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Anomalous gap-edge dissipation in disordered superconductors on the brink of localization
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Superconductivity in disordered systems close to an incipient localization transition has been an area of
investigation for many years, but many fundamentally important aspects are still not understood. It has been
noted that in such highly disordered superconductors, anomalous spectral weight develops in their conductivity
near and below the superconducting gap energy. In this work we investigate the low frequency conductivity
in disordered superconducting NbN thin films close to the localization transition with time-domain terahertz
spectroscopy. In the normal state, strong deviations from the Drude form due to incipient localization are found.
In the superconducting state we find substantial spectral weight at frequencies well below the superconducting
gap scale derived from tunneling. We analyze this spectral weight in the context of a model of disorder induced
broadening of the quasiparticle density of states. We find that aspects of the optical and tunneling data can be
consistently modeled in terms of this effect of mesoscopic disorder, showing that in this disorder and frequency
range, quasiparticle effects and not collective modes are the source of low energy absorption. Interestingly,
we also find that as a function of frequency the optical conductivity recovers to the normal state value much
faster than any model predicts. This points to the nontrivial interplay of superconductivity and disorder close to
localization.
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The manifestation of superconductivity in systems close to
a disorder-driven localization transition has been an area of
investigation for many years, yet many even central topics are
not understood. The electrodynamic response of such systems
is a fundamental probe of their physics but wide-open issues
exist here as well. The optical conductivity corresponding
to the mean-field Bardeen-Cooper-Schrieffer (BCS) model
of superconductivity was worked out in the context of
the celebrated Mattis-Bardeen (MB) theory [1]. A central
prediction of the MB theory is the presence of a zero-frequency
delta function and a gap 2� the form of which depends
nontrivially on the BCS coherence factors in the real part of
optical conductivity (σ1). This theory works exceptionally well
for many superconductors even in the “dirty” limit, where the
normal state scattering rate (1/τ ) is much larger than the gap,
but which are still far from a localization transition [2–4]. The
MB theory predicts that in the limit of zero temperature there
is no spectral weight in σ1 for frequencies below 2�, which
means the gap is clean. However, it has been noticed for many
years that in highly disordered superconductors, for instance in
thin-film systems near the superconductor-insulator transition,
anomalous spectral weight develops near and below the
expected gap edge. This has been observed in many different
systems including granular superconductors [5–9], amorphous
thin films [10–12], and high-temperature superconductors
with intrinsic disorder [13,14]. Aside from its fundamental
importance, it is essential to understand this dissipation as it
is an essential limiting factor for IR photon detectors using
similar films [15].

In this work we studied the low-frequency conductivity of
disordered superconducting NbN films close to the localization
transition. In the normal state, strong deviations from the
Drude form are found, which are indicative of incipient
localization. For medium disorder, the optical conductivity of
the superconducting state is well described by the MB formula.

However, for higher disorder samples, additional low-energy
spectral weight forms in a region below that predicted by the
BCS theory. For these samples, this energy is well below the
scale of the gap determined by tunneling. We investigated this
feature in the context of prevailing models and conclude that
its onset is reasonably described by a model of pair breaking
from mesoscopic disorder, showing that—in this disorder and
frequency range—quasiparticles and not collective modes are
the source of low-energy absorptions. However, discrepancies
exist with the predicted shape of the conductivity in that in
the most disordered samples, the conductivity recovers more
quickly than predicted to the normal state with increasing
frequency. As the shape of the MB conductivity functional
derives from the form of the BCS coherence factors, this
difference may presage a transition to a state with localized
Cooper pairs.

The low-frequency conductivity was measured with time-
domain terahertz spectroscopy (TDTS) [see Supplemental
Material (SM) [16]]. The NbN used in this study consist of
60 and 120 nm thin films that were grown by using pulsed
laser deposition on (100)-oriented MgO single crystalline
substrates. Disorder in NbN can be tuned by varying the
number of Nb vacancies in the crystalline NbN lattice [17].
Disorder introduced in these samples shows a homogeneous
distribution at the nanoscale [18]. The effective disorder in
each film was quantified by the normal state conductivity just
above the transition temperature (Tc) and calibrated to previous
results that determined the room temperature kF l [17], the
product of the Fermi wave vector (kF ) and electronic mean free
path (l). Figure 1 gives the details of Tc vs kF l for the samples
used in this study. At optimal deposition conditions NbN films
have a Tc ≈ 16 K. In our work we examined a range of films
with kF l ∼ 1.7–10.5. As disorder is increased Tc decreases
monotonically down to the limit where it is destroyed at kF l

of order unity.
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FIG. 1. The left axis is Tc vs the dimensionless conductance
parameter kF l for the samples used in this study. The thickness (unit is
nm) of each sample is shown next to the data points. Tc was defined by
the temperature where the resistance is indistinguishable from zero.
The green dashed line is kF l = 1. On the right axis is the depairing
parameter η extracted from optics and tunneling as discussed in the
text.

