the only difference for x rays
is that it is negative since χ0 < 0.

B. Periodic media

For an x-ray wave passing through periodic media, the
situation is similar to nonperiodic media in most cases, except
incident angles close to the Bragg angle. As it follows from the
dynamical theory [4], at these angles an additional dynamical
correction δn to refractive index n will appear in expression (1).
Contrary to expression (1), it will be dependent on the rocking
angle �θ . Asymptotically, far from the exact Bragg condition,
this refractive index correction can be expressed as [4,20].

δn ≈ − C2χhχh

4γ0(�θ − θref) sin 2θB

. (5)

Here, χh and χh are the Fourier components of the
susceptibility of the h and h reflections, respectively. They
are connected with the Fourier components of the structure
factor Fh and Fh by well-known relations,

χh = −Fh, χh = −Fh, (6)

and parameter  is given by  = reλ
2/πV , where V is the

volume of the unit cell. In expression (5), C is the polarization
coefficient equal to C = 1 for σ polarization and C = cos 2θB

for π polarization, �θ = θ − θB is the angular deviation from
the exact Bragg conditions, θref is the angular correction due
to refraction, and θB is the Bragg angle. We note that this
expression is valid for both Bragg and Laue geometry. As was
mentioned above, the range of validity of this expression is
given by inequality

|�θ | � |χh|/ sin 2θB. (7)

It follows from expression (5) that the dynamical phase
correction due to the coupling of transmitted and diffracted
waves is proportional to the product of Fourier components of
susceptibilities χhχh or structure factors FhFh. This phase cor-
rection asymptotically decreases as 1/�θ with the increase of
the angular deviation from the Bragg angle and is proportional
to the first power of a crystal thickness. Unfortunately, there is
no simple relationship describing the phase of the transmitted
beam for a more general case of an arbitrary thick crystal for
the whole angular range near the Bragg angle, or a crystal
with deformation field that could also change the values of
the transmitted phase. In the following, we will analyze in
detail the case of quasi-kinematical approximation when the
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phase due to dynamical scattering will be considered as a
small perturbation to the phase ϕref(d) (4) due to refraction.
The obtained analytical solution will be compared with full
dynamical simulations and the range of validity of the quasi-
kinematical approximation will be determined.

III. DYNAMICAL THEORY APPROACH

A. Theory: General equations

In the following, we will consider a plane x-ray wave
with a wave vector k incident on a single-crystal plate of
thickness d. For generality, we will consider both Bragg and
Laue diffraction geometries (see Fig. 2).

The wave field inside a crystal can be presented in the
dynamical theory in two-wave approximation [4] as a coherent
superposition of the transmitted E0s(r) and diffracted Ehs(r)
waves,

E(r) =
∑

s

[e0sE0s(z)eik0r + ehsEhs(z)eikhr], (8)

where e0 and eh are polarization unit vectors, s is the
polarization index, k0 is the incident wave vector, and kh =
k0 + h is the diffracted wave vector with h = 2πH and H
being the reciprocal space vector. Here we also assume that
slowly varying amplitudes E0s(z) and Ehs(z) have only z

dependence.
Propagation of transmitted and diffracted amplitudes in

a weakly deformed crystal can be described by the Takagi-
Taupin (TT) equations [4,6,21,22]

dE0s

dz
= ik

2γ0
[χ0E0s(z) + χhCeihu(z)−W (z)Ehs(z)], (9a)

dEhs

dz
= ik

2γh

[(χ0 − α)Ehs(z) + χhCe−ihu(z)−W (z)E0s(z)].

(9b)

Here, u(z) and W (z) are the strain field and static Debye-
Waller factor [for a perfect crystal, u(z) = W (z) = 0], γ0,h =
cos(n · k0,h) are the direction cosines, and n is the inward
normal to the entrance surface of the crystal (see Fig. 2). For
Bragg geometry of diffraction, γ0 > 0 and γh < 0, and for
Laue diffraction, γ0 > 0 and γh > 0. Fourier components of
the susceptibility are, in general, complex valued numbers
χh = χhr + iχhi . The parameter α characterizes the deviation
of the incident wave vector k0 from the Bragg condition α =
(k2

h − k2
0)/k2

0 ≈ −2 sin 2θB�θ .
The boundary conditions in Bragg geometry are given by

E0s(0) = Ein
s , Ehs(d) = 0, (10)

and in Laue geometry,

E0s(0) = Ein
s , Ehs(0) = 0. (11)

We will assume in the following a unit amplitude for the
incoming beam, Ein

s = 1.
The intensity of the diffracted beam, or reflectivity, is

defined in Bragg geometry as

pB
R (�θ ) = |γh|

γ0

∣∣∣∣Eh(0,�θ )

E0(0,�θ )

∣∣∣∣
2

, (12)

and in Laue geometry as

pL
R(�θ ) = γh

γ0
|Eh(d,�θ )|2. (13)

B. Kinematical solution

The kinematical solution [23] for the transmitted wave
E0(z) can be obtained from Eq. (9a) by neglecting the coupling
term with the diffracted amplitude Eh(z). In this case, we
obtain, from Eq. (9a),

dE0s

dz
= iδ0E0s(z) where δ0 = kχ0

2γ0
. (14)

Solution of this equation gives, for the x-ray wave on the exit
surface of the crystal,

Eout
0s (d) = eiδ0d = exp[iϕref(d) − μ0d/2γ0], (15)

where

ϕref(d) = Re[δ0d] = kχ0r

2γ0
d (16)

is the phase due to refraction [compare it with expression (4)]
and μ0 = kχ0i is the linear absorption coefficient.

