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Nonlinear optical effects and third-harmonic generation in superconductors:
Cooper pairs versus Higgs mode contribution
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The recent observation of a transmitted THz pulse oscillating at three times the frequency of the incident light
paves the way to a powerful protocol to access resonant excitations in a superconductor. Here we show that this
nonlinear optical process is dominated by light-induced excitation of Cooper pairs, while the collective amplitude
(Higgs) fluctuations of the superconducting order parameter give in general a negligible contribution. We also
predict a nontrivial dependence of the signal on the direction of the light polarization with respect to the lattice
symmetry, which can be tested in systems such as, e.g., cuprate superconductors.
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The enormous technological advances made in the last
two decades in time-domain spectroscopy [1,2] pose several
challenges for our understanding of the interaction of light with
matter. The use of low-energy THz waves [3] to first excite
(pump) and then measure (probe) the system is particularly
interesting for superconductors, since they can access the
region ω < 2�0 of the optical spectrum where linear-response
absorption is suppressed by the opening of a superconducting
(SC) gap �0 in the quasiparticle spectrum. For example,
recent [4–6] THz-pump–THz-probe experiments have shown
that the probe field displays a periodic oscillation, whose
possible connection to amplitude (Higgs) fluctuations of the
SC order parameter has been investigated theoretically [7–11].

An interesting additional effect made possible by the use of
intense electromagnetic (e.m.) THz field is the experimental
observation [6] of the so-called third-harmonic generation
(THG), i.e., the appearance below Tc in the transmitted pulse
of a component oscillating three times faster than the incident
light. This effect appears only below Tc with a maximum
intensity at the temperature where the light frequency ω

matches the SC gap value �0(T ), and has been attributed [6,12]
to a resonant excitation of the Higgs mode. However, we
show here that THG is dominated by the resonant excitations
of Cooper pairs (CPs) (see Fig. 1), overlooked in previous
theoretical work [6,12].

In contrast to pump-probe experiments [4,5], where the
description of the intermediate relaxation processes of the
photoexcited states becomes relevant [7–11], the THG effect
can be understood as an equilibrium, nonlinear optical process.
In this Rapid Communication we compute microscopically the
nonlinear optical response of a superconductor and we show
that the THG essentially measures lattice-modulated density
correlations, which in the SC state diverge at the threshold 2�0

above which CPs proliferate. This effect induces a resonant
enhancement of the THG intensity when the frequency 2ω of
the incoming electric field coincides with 2�0, as observed
experimentally. Once we identify the relevant nonlinear
optical response function, we also find that the Higgs-mode
contribution is largely subleading, due to symmetry reasons.
Indeed, even if the Higgs mode can be excited by the THz field,
as discussed previously [6,12], it essentially decouples from
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the optical probe. This is a consequence of the weak coupling
between the SC amplitude and density fluctuations in BCS
superconductors [13–16], as usually discussed in the context
of Raman experiments [14,15,17]. The potential analogy with
Raman experiments emerges also on the nontrivial dependence
of the THG on the relative orientation between the e.m.
field and the main crystallographic axes, due to the lattice
symmetries of the band structure. This effect can be tested,
e.g., in cuprate superconductors, where large monocrystals
have been already studied by nonlinear spectroscopy [18].
Even though this polarization dependence can also be used to
selectively excite the Higgs mode, its weak signal remains a
major obstacle to its detection. Finally, by including the CP
effects, missing in previous theoretical work [6,12] due to an
incorrect computation of the nonlinear optical response, we
reproduce very well the temperature dependence of the THG
measured in Ref. [6].