In Fig. 2(a), we show the real parts of optical conductivity σ1

just above Tc (∼1.1Tc) for this series of samples measured with
TDTS. The spectra of the least disordered Tc = 13.4 K sample
is flat and featureless, indicating a Drude scattering rate that
is much larger than the measured spectral range. The spectra
is consistent with dc transport measurements and indicates
typical behavior [19] for a moderately disordered metal.
For increasing disorder, the normal state real conductivity
is progressively suppressed. Even more significant for our
analysis below are the deviations from conventional Drude
behavior for samples with kF l � 6. At higher disorder, one
observes that the conductivity becomes a strongly increasing
function of ω, which is a signature of incipient localization in
a disordered metal [20–22]. Consistent with this, dc transport
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FIG. 2. (a) Real part of the optical conductivity at 1.1Tc. (b) Real
part and (c) imaginary parts of the optical conductivity at 1.5 K.
(d) Real parts of optical conductivity at 1.5 K normalized by the
normal state conductivity at 1.1Tc given in (a).

has shown that as Tc is suppressed, the resistivity of all lower
Tc samples show a negative temperature coefficient at low
T [19]. Localization modified Drude and Drude-Smith models
have been proposed to include localization effects in such
disordered systems and can reproduce the spectra with positive
slope [21].

The real and imaginary parts of the optical conductivity
at our lowest temperature of 1.5 K are shown in Figs. 2(b)
and 2(c) for this series of samples. For the highest Tc, a
notable gap forms in σ1 at the lowest temperature and a
1/ω dependence is exhibited in the imaginary part of the
conductivity (σ2). (Please see the SM for all measured data
for all measured samples). As the disorder level increases, the
optical gap decreases in accord with the lowering of Tc. As
the coefficient of the 1/ω is set by the spectral weight in the
zero-frequency delta function, the coefficient of σ2 decreases
in accord with the delta function’s dependence on both the
gap and the normal state conductivity [1]. It is important to
note that, at least up to moderate disorder levels, despite the
strong frequency dependence of the normal state conductivity
due to localizing tendencies, the missing area that results from
the formation of the gap, reappears in the spectral weight of
the zero-frequency delta function. However, due to the strong
frequency dependence of the normal state, this can only be
seen by directly integrating the spectra and comparing the
missing area to the coefficient of the 1/ω part of σ2 at low
ω. It is also interesting to note that for the highest level of
disorder, the high frequency parts of σ2 show a progressively
larger negative contribution. This negative contribution is also
apparent in the normal state and comes from the increasing
relative effect of finite frequency excitations on the real part of
the low-frequency dielectric function (e.g., the polarizability)
and departures from the Drude form due to the localizing
tendencies of the normal electrons. This negative contribution
progressively obfuscates the 1/ω part of σ2 at low ω and does
not allow us to make statements about how spectral weight is
conserved for the most disordered sample levels.

In the conventional MB theory, the real part of the
superconducting state conductivity is expressed as a ratio to the
normal state conductivity to normalize out the matrix elements
between single electron states. However, in the usual theory
it is expected that this normal state real conductivity is flat
in frequency and its imaginary part is zero as is typical for a
highly disordered metal. Due to the strong deviations from
the expectation in the normal state conductivity we found
that (except for the least disordered sample), it is completely
impossible to simultaneously fit both complex components to
the MB form when using a frequency independent σn even
when letting the gap be a free parameter.

To include the localizing features in the spectra, we nor-
malized the real part of the superconducting state conductivity
by the normal state real conductivity (1.1Tc) [Fig. 2(d)]. The
optical energy gap 2Eg can be extracted from these normalized
conductivities directly as the minimum or threshold in σ1.
Here and in what follows, we use 2Eg to differentiate the
optical gap from the gap measured in tunneling. Traditional
BCS theory predicts that the ratio between the optical gap and
transition temperature should be 3.5, while strong coupling
effects can drive it larger. As shown in Table I, for our lowest
disorder Tc = 13.4 K sample, the ratio between optical gap and
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TABLE I. Optical energy gaps, 2Eg , are extracted directly
from conductivity in Fig. 2 for each sample. Units of 2Eg are
in THz. 2Eg/KBTc is the ratios between the optical gap and the
superconducting transition temperature.