Notice that transmitted wave E0(z) (15) determined in
this way does not depend on the deviation angle from the
exact Bragg condition �θ . It is only attenuated by absorption
due to the imaginary part of the susceptibility χ0i and has
a constant phase shift ϕref(d) due to the real part of the
susceptibility χ0r . By this treatment, we already go beyond
the conventional kinematical theory that typically neglects
these effects. However, we still neglected multiple scattering
or dynamical effects that will be taken into account below.

C. Dynamical solution

An expression for the transmitted wave Eout
0 (d) on the exit

surface of the crystal in the case of dynamical diffraction can
be obtained as a formal solution of the TT equations (9) in the
following form (for details, see [6]):

Eout
0 (d,�θ ) = exp[iϕref − μ0d/2γ0 + iϕdyn(d,�θ )], (17)

where ϕdyn(d,�θ ) is the phase contribution due to dynamical
scattering given by

ϕdyn(d,�θ ) = − 1

Lex

Re

[∫ d

0
dz

′
C1R(z

′
,�θ )

]
. (18)

Here, R(z,�θ ) is the scattering amplitude (for details, see
Appendix A) defined as [6]

R(z,�θ ) = 1√
βY

[
Eh(z,�θ )

E0(z,�θ )

]
eihu(z). (19)

In Eqs. (18) and (19), parameter β = γ0/|γh| for
Bragg and β = γ0/γh for Laue geometries, C1 = C(1 −
ip) exp [−W (z)] with p = −Xi/Xr , and parameter Y =√

χh/χh = |Y | exp(i�Y ). For a centrosymmetric crystal with
a monoatomic lattice |Y | = 1, �Y = 0. The following pa-
rameters have also been introduced: Xr = Re

√
χhχh and

Xi = Im
√

χhχh. The extinction length in Eq. (18) is defined
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FIG. 2. (a) Diffraction scattering experiment in Laue geometry on a single crystal of the thickness d . Here, θB is the Bragg angle, ϕ0 and ϕh

are the angles between the normal n to the crystal entrance surface, transmitted k0 and diffracted kh wave vectors, respectively. (b) Diffraction
scattering experiment in Bragg geometry on a single crystal of the thickness d .

as [24]

Lex = λγ0

π
√

βXr

. (20)

In the case of a perfect thick crystal, R(z,�θ ) = R0(�θ )
and does not depend on the crystal thickness (for details, see
Appendix A) and we obtain, for the dynamical phase (18),

ϕdyn(d,�θ ) = − d

Lex

Re[C1R0(�θ )]. (21)

Below we will present results of dynamical simulations using
crystals of different thickness, reflection order, and incident
photon energy based on that approach.

D. Simulations

We performed full dynamical simulations of the intensity of
the diffracted beam and phase of the transmitted beam for gold
and silicon crystals of different thickness in Laue geometry.
The diffraction scheme was considered asymmetrical in both
cases with the incident beam perpendicular to the entrance
surface of the crystal as shown in Fig. 1 that corresponds
to the choice of angles ϕ0 = 0 and ϕh = 2θB in Fig. 2.
For these simulations, Fourier components of susceptibilities
were obtained from Ref. [25] and all scattering parameters
are summarized in Table I. We note that for the scattering
conditions considered here, the extinction length for Si 111
crystal, LSi

ex = 6.1 μm, was about an order of magnitude larger
than for Au 111 crystal, LAu

ex = 610 nm.
The reflectivity curves and corresponding phases of the

transmitted beam as a function of the rocking angle �θ were
simulated using a full dynamical theory approach. Results of
these simulations for Au and Si crystals of different thickness
from d = 0.2 Lex to d = 1.5 Lex are presented in Figs. 3 and 4.
These simulations show that the angular variation as well as
the magnitude of the transmitted wave phase are similar for
both crystals for the same ratio of d/Lex . The higher the value
of this ratio, the stronger is the reflectivity curve and values of
the phase modulation. The only difference is the angular range
in which these variations of phase are significant. It is much

broader in the case of Au crystal and is quite narrow in the
case of Si crystal, which can be explained by the difference in
the real part of the susceptibility (see Table I). In addition, due
to difference in extinction length, the actual thickness of each
crystal (Au or Si) is significantly different (see Table I).

Simulations performed in the frame of dynamical theory for
different reflection orders and incoming photon energies for Au
crystals of thickness d = 300 nm are presented in Appendix A.