We start from a microscopic SC model that captures the
main ingredients of the problem:

H =
∑
k,σ

ξkc
†
kσ ckσ − U

Ns

∑
q

�
†
�(q)��(q), (1)

where ξk = εk − μ is the electronic dispersion with respect
to the chemical potential μ, U > 0 is the SC coupling, and
��(q) = ∑

k c−k+q/2↓ck+q/2↑. In mean-field approximation
the Green’s function in the usual basis of Nambu operators
�† = (c†k↑,c−k↓) reads G−1

0 = iωnτ̂0 − ξkτ̂3 + �0τ̂1, where τ̂i

FIG. 1. Schematic of the THG. An intense THz pulse shining
on the SC sample generates a transmitted component oscillating
three times faster, due to the resonant excitations of Cooper pairs
or Higgs fluctuations. The higher intensity of the former process can
be modulated by changing the polarization of the incident light.
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are Pauli matrices, �0 is the SC gap, and Ek =
√

ξ 2
k + �2

0 . The
coupling to the gauge field A can be introduced by means of
the Peierls substitution, c

†
i+x̂ ci → c

†
i+x̂cie

ieA·x̂ . To derive the
e.m. kernel we follow a standard procedure [19,20] to derive
the action SA written in terms of the gauge field A and SC
collective modes. Since the coefficients of the effective action
are given by fermionic susceptibilities this approach allows
one to include both the quasiparticles and collective-mode
contributions to the optical kernel, as has been proven already
for the linear response [21,22]. As we shall see below, it turns
out that the most relevant contributions to the nonlinear current
JNL can be written in compact notation as

JNL ∼ A(χCP + χH )A2, (2)

χCP ∼ 〈ρρ〉, χH ∼ 〈��〉, (3)

where the CP contribution χCP probes lattice-modulated
density fluctuations, while the Higgs contribution χH is pro-
portional to the amplitude fluctuations. Even though both terms
diverge at ω = �0, the prefactor of χH turns out to be strongly
suppressed by the particle-hole symmetry of the BCS solution,
making it largely subdominant with respect to the CP one.

To make this argument quantitative we compute the
nonlinear response by expanding the action SA up to the fourth
order in A. For a uniform field the terms relevant for the THG
are then

S[A] = 1

2

∑
�n

e4A2
i (�n)χCP

ij (�n)A2
j (�n)

+X��(�n)|�(�n)|2
+ 2e2A2

i (�n)χA2
i �

(�n)�(−�n), (4)

where A2
j (�n) is the Fourier transform of [Aj (t)]2 in Matsub-

ara frequency i�n = 2πnT . The first term of Eq. (4) is the CP
response, as given by

χCP
ij (i�n) = 〈ρiρj 〉 = �2

0

∑
k

∂2
i εk∂

2
j εkFk(i�n), (5)

Fk(i�n) = 1

Ns

tanh(Ek/2T )

Ek
[
(i�n)2 − 4E2

k

] , (6)

where we introduced the short notation ∂2
i εk ≡ ∂2εk/∂k2

i .
Here 〈· · · 〉 denotes the correlation function for the operator
ρi(q) = ∑

k ∂2
i εk c

†
k+qck, showing that χCP

ij scales as the
density-density correlation function [given in the BCS limit
by χρρ ≡ �2

0

∑
k Fk(i�n)], as anticipated in Eq. (2) above.

Indeed, the band derivatives ∂2
i εk just represent in a lattice

model the equivalent of the inverse mass 1/m for free
electrons, and they always come along with a A2

i (ω) term
in the effective action [20,22]. The second term in Eq. (4)
describes the collective fluctuations of the SC amplitude
�,〈|�|2〉A=0 = 1/X��, given as usual [7,13,14,16,23] by

X��(ω) = (
4�2

0 − ω2)F (ω), F (ω) =
∑

k

Fk(ω). (7)

By analytical continuation i�n → ω + i0+ one can easily see
that both χCP (ω) and F (ω) display a square-root divergence
as ω → 2�0, which signals the proliferation of CP above

the gap. As is well known, this effect makes the Higgs a
nonrelativistic mode [16], i.e., amplitude fluctuations display
an overdamped resonance at ω = 2�0. Finally, the third term
in Eq. (4) describes the coupling between the e.m. field and
the Higgs mode, mediated by the function

χA2
i �

(i�n) = 〈ρi�〉 = 2�0

∑
k

(
∂2
i εk

)
ξkFk(i�n). (8)

Equations (5) and (8) define the basic correlation functions
needed to compute the THG. They also explain why for
BCS superconductors, where they are given explicitly by
the right-hand sides of Eqs. (5)–(8), χA2

i �
is very small.