Tc 13.4 K 11.6 K 9.2 K 8.2 K 6.2 K 6.1 K 5.6 K 3.8 K

kF l 10.35 8.37 5.30 4.25 3.23 2.24 1.92 1.74
2Eg (THz) 1.10 0.92 0.66 0.55 0.38 0.24 0.23 < 0.12
2Eg/KBTc 3.93 3.81 3.45 3.19 2.94 1.89 1.96 < 1.52

transition temperature 2Eg/kBTc is 3.93. As Tc is suppressed to
8.2 K, the ratio falls below the BCS stability limit of 3.53. For
the Tc = 3.8 K sample, a clear minimum or threshold cannot
be seen in the conductivity σ1 in the superconducting state
[Fig. 1(8a) of SM]. Considering the low detection limit of our
spectrometer (≈0.12 THz), we estimate 2Eg/kBTc < 1.5 for
this sample. It is interesting to compare these numbers to those
extracted from tunneling. Tunneling spectra in moderately
disordered conventional superconductors like NbN reveals
a conventional BCS density of states with its square root
singularities and a clean gap. With increasing disorder—
reminiscent of the situation in optics—the density of states
broadens [18,23,24] and although the energy separating the
coherence peaks (2�) maintains a ratio 2�/kBTc ≈ 4 up to
high disorder levels [19], the peaks become smeared and a
tunneling conductance develops at lower energies (see SM).

In Fig. 3, we show the normalized optical conductivity
for four typical samples. The red dashed lines label the
positions of optical energy gaps extracted by inspection. They
can be compared to the green dashed lines that indicate the
expected superconducting gap 2� which were given (as it is
in the MB theory) by the experimentally determined relation
2�/kBTc = 4.2 with 2� the energy gap determined from fits
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FIG. 3. The red hollow squares represent the real parts of the
optical conductivity at 1.5 K for four representative samples. The red
dashed vertical curves show the optical energy gaps directly extracted
from optics. The green dashed lines indicate the superconducting gaps
extracted from tunneling. The green curves are created via a numerical
solution to the MB formalism with superconducting gaps extracted
from tunneling. The blue curves are simulations using the model of
Larkin and Ovchinnikov.

to tunneling (see SM). Using the MB theory, we simulate
the normalized conductivity (green curve in Fig. 3) with
these superconducting gaps from tunneling. With increasing
disorder, additional spectral weight progressively develops
both below and above the gap scale 2�. For Tc = 3.8 K, a
clear energy gap could not be observed from the conductivity
spectra. It is also observed that for the most disordered samples
the normalized conductivity approaches the normal state faster
than the BCS prediction.

A number of possibilities beyond MB theory exist to
explain this anomalous absorption. In principle, both collective
modes and quasiparticle excitations may contribute. It has
been pointed out that, in systems with a spatial modulation
of the superfluid density, one may find absorptions far below
2� [14,25,26]. Cea et al. give a similar scenario where the
spectral weight may be exhibited at finite frequency [27]. In all
cases these are low-energy phaselike modes that are rendered
optically active at q ∼ 0 by the breaking of translational
symmetry through disorder. In the present case, we do not
believe phase modes are the obvious choice to explain most of
the additional absorption because it appears to be associated
with the gap edge, which is not necessarily a relevant energy
for phase degrees of freedom. We believe that if phase mode
absorptions are significant, it is only on the most disordered
samples (Tc < 3.8 K) that do not have a clean gap within our
measured ω range.

Alternatively, it was recently claimed that in the optical
response of disordered films the in-gap optical conductivity
exhibited a sharp threshold that was consistent with an
excitation of the amplitude of the order parameter [28]. This
amplitude mode, if it exists, is an analog to the famous Higgs
boson from particle physics. However, amplitude modes as
such are not generically guaranteed in condensates [29], and in
a BCS-style superconductor, amplitude modes are overdamped
as they are degenerate with the quasiparticle absorption edge
at 2�. The interpretation in Ref. [28] was made on the basis
of a specific particle-hole symmetric O(2) relativistic field
theory [30] where the quasiparticle energy scale is set to
infinity. It is not clear how the physics of this O(2) field
theory connects to the BCS limit, which is obvious in our
data for kF l � 1. Moreover, in all known circumstances in
which the amplitude mode threshold can be pushed below the
quasiparticle absorption edge and rendered optically active,
e.g., in the limit of strong disorder or strong coupling, particle-
hole symmetry is broken which forces amplitude and phase
modes to mix and a clean distinction between the excitations
in different sectors is obviated. As pointed out in Ref. [31] there
are even internal consistency issues with the possibility to see
an amplitude mode optically. Because the scalar amplitude
mode only becomes optically active by being excited in
conjunction with a phase mode, a coupling between sectors is
necessary for an amplitude mode’s observation—yet this very
coupling renders the amplitude and phase modes indistinct.
Note that none of our data shows either the sharp onset or
the particularly low-energy scale of the single displayed high
disorder curve in Ref. [28].