There are also some other common features that can be
observed in these simulations. The maximum of the reflectivity
curve as well as the angular position of the sign change in the
phase are shifted from the exact Bragg position (�θ = 0) to
positive values by

θref = ∓χ0r (1 ± β)

2β sin 2θB

, (22)

TABLE I. Parameters used in simulations presented in Figs. 3
and 4 for Au and Si crystals. In all simulations, σ polarization for x
rays was considered.

Crystal (reflection) Au (111) Si (111)

Energy (keV) 8.5 8.5
Bragg angle, θB (deg) 18.04 13.45
γ0 0 0
γh 0.808 0.892
χ0r −8.31 × 10−5 −1.35 × 10−5

χ0i 6.87 × 10−6 2.82 × 10−7

χhr −6.83 × 10−5 −7.16 × 10−6

χhi 6.83 × 10−6 1.97 × 10−7

Xr −6.83 × 10−5 −7.16 × 10−6

Xi 6.83 × 10−6 1.97 × 10−7

p = −Xi/Xr 0.10 0.027
Extinction length, Lex (nm) 610 6100
Crystal thickness, 0.2 Lex (nm) 120 1200
Crystal thickness, 0.4 Lex (nm) 240 2400
Crystal thickness, 0.6 Lex (nm) 370 3700
Crystal thickness, 1.5 Lex (nm) 920 9200
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FIG. 3. (a),(c) Reflectivity pR(�θ ) and (b),(d) the phase ϕdyn(�θ )
of the transmitted beam in Laue geometry as a function of the
rocking angle �θ = θ − θB . Simulations were performed for Au
111 and Si 111 crystals of different thickness d = 0.2, 0.4, and
0.6 Lex . Dynamical theory simulations (full lines) and simulations
performed in the frame of quasi-kinematical approximation (dashed
lines). Parameters of simulations are listed in Table I.

where as before the upper sign corresponds to Bragg diffraction
and the lower one to Laue diffraction. This shift due to
refraction is well known in dynamical theory [4]. We note that
in the case of symmetrical Laue diffraction, when parameter
β = 1, this shift due to refraction is zero.

One important feature that we can observe in our simula-
tions is that on the left side of the rocking curve, the phase is
positive and goes through its maximum, and on the right side
of the rocking curve, it has an opposite behavior. In addition,
we can observe that for a thick crystal with d = 1.5 Lex

negative modulation of the phase is slightly lower than the
same positive-valued modulation. To understand the physical
reasons for such behavior, we should recall that according to
the dynamical theory [4], in the vicinity of the Bragg angle

FIG. 4. Same as in Fig. 3 for crystal thickness d = Lex and
1.5 Lex .

FIG. 5. Angular dependance of the amplitude of the weakly
absorbing wave E

(1)
0 (red curve) and strongly absorbing wave E

(2)
0

(black curve) for different crystal thickness (a) d = Lex and (b)
d = 10 Lex . In both cases, simulations were performed for Au 111
reflection and photon energy 8.5 keV. The difference in the amplitudes
of the waves for the thick crystal is clearly seen.

in Laue geometry, two standing waves are generated: one,
weakly absorbing, with its nodes at atomic planes and another
one, strongly absorbing, with its antinodes at atomic planes.
In thin crystals, both waves contribute with the same strength;
however, in a thick crystal, the first wave starts to dominate.
Our simulations (see Fig. 5) have shown that on the left side of
the rocking curve, the wave field is dominated by the weakly
absorbed wave, and on the right side, by the strongly absorbed
wave. This also explains the fact that we have on the left side of
the rocking curve positive relative values of phase (that means
that the wave is accelerated) and we have negative relative
values (that means that the wave is retarded) on the right side.
This is due to the fact that when the standing wave is with its
nodes on the atomic planes, the transmitted wave probes an
effectively lower electron density than an averaged electron
density. And, on the contrary, when the standing wave is with
its antinodes on the atomic planes, the transmitted wave probes
an effectively higher electron density than an average electron
density.

As mentioned before, these results were obtained using a
full dynamical treatment. At the same time, we can easily
observe that in the case of thin crystals with d/Lex < 1, the
phase variations of the transmitted beam have similar behavior
and are only scaled with the value of the ratio d/Lex < 1. It
would be very useful if a simple analytical expression could be
derived to explain the behavior of this phase variation for thin
crystals. In the next section, we show how such expression can
be obtained from the TT equations (9).

IV. QUASI-KINEMATICAL APPROXIMATION

We will now consider a thin crystal in Bragg or Laue
geometry, such that the transmitted wave does not differ
significantly from the incident wave. To characterize the
difference between kinematical and dynamical solutions for
the transmitted wave, a small parameter

|δdyn(z,�θ )| � 1 (23)

can be introduced as [26]

E0(z,θ ) ≈ exp[iδ0d + iδdyn(z,�θ )], (24)

where parameter δ0 is defined in Eq. (14). Now additional
contribution to the phase due to diffraction is given by the real
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part of δdyn(z,�θ ),

δϕdyn(z,�θ ) = Re[δdyn(z,�θ )]. (25)

The imaginary part of δdyn(z,�θ ) will give contribution to
an interference absorption coefficient μin(�θ ) (for details,
see [6]).