Indeed, in the continuum limit, where the band dispersion
can be approximated with a parabolic one εk 
 k2/2m, so that
∂2
i εk 
 1/m, χA2

i �
vanishes, since

χA2
i �

(ω) 
 NF

m

∫ ∞

−∞
dξ

ξ√
ξ 2 + �2

0

(
ω2 − 4�2

0 − 4ξ 2
) 
 0,

where the integration range can be taken symmetric due to
the approximate particle-hole symmetry of the BCS solu-
tion [13,16]. This result explains the suppression of the Higgs
contribution to the THG.

To derive the nonlinear e.m. kernel we integrate out the
amplitude fluctuations in Eq. (4), which is equivalent to
compute the random-phase approximation vertex correction
of the bare bubble χCP

ij [12,20]. One is then left with the
action depending on the e.m. field only,

S(4)[A] = e4

2

∫
dt dt ′

∑
i,j

A2
i (t)Kij (t − t ′)A2

j (t ′), (9)

Kij (t − t ′) = [
χCP

ij (t − t ′) + χH
ij (t − t ′)

]
, (10)

where the Higgs contribution χH
ij reads

χH
ij (i�n) ≡ −

χA2
i �

(i�n)χA2
j �

(i�n)

X��(i�n)
, (11)

and it is also diverging at ω = 2�0 due to the vanishing of X��

[see Eq. (7)]. The nonlinear current JNL
i follows by functional

derivative of Eq. (9) with respect to A:

JNL
i (t) = −δS(4)[A]

δAi(t)

= −2e4Ai(t)
∫

dt ′
∑

j

Kij (t − t ′)A2
j (t ′). (12)

Equation (12), with the definition (10) of the e.m. kernel,
corresponds to Eq. (2) above. For a monochromatic incident
field A = Ā cos(�t) it is given by

JNL
i (t) = e4Āi

4

∑
j

{e−3i�tKij (2�)

+ e−i�t [2Kij (0) + Kij (2�)] + c.c.}Ā2
j , (13)

where one recovers the term oscillating at three times the
incident frequency, with an amplitude controlled by the kernel
Kij evaluated at 2�. In the experiments of Ref. [6] the
physical observable is the transmitted electric field Etr , which
one expects to be proportional to the current (13). As a
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consequence, the intensity of the THG can be evaluated
from Eq. (13) as I T HG

i (�) ∝ | ∫ dt JNL
i (t)e3i�t |2, which for a

monochromatic wave gives

I T HG
i (�) = I0e

8A2
i

∣∣∣∣∣∣
∑

j

Kij (2�)Ā2
j

∣∣∣∣∣∣
2

, (14)

where I0 is an overall scale factor that depends on the geometry
of the experiment.

To quantify explicitly the lattice effects we compute the
nonlinear response for a nearest-neighbor tight-binding model
on the square lattice εk = −2t(cos kx + cos ky), and we will
consider first the half-filled case n = 1 (μ = 0), where only the
SC amplitude mode contributes to the nonlinear response. By
making the replacement ∂2

i εk = 2t cos ki in Eqs. (5) and (8)
one sees that χA2� is independent of the direction, while the
CP part (5) is a tensor. Let us first consider the case of a
field applied along the x axis, so that I T HG

x is controlled by
the longitudinal Kxx kernel. The two separate CP [ICP

x (�) ∝
|χCP

xx (2�)|2] or Higgs [IH
x (�) ∝ |χH (2�)|2] contributions to

the THG intensity for a monochromatic field are shown in
Fig. 2(a). As one can see, even if the functional form is similar
for the two terms, the CP contribution is much larger, and one
can roughly estimate IH

x ∼ (�/U )4ICP
xx . The predominance

of the CP response implies also a nontrivial dependence of the
THG intensity on the direction of the incoming applied field
with respect to the crystallographic axes. In the general case of
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FIG. 2. (a) Comparison between the CP and Higgs contribution to
the THG intensity at T = 0 as a function of the frequency � for a field
along x and a residual broadening ω + iδ, δ = 0.1�0. (b) Relative
intensity of the Higgs and CP processes at ω = �0 as a function of
the density for two values of the SC coupling. Here the Coulomb
screening from Eqs. (20) and (21) has been included. (c) Map of the
frequency dependence of the THG intensity, Eq. (15), for a field at
arbitrary angle θ with respect to the x direction.