Irrespective of the above considerations, it is clear that, with
substantial tunneling conductance below �, it is inadequate
to model the optics with an MB functional that relies
on a clean gap. Tunneling measurements are an important
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point of comparison to optical conductivity by virtue of
the fact that they probe quasiparticle effects directly and
only indirectly probe collective modes through their coupling
to quasiparticles. We propose that the low threshold (as
compared to Tc) of 2Eg that we see in optics derives from
the same subgap states seen below the coherence peak � in
tunneling. It is quite natural to expect a modification of the
quasiparticle excitations of the system at high disorder. Larkin
and Ovchinnikov showed that that disorder in the form of a
spatially varying BCS coupling constant will give an effective
pair breaking effect [32] that maps to the Abrikosov-Gor’kov
pair breaking model caused by magnetic impurities [33]. A
similar mechanism may be applicable to superconductors with
mesoscopic fluctuations [34].

We can model quasiparticle properties of the optical and
tunneling data in a self-consistent fashion by the model of
Larkin and Ovchinnikov (LO) [32,33]. The prediction was
that the density of states would be homogeneously broadened
from the BCS expectation with an energy gap renormalized
to Eg(η) = (1 − η2/3)3/2�. Here � is the average value of
order parameter (very approximately indicated in the tunneling
by the energy of the coherence peaks) and η is a parameter
that sets the strength of the effective depairing [35]. By
using � extracted from fits to tunneling and Eg from optics,
we estimate η for each sample and plot them on the right
side of Fig. 1. As kF l decreases, η increases. Although this
method can qualitatively explain the lower threshold, the
values of η are systematically larger than what is predicted
from theory at these kF l values [34]. In this regard, the
mesoscopic fluctuations may be regarded as the minimal model
of disorder and other types of microscopic inhomogeneity may
push η higher. Irrespective of this, we can compare these η’s
with those extracted from direct fits of the LO model to the
tunneling conductance [36]. One can see that although the
values of η extracted by the two methods are close, optics
gives a value systematically higher. This is consistent with
both recent experiments that compared the η determined from
the superfluid density with that of tunneling [37] and recent
theory [38] that predicted (for the 2D case, which is not
necessarily applicable in our thick films) that the η from optics
should be generally larger in this disorder range by a factor of
6/ln(6g2) (with g the dimensionless conductance) due to the
role of vertex corrections in transport.

To more precisely compare the LO model to the
data we solved the Usadel equation iE sinθ + �cosθ −
η� sinθ cosθ = 0 numerically with � taken from tunneling
and η is estimated above. Here, E is the energy relative to
Fermi level, θ is the pairing angle, and sinθ and cosθ are the
disorder-averaged Green’s functions [12]. The single particle
density of states is directly given by ρ(E) = ρ0Re(cosθ ),
where ρ0 is the normal state density of states. We show our
simulations of the density of states in part D of the SM.

The corresponding normalized real optical conductivity at
T = 1.5 K can be calculated through the expression

σ1s

σ1n

= 2

�ω

∫ ∞

Eg

[f (E) − f (E + �ω)]|F (E,E + �ω)|dE

+ 1

�ω

∫ −Eg

Eg−�ω

[1 − 2f (E + �ω)]|F (E,E + �ω)|dE,

where the generalized coherence factor is given by
F (E,E+�ω)=Re[cosθ (E)] Re[cosθ (E+�ω)]+Im[sinθ (E)]
Im[sinθ (E+�ω)]. Here f (E) is the Fermi-Dirac distribution
function. In the limit where η = 0, one recovers the traditional
MB form. We show the simulation of normalized conductivity
in Fig. 3 (blue). As expected from the above, after considering
broadening effects around the gap edge in the density of
states, a notable amount of optical spectral weight fills the
region between 2� and 2Eg . At high frequency, simulation
with the LO model recovers the predictions of MB. Our
simulation qualitatively explains the conflicts between optics
and tunneling, or rather demonstrates that when making a
comparison one cannot compare the threshold in optics to the
energy of the coherence peaks.

Our analysis shows that in this disorder and frequency
range, quasiparticle effects and not collective modes are
the source of low-energy absorption. Although our model
successfully accounts for the lower onset energy of the
optical gap as compared to tunneling, the theoretical curves
still do not capture the high-frequency parts of normalized
conductivity. We find that in the most disordered samples, the
conductivity recovers more quickly to the normal state values
than predicted. As the particular form of the MB conductivity
functional derives from a particular form of the BCS coherence
factors, this difference may presage a transition to an insulating
state with localized Cooper pairs [39]. However, we cannot rule
out that this feature does not come from our normalization pro-
cedure where we divide by the strongly frequency dependent
conductivity. Although calculations have been done showing
the role that mesoscopic disorder plays in suppressing the
superfluid density [38], no explicit calculation of the gap edge
structure has been performed. Moreover, calculations of the
gap-edge optical response across the BEC-BCS crossover have
not been made. Such contributions would be very welcome.
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