By substituting Eq. (24) into TT equations (9) (for details,
see Appendix B), it is possible to obtain the following solution
for the dynamical contribution to the transmitted beam in the
quasi-kinematical approximation:

δdyn(d,�θ ) = −C2χhχh(kd)2

8γ0γh

1

�

[
1 − ei�

(
sin �

�

)]
, (26a)

�(�θ ) = Q(�θ )d/2, (26b)

where Q(�θ ) = (2/Lex)[y(�θ ) + iy0] is a momentum trans-
fer due to angular deviations from the Bragg angle, and
dimensionless angular parameters y(�θ ) and y0 are defined
in Eqs. (A2) and (A3).

Expression (26) for the dynamical contribution to the
transmitted beam can also be written in a more compact form
by introducing extinction length Lex (20) (see Appendix B),

δdyn(d,�θ ) = −C2
1

2

(
d

Lex

)2 1

�

[
1 − ei�

(
sin �

�

)]
, (27)

where parameter C1 is defined after Eq. (19). Taking into
account the definition of the phase of the transmitted wave (25),
we obtain

δϕdyn(d,�θ )

= −C2

2

(
d

Lex

)2 1

�

×
{

(1 − p2)

[
1 − cos �

(
sin �

�

)]
− 2p sin �

(
sin �

�

)}
.

(28)

It follows from these results that the dynamical contribution
to the refraction coefficient is proportional to the product χhχh,
an expression similar to Eq. (5). Another important feature is
that in the quasi-kinematical approximation, the dynamical
phase contribution is proportional to the square of the ratio
d/Lex [see Eq. (28)].

In the frame of the same approximations, it is possible to
obtain an expression for the amplitude of the diffracted wave
(for details, see Appendix B),

Eh(d,�θ ) = iE0
he

iδhze−i�

(
sin �

�

)
, (29)

where E0
h = Ckdχh/(2γh) and parameter δh is defined in

Eq. (B2) in Appendix B. Substituting this expression in
Eqs. (12) and (13), we obtain a well-known expression [19] for
the reflectivity in kinematical approximation in Laue or Bragg
geometry in a quasi-kinematical approximation,

pR(�θ ) = γh

γ0

∣∣E0
h

∣∣2 sin2 �

�2
. (30)

We now consider different asymptotics of the obtained
solutions. The dynamical correction in the case of big angular

deviations from the exact Bragg angle can be determined from
expression (26). For these angles, we can drop off the fast
oscillating second term in square brackets in expression (26)
and, after substituting the value of the angular parameter
�(�θ ) (here we neglect its imaginary part), we obtain

δdyn(d,�θ ) ≈ − C2χhχh(kd)

4γ0 sin 2θB(�θ − θref)
, (31)

where θref is the angular correction due to refraction (22).
Comparison of this expression with the one obtained from the
full dynamical theory [see Eq. (5)] shows that they completely
coincide.

We can also determine the behavior of the dynamical
contribution to the transmitted beam at small values of the
angular parameter �(�θ ). From expression (30), it follows
that reflectivity of the diffracted wave has its maximum
at �(�θ ) = 0. In the limit of �(�θ ) → 0, we obtain, for
δdyn(d,�θ ) in Eq. (27),

δdyn(d,�θ ) → −C2
1

2

(
d

Lex

)2

[2/3� − i]. (32)

Substituting the values of parameters C1 and �(�θ ), we
obtain, for the phase of the transmitted beam,

δϕdyn(d,�θ ) → −C2

3

(
d

Lex

)3{
(1−p2)y(�θ )

+ 2p

[
y0− 3

2

(
Lex

d

)]}
. (33)

Taking into account that y(�θ ) ∼ �θ , we see that it is exactly
the angular dependence that we observed at small deviations
of angular parameter while performing dynamical simulations
for thin crystals, as shown in Fig. 3.

Direct comparison of expressions (26) and (29) shows that
the dynamical contribution δdyn(d,�θ ) in a quasi-kinematical
approximation can be expressed through the amplitude of the
diffracted wave as

δdyn(d,�θ ) = −C2
1

2

(
d

Lex

)2 1

�
[1 + iη(�θ )Eh(d,�θ )],

(34)
where the following angular parameter is introduced:

η(�θ ) = 2γh

C(kd)χh

e−iδhde2i�. (35)

As a result of our analysis [see Eqs. (26), (34), and
Appendix C], we see that the phase δϕdyn(d,�θ ) modulations
grow as a second power of a ratio of a crystal thickness to
extinction length Lex . At the same time, the quasi-kinematical
approximation is valid if condition (23) is satisfied that gives,
for the maximum crystal thickness dmax,

z � dmax =
√

2

|C1|Lex. (36)

It follows from Eq. (36) that the quasi-kinematical approxi-
mation is valid, in fact, for crystals with the thickness up to
extinction length.
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FIG. 6. Comparison between the quasi-kinematical approxima-
tion and dynamical theory. Here the relative error ε in the phase
defined in Eq. (37) is calculated using a quasi-kinematical approxima-
tion as compared to the dynamical theory as a function of the rocking
angle �θ and relative crystal thickness d/Lex . Dashed horizontal line
corresponds to 5% difference in the two phases that appears at the
crystal thickness d � 0.8 Lex .