Ā = A0 cos(�t)(cos θ, sin θ ), θ being the angle with respect
to the x axis, the intensity of the transmitted pulse in the field
direction is

I T HG
θ (�) = I0e

8A6
0|Kθ (2�)|2, (15)

Kθ = χCP
xx (cos4 θ + sin4 θ ) + 2χC

xy sin2 θ cos2 θ + χH , (16)

where we used the fact that χCP
yy/yx = χCP

xx/xy . When Ā is
applied along the diagonal (θ = π/4) the longitudinal χCP

xx

and transverse χCP
xy parts of the CP response are equally

weighted. In this peculiar configuration one sees from the
definitions (5)–(8) that χCP

xx + χCP
xy = −�0χA2�/2, i.e., the

diverging CP contribution cancels out, and only the resonant
Higgs response remains:

JNL
π/4 (t) = e2�0

U
A(t)〈�(t)〉, (17)

where 〈�(t)〉 is the average value of the ampli-
tude fluctuations obtained from Eq. (4), i.e., 〈�(ω)〉 =
e2χA2�(ω)A2(ω)/X��(ω) in the frequency domain. The an-
gular dependence of I T HG

θ (�) is shown in Fig. 2(c) as a color
map: at θ = π/4, where one probes only the Higgs mode, the
intensity is strongly suppressed, in agreement with the result
shown in Fig. 2(a). This prediction can be tested in systems
like cuprate superconductors, where the band structure has
in first approximation the symmetry discussed here and large
monocrystals have been already used to probe SC resonances
by pumping the system with near-infrared light [18]. It is worth
noting that all these effects have been completely overlooked
in the previous work [6,12] due to the incorrect replacement
in the CP term (5) of the quantity ∂2

i εk, which is finite at
the Fermi surface, with ξk, which is instead vanishing. This
assumption removes both the divergence of the CP term
χCP

ij (ω) at ω = 2� and its direction dependence, and leads
always to the result (17), which is instead far from being
generic. In addition, we also checked [20] that expression (10)
can be obtained as well by means of the pseudospin formalism
used in Refs. [6,12].

Since the response function (10) is dominated by the elec-
tronic states at the Fermi surface, the quantitative difference
between the CP and the Higgs response depends in general
on the electron density n. To quantify this effect away from
half-filling one should retain in derivation (4) of the effective
action also the terms [20] coupling the gauge field and the
Higgs mode to the phase and density fluctuations, mediated
by the response functions

χA2
i ρ

(i�n) = 〈ρiρ〉 = �2
0

∑
k

∂2
i εkFk(i�n), (18)

χρ�(i�n) = 〈ρ�〉 = �0

∑
k

ξkFk(i�n). (19)

These terms, which vanish by particle-hole symmetry in the
half-filled case, are crucial to account for the screening effects
of the long-range Coulomb potential, in analogy again with
the known result for the Raman response function [17]. By
means of straightforward but lengthly calculations one can
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then show [20] that the nonlinear response function retains the
structure (10) with the replacements

χCP
ij → χ

CP,sc
ij = χCP

ij −
χ2

A2ρ

χρρ

, (20)

χH → χH,sc = − (χA2� − χA2ρχρ�/χρρ)2

X�� − χ2
ρ�/χρρ

, (21)

where we used the fact that for the lattice model under
consideration the function (18) is isotropic in the spatial
indexes. While the mixing to the density and phase modes
does not affect [16] the pole of the Higgs mode, identified
now by the vanishing of the denominator of Eq. (21), it is
crucial to screen both the CP and Higgs response as one
moves away from half-filling. In Fig. 2(b) we show the ratio
ICP
x (�)/IH

x (�) as a function of the electron density n for two
values of the SC coupling U . As we can see, even for the large
value U/t = 2.6 of the SC coupling, where the deviations from
the BCS (approximate) particle-hole symmetric case become
more prominent, inducing a larger coupling of the Higgs to
the light, the CP part remains the predominant one for the
longitudinal response even in the low-density regime.