We compared the obtained quasi-kinematical result with the
exact dynamical solution discussed in the previous section.
The dynamical phase correction in the quasi-kinematical
approximation given by Eq. (28) was calculated for the same
set of parameters as in simulations presented in Figs. 3 and 4.
Results of these simulations are shown in these figures by
dashed lines. Our results showed that the difference between
the quasi-kinematical and dynamical case was less than 3%
for crystal thicknesses up to 0.6Lex (see Fig. 3) and it
becomes significant for crystal thicknesses above extinction
length (see Fig. 4). It is interesting to note that even for
crystals with the thickness d = Lex , deviation of the exact
dynamical simulation and simulation performed in the frame
of the quasi-kinematical approximation is not so strong, though
diffracted curves already differ substantially (see Fig. 4). To
determine the range of parameters where the quasi-kinematical
approach can be safely used, we performed simulations for
Au 111 crystal with the thickness varying from zero to
d = 1.25 Lex . We defined an error function ε between two
types of simulations as

ε =
∣∣∣∣δϕdyn(d,�θ ) − ϕdyn(d,�θ )

ϕdyn(d,�θ )

∣∣∣∣, (37)

where δϕdyn(d,�θ ) is the dynamical phase contribution in the
quasi-kinematical approximation, and ϕdyn(d,�θ ) is the same
phase simulated with the full dynamical theory. The results
of these simulations are presented in Fig. 6. As it follows
from these simulations, the quasi-kinematical approach can
be safely used with an error less than 5% up to Au crystal
thicknesses d � 0.8 Lex . Similar results were also obtained
for the Si crystal.

V. DISCUSSION

As discussed in Sec. I, the main interest in understanding
the properties of the phase of the transmitted beam is the
possibility to measure this phase directly in coherence-based
experiments such as Bragg coherent x-ray diffractive imaging

(CXDI) and ptychography. To demonstrate the generality of
our approach, we will discuss the ptychography experiment
depicted in Fig. 1 in more detail.

In a typical ptychographic experiment, the complex ampli-
tude of the exit surface wave can be determined. Specifically,
in the case of scattering on a crystal, this exit surface wave can
be expressed as [27]

EESW (x − xj) =
∫

G(x − x′)Ein(x′ − xj)dx′, (38)

where G(x) is a Green function of the propagation of x rays in
a crystal, Ein(x) is an incident wave field, x is the transverse
coordinate, and xj is a position of the incident wave on the
sample. Assuming that variations of the incident wave are
small on the distances where the Green function is sufficiently
changing, we obtain

EESW (x − xj) = O(x)Ein(x − xj), (39)

where O(x) can be considered as an object function in a typical
ptychographic reconstruction. In our case, this object function
is defined by the Green function of the crystal through the
following relation:

O(x) =
∫

G(x − x′)dx′. (40)

Since ptychography enables us to independently determine
both the incident beam Ein(x) (that is often called the probe)
and the object function O(x), it also allows us to extend results
obtained in this work for plane waves to arbitrary incoming
beam shape. The only important condition as stated above is
slow variation of the incident beam compared to variations of
the Green function. It is known from the dynamical theory [4]
that the main variations of the Green function in the crystal are
of the size of the Borrmann fan. So, variations of the incident
wave should be smaller than the size of the Borrmann fan.
Also, importantly, the phase of the transmitted wave is defined
completely by the Green function in the form of Eq. (40), which
is rather the property of the crystal and not of the incident
beam shape. These arguments show that although our results
were obtained on the condition of plane-wave illumination in
a ptychography experiment, they are valid for a large class of
incident beams.

In our simulations, we indirectly used the fact that the
crystal lateral size L is large enough to neglect boundary
effects. More specifically, it should be larger than the base
of the Borrmann fan [4],

L > d
sin 2θB

γ0γh

. (41)

For example, for Au crystal of 100 nm thickness used in
experiment [18], this condition means that the lateral size of a
crystal should be larger than 70 nm. That condition was safely
satisfied in this experiment where the lateral size of the crystal
was 250 nm.

Additionally, in practical applications, there are some lim-
itations on the beam divergence and energy spread. Assuming
that angular divergence of the incoming beam should be
much smaller than the angular distance between the two
closest extrema on the phase variation curve [see Eq. (C8)
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in Appendix C], we obtain

δθ � λγh

2d sin(2θB)
. (42)

Using this result and the relation between the wavelength
spread and angular divergence δλ/λ = δθ/ tan θB , we obtain,
for the wavelength spread,

δλ/λ � λγh

4d sin2 θB

. (43)

In practice, these limitations mean that the angular diver-
gence should be less than 0.8 mrad and the corresponding
wavelength spread should be less than 2.6 × 10−3 for ex-
periment on a Au (111) crystal and photon energy 8.5 keV.
Such conditions can be comfortably achieved at present
third-generation synchrotron facilities.

VI. SUMMARY

We studied the phase variation in the transmitted beam
close to Bragg conditions for Au and Si crystals of different
thickness, reflection, and incoming photon energy using
dynamical theory. It was demonstrated that using kinematical
theory alone, it was not possible to observe phase variations in
the transmitted beam close to the Bragg angle. To perform
analysis of scattering in thin crystals, a quasi-kinematical
approximation was introduced. A general analytical solution
for the phase of the transmitted beam in the whole range of
rocking angles was obtained. It was determined that in the
quasi-kinematical approximation, the magnitude of the phase
variation depends quadratically on the crystal thickness. Pos-
sible limitations due to real experimental conditions are also
discussed. These findings are of relevance to ptychographic
experiments performed on thin crystals where the phase of the
transmitted beam can be determined directly from the analysis
of the scattered radiation.
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APPENDIX A: DYNAMICAL THEORY TREATMENT

1. Scattered amplitude in dynamical theory

The amplitude R(z,�θ ) (19) can be determined in the
general case of the deformed crystal as a solution of a Riccati
type of equation (for details, [6]),

∓ iLex

dR(z,�θ )

dz
= 2[−y(�θ ) − iy0 + yu]R(z,�θ )

+C1[1 ± R2(z,�θ )], (A1)

where the upper sign corresponds to Bragg diffraction and the
lower one to Laue diffraction. Here the angular deviation from

the Bragg position is defined by the dimensionless parameter,

y(�θ ) =
√

β
sin 2θB · �θ

Xr

± χ0r (1 ± β)

2
√

βXr

, (A2)

and parameters

y0 = ±χ0i(1 ± β)

2
√

βXr

, yu(z) = ±Lex

2

d[hu(z)]

dz
(A3)

define the attenuation of x rays due to photoelectric absorption
and the shift of the Bragg position caused by deformation in
the crystal. Boundary conditions for the amplitude R(z,�θ ) in
Eq. (A1) are defined now on one surface. For Bragg geometry,
R(d,�θ ) = 0, and for Laue geometry, R(0,�θ ) = 0.

In some special cases (for example, constant strain),
analytical solutions for the amplitude R(z,�θ ) can be obtained
(see, for example, Ref. [6]). In the general case of an arbitrary
strain field u(z), this amplitude can be determined only
numerically.

For a perfect thick crystal, the solution of Eq. (A1) gives [6]

R0(�θ ) = ∓ 1

C1

{
(−y(�θ ) − iy0)+

√
[y(�θ ) + iy0]2 ∓ C2

1

}
,

(A4)

where the branch with the positive imaginary part is chosen
for the square root and, as before, the upper sign corresponds
to Bragg diffraction and the lower one to Laue diffraction.

It is possible to show that in this case of a perfect crystal of
arbitrary thickness, an analytical solution for the dynamical
amplitude R(�θ ) also exists (see, for details, Ref. [6]).
Unfortunately, this solution is complicated for the direct
analysis.

FIG. 7. (a),(c) Reflectivity pR(�θ ) and (b),(d) the phase ϕdyn(�θ )
of the transmitted beam in Laue geometry as a function of the rocking
angle �θ = θ − θB . Simulations were performed using dynamical
theory approach for a Au crystal of thickness d = 300 nm. (a),(b)
Results of simulations for the incident photon energy 8.5 keV and
different reflection orders 111, 220, and 222 in a Au crystal. (c),(d)
Results of simulations for a Au 111 crystal and different incident
photon energies of 5, 8.5, and 12 keV. Parameters of simulations are
listed in Tables II and III.
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TABLE II. Parameters used in simulations presented in Fig. 7(a) and 7(b) for different crystal reflections.

Crystal (reflection) Au (111) Au (220) Au (222)

Energy (keV) 8.5 8.5 8.5
Bragg angle, θB (deg) 18.04 30.39 38.28
γ0 0 0 0
γh 0.808 0.488 0.232
χ0r −8.31 × 10−5 −8.31 × 10−5 −8.31 × 10−5

χ0i 6.87 × 10−6 6.87 × 10−6 6.87 × 10−6

χhr −6.83 × 10−5 −5.63 × 10−5 −5.04 × 10−5

χhi 6.83 × 10−6 6.75 × 10−6 6.69 × 10−6

Xr −6.83 × 10−5 −5.63 × 10−5 −5.04 × 10−5

Xi 6.83 × 10−6 6.75 × 10−6 6.69 × 10−6

p = −Xi/Xr 0.10 0.12 0.13
Extinction length, Lex (nm) 610 580 440
Crystal thickness, (nm) 300 300 300

2. Phase of the transmitted beam for different reflection
orders and incoming photon energies

Variations of intensity of the diffracted beam and phase
of the transmitted beam for different reflection orders as well
as for different incoming photon energies for Au crystal are
presented in Fig. 7. Here we considered 111, 220, and 222
reflections in Au crystal and incoming photon energies of 5,
8.5, and 12 keV. In the first case, the incident photon energy
was 8.5 keV for all reflections, and, in the second case, Au
111 reflection was considered for all energies. In all cases, the
crystal thickness was d = 300 nm and the diffraction scheme
was considered the same as shown in Fig. 2. All other scattering
parameters are listed in Tables II and III. Here we can see that
for higher reflections and lower incident photon energies, the
angular range of the phase variations becomes more narrow
and variations become stronger, which can be explained by the
change of the extinction length (see Table II).