In addition to the strong direction dependence of the THG
intensity, a second check of the origin of the THG effect
is its temperature evolution, measured in Ref. [6]. For a
polycrystalline sample one should average the kernel Eq. (16)
over θ , to account for the random direction of the e.m. field
with respect to the crystallographic axes. One then finds that
J̄ NL

θ = [JNL
x + JNL

π/4 ]/2 
 JNL
x /2, so that one expects that the

CP processes dominate. To check this we compute [20] the
nonlinear current induced by an incoming electric field A(t)
having a wave-packet profile similar to the one used in the
experiments of Ref. [6] [see Fig. 3(a)]. In the frequency domain
this wave packet corresponds to the power spectra shown in
Fig. 3(b), centered at three possible values �i of the incoming
frequency. The temperature evolution of the THG intensity,
i.e., Ix(3�i), is then shown in Figs. 3(d)–3(f), where we com-
pare the experimental data from Ref. [6] [panel (d)] with the
theoretical calculations done including only the CP processes
[panel (e)] or the Higgs contribution [(panel (f)]. Apart from
the small overall intensity of the THG Higgs signal, which
cannot be seen in the normalized data of Fig. 3, the excitation
of the Higgs mode alone fails to reproduce the temperature
dependence of the signal at the lowest frequency �1.

In conclusion, we studied the nonlinear optical effects
responsible for the THG in a superconductor. Since the relevant
response function (10) measures lattice-modulated density
fluctuations [see Eq. (5)], the optical process responsible for
the THG is equivalent to a resonant excitation of CP. The
Higgs-mode contribution is instead much smaller, since its
coupling (8) to the optical probe is suppressed by symmetry,
in analogy with standard Raman experiment [13–15,17],

0 10 20 30 40 50 60 70
Ωit

-1

-0.5

0

0.5

1

E in
(t)

 (a
.u

.)

0.2
0.4
0.6
0.8

1

TH
G

 In
te

st
ity

 (a
.u

.) Ω3
Ω2
Ω1

0.2
0.4
0.6
0.8

1

0.2 0.4 0.6 0.8 1
T/Tc

0.2
0.4
0.6
0.8

1

0.2 0.4 0.6 0.8 1
T/Tc

0
0.2
0.4
0.6
0.8

1
1.2

Δ 0(T
)/

Δ 0(Τ
=0

)

0 0.5 1 1.5 2
ω/Δ0(Τ=0)

0
0.2
0.4
0.6
0.8

1

|E
in

(ω
)|

2  (
a.

u.
)

Ω2

(a)

(b)

(c)

(e)

(f)

(d)

Ω3

Ω1

Cooper Pairs

Experiments

Higgs

FIG. 3. (a) Profile of the incoming field, and (b) corresponding
power spectra, used to simulate the experiments of Ref. [6]. The three
central frequencies �i of the power spectra are compared in panel (c)
to the temperature dependence of the SC gap. For each �i the resonant
condition �i = �0(T ) occurs at a different temperature, in analogy
with Ref. [6]. (d), (e) Temperature evolution of the THG intensity in
the experiments (d), in the case of CP processes (e), and in the case of
the Higgs processes alone (f), computed for n = 1, U/t = 2.6. Data
computed at different �i are normalized to have a similar overall
scale, as done in panel (d). The excitation of the Higgs mode alone
gives the wrong T dependence of the THG signal for the lowest
frequency �1, as marked by the arrow.

unless some additional channel makes the Higgs Raman
visible [13,14,24]. In addition, also for THG experiments
one can orient the light polarization with respect to the
main crystallographic axes in order to modulate the THG
intensity due to Cooper pairs. Even though this effect can
be used in principle to selectively excite the Higgs signal,
the weakness of its coupling to the light represents a major
obstacle to its detection in optical experiments, in analogy with
the results recently discussed in the context of linear optical
spectroscopy [16]. The interplay between the nonlinear optical
effects discussed here and the non-equilibrium processes
[7–11] addressed in the context of pump-probe experimental
protocols [1,2,4,5] remains an open question, which certainly
deserves future experimental and theoretical work.
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