APPENDIX B: DERIVATION OF THE
QUASI-KINEMATICAL APPROXIMATION

To derive an expression for the dynamical correction
δdyn(z,�θ ) in transmitted wave E0(z,�θ ) (24) in the

quasi-kinematical approximation, we start with the TT equa-
tions (9) where we perform the following substitution:

E0(z) = E
′
0(z)eiδ0z where δ0 = kχ0

2γ0
, (B1)

Eh(z) = E
′
h(z)eiδhz where δh = k(χ0 − α)

2γh

, (B2)

which leads to the following form of the TT equations for the
amplitudes E

′
0(z) and E

′
h(z):

dE
′
0

dz
=

(
ik

2γ0

)
Cχhe

ihu(z)e−W (z)eiQzE
′
h(z), (B3a)

dE
′
h

dz
=

(
ik

2γh

)
Cχhe

−ihu(z)e−W (z)e−iQzE
′
0(z). (B3b)

Here, parameter Q(�θ ) = (2/Lex)[y(�θ ) + iy0] is a mo-
mentum transfer due to an angular deviation �θ from the
Bragg angle, and dimensionless angular parameters y(�θ )
and y0 are defined in Eqs. (A2) and (A3).

Now we consider that in the quasi-kinematical approxima-
tion, the transmitted wave E

′
0(z,�θ ) can be presented as

E
′
0(z,�θ ) = eiδdyn(z,�θ), (B4)

TABLE III. Parameters used in simulations presented in Fig. 7(c) and 7(d) for different incoming photon energies.

Crystal (reflection) Au (111) Au (111) Au (111)

Energy (keV) 5 8.5 12
Bragg angle, θB (deg) 31.77 18.04 12.67
γ0 0 0 0
γh 0.44 0.808 0.904
χ0r −2.40 × 10−4 −8.31 × 10−5 −3.806 × 10−5

χ0i 4.40 × 10−5 6.87 × 10−6 5.03 × 10−6

χhr −1.97 × 10−4 −6.83 × 10−5 −3.07 × 10−5

χhi 4.37 × 10−5 6.83 × 10−6 5.00 × 10−6

Xr −1.97 × 10−4 −6.83 × 10−5 −3.07 × 10−5

Xi 4.37 × 10−5 6.83 × 10−6 5.00 × 10−6

p = −Xi/Xr 0.22 0.10 0.16
Extinction length, Lex (nm) 270 610 1000
Crystal thickness, (nm) 300 300 300
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where the dynamical correction satisfies the condition
|δdyn(z,�θ )| � 1. Substituting this expression for the trans-
mitted wave into the TT equations (B3), keeping derivatives
of δdyn(z,�θ ) and approximating E

′
0(z,�θ ) � 1 otherwise, we

obtain

dδdyn

dz
=

(
k

2γ0

)
Cχhe

ihu(z)e−W (z)eiQzE
′
h(z), (B5a)

dE
′
h

dz
=

(
ik

2γh

)
Cχhe

−ihu(z)e−W (z)e−iQz. (B5b)

The first equation should be complemented with a boundary
condition for a dynamical correction, δdyn(z = 0,�θ ) = 0.

The second equation (B5b) can be easily calculated, leading
to the well-known expression for the diffracted wave in
kinematical approximation (compare to results in Ref. [6]),

E
′
h(z,�θ ) = i

(
kC

2γh

)
χh

∫ z

0
e−ihu(z)e−W (z)e−iQzdz. (B6)

If the strain field u(z) and the profile of the static Debye-Waller
factor W (z) are known, then integration can be performed us-
ing this equation. Unfortunately, these parameters commonly
are not known and have to be found using other methods. An
especially simple result is obtained in the case of a perfect
crystal when u(z) = W (z) = 0. In this case, Eq. (B6) reduces
to

E
′
h(z,�θ ) = i

(
kC

2γh

)
χh

∫ z

0
e−iQzdz, (B7)

and its integration gives the well-known expression for the
diffracted wave in kinematical approximation for a perfect
crystal of thickness d,

E
′
h(d,�θ ) = i

(
Ckd

2γh

)
χhe

−i�

(
sin �

�

)
, (B8)

where the dimensionless parameter

�(�θ ) = Q(�θ )d/2 = kd

4

αβ + χ0(1 − β)

γ0
≈ kd

4

α

γh

(B9)

is introduced.
The dynamical contribution to the transmitted wave,

δdyn(z,�θ ), at the exit surface z = d can be obtained by a
formal integration of Eq. (B5a),

δdyn(z,�θ ) =
(

kC

2γ0

)
χh

∫ d

0
eihu(z)e−W (z)eiQzE

′
h(z)dz,

(B10)

where a kinematical solution for the diffracted wave (B6) has
to be used. This is a general expression that also includes
strain fields in the crystal. It is clear from this expression
that the presence of strain can modify the phase of the
transmitted beam measured in experiment. Again, we obtain
significant simplification if we consider a perfect crystal. In
this case, u(z) = W (z) = 0, and substituting the expression for
the diffracted wave E

′
h(z) (B8) in Eq. (B10) and performing

integration, we obtain, finally, for the dynamical correction in

the quasi-kinematical approximation,

δdyn(d,�θ ) = −C2χhχh(kd)2

8γ0γh

1

�

[
1 − ei�

(
sin �

�

)]
.

(B11)

Now introducing extinction length Lex (20), Eq. (B11) can
be written in the following form:

δdyn(d,�θ ) = −C2
1

2

(
d

Lex

)2 1

�

[
1 − ei�

(
sin �

�

)]
, (B12)

where parameter C1 is introduced after Eq. (19) in the main
text, and in the case of a perfect crystal is equal to C1 =
C(1 − ip).

Dynamical phase correction in the transmitted beam
δϕdyn(d,�θ ) is given by the real part of this expression,

δϕdyn(d,�θ )

= Re[δdyn(d,�θ )]

= −C2

2

(
d

Lex

)2 1

�

{
(1 − p2)

[
1 − cos �

(
sin �

�

)]

−2p sin �

(
sin �

�

)}
. (B13)

Comparison of expressions (B12) and (B8) shows that the
dynamical correction to the transmitted amplitude can also be
expressed through the diffracted wave as

δdyn(d,�θ ) = −C2
1

2

(
d

Lex

)2 1

�

[
1 + iKe2i�E

′
h(d,�θ )

]
,

(B14)

where complex parameter K = 2γh/C(kd)χh is introduced.

APPENDIX C: ANALYTICAL ANALYSIS OF THE
QUASI-KINEMATICAL APPROXIMATION

The derived expression for δD (26) is particularly conve-
nient for obtaining analytical results. First, we should define for
which crystal thicknesses the quasi-kinematical approximation
is valid. Since the original assumption of the approximation
is |δdyn(z,�θ )| � 1, it is necessary to understand when
this condition is satisfied. Taking a square modulus of the
expression (26), we obtain

∣∣δdyn(d,�θ )
∣∣2 = C4|χhχh|2(kd)4

64γ 2
0 γ 2

h

1

�2

∣∣∣∣1 − ei�

(
sin �

�

)∣∣∣∣
2

= C4|χhχh|2(kd)4

64γ 2
0 γ 2

h

1

�2

(
1 − sin 2�

�

− cos 2�

2�2
+ 1

2�2

)
, (C1)

where � is approximated to be real according to expres-
sion (B9).

In the extrema of |δdyn(�θ )|, the following condition
should be satisfied: d|δD|2/d� = 0. This is equivalent to the
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following equation:(
cos � − sin �

�

)2

= 0. (C2)

The solutions of Eq. (C2) are �0 = tan �0. Substituting
this expression into Eq. (C1), we obtain, for |δdyn(d)|2 at each
extremum,

∣∣δdyn(d)
∣∣2 = C4|χhχh|2(kd)4

64γ 2
0 γ 2

h

1

1 + �2
0

. (C3)

It follows that the global maximum is present at �0 = 0,
and

|δdyn(d)|�=0 = C2|χhχh|(kd)2

8γ0γh

. (C4)

Substituting expression (C4) into |δdyn(z,�θ )| � 1, we
obtain

d �
√

2

|C1|Lex. (C5)

Therefore, as one could expect, the near-kinematical approxi-
mation is valid for small thicknesses.

Next, we want to find the extrema of the quasi-kinematical
expression (28) for the phase. Substituting expression (28) into
the condition d(δϕdyn)/d� = 0, we immediately obtain

[(1 − p2) cos � + 2p sin �]

(
sin �

�
− cos �

)
= 0. (C6)

The factor on the right gives local extrema for the phase,
located at the same points as the extrema of |δdyn(�θ )|. The
factor on the left gives

tan � = p2 − 1

2p
= tan

(
1

π
− ϕχhχh

)
, (C7)

where ϕχhχh
is the complex phase of χhχh. We are interested

in two extrema closest to � = 0, which are

�0 =
(π

2
− ϕχhχh

)
modπ,

(π

2
− ϕχhχh

)
modπ − π, (C8)

where x mod y represents the non-negative remainder when
dividing x by y.

Substituting those � values into Eq. (28), we get the
extremum value

δϕdyn(d) = −C2

2

(
d

Lex

)2

(1 − p2)
1

�0
. (C9)

For reflections considered in this work, ϕχhχh
= 0 and

� = ±π/2. However, in crystals without central symmetry,
ϕχhχh

�= 0. Equation (C9) shows that the phase δϕdyn(d,�θ )
modulations indeed grow as a second power of a ratio of a
crystal thickness to extinction length Lex .
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