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Quantum resonance catastrophe for conductance through a periodically driven barrier
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We consider the quantum conductance in a tight-binding chain with a locally applied potential which is
oscillating in time. The steady state for such a driven impurity can be calculated exactly for any energy and
applied potential using the Floquet formalism. The resulting transmission has a nontrivial, nonmonotonic behavior
depending on incoming momentum, driving frequency, and the strength of the applied periodic potential. Hence
there is an abundance of tuning possibilities, which allows finding the resonances of total reflection for any
choice of incoming momentum and periodic potential. Remarkably, this implies that even for an arbitrarily small
infinitesimal impurity potential it is always possible to find a resonance frequency at which there is a catastrophic
breakdown of the transmission 7 = 0. The points of zero transmission are closely related to the phenomenon of
Fano resonances at dynamically created bound states in the continuum. The results are relevant for a variety of
one-dimensional systems where local AC driving is possible, such as quantum nanodot arrays, ultracold gases in
optical lattices, photonic crystals, or molecular electronics.
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Driven quantum systems appear in many different contexts
in physics and chemistry [1-12]. At the same time there
has been remarkable progress in the controlled design of
tight-binding transport in nanoscale quantum systems with
a high degree of coherence and tunability using molecular
electronics [13-22], quantum dot arrays [3], or photonic
materials [23-25]. Ultracold gases in optical lattices provide
tight-binding models with a great variety of possible geome-
tries [26], where dimensional crossover [27] and periodic
driving [8-12] have been realized. For ultracold gases in
optical lattices [26] it is now possible to insert localized
impurities [28], which play the role of a local barrier that can
easily be periodically changed using Feshbach resonances.

Theoretically there have been several studies on an alternat-
ing field along a wire [29,30], charge pumping [31], and a peri-
odically driven Kondo impurity [32]. It is known that assisted
and blocked tunneling is possible from periodic driving [3-8].
While the transport under general time-dependent potentials
shows an abundance of physically interesting features [33]
(including charge pumping), it appears that even for the most
straightforward prototypical driven barrier there are unknown
and remarkable conductance effects in the full frequency
and amplitude dependence. In particular, we find that for a
noninteracting tight-binding model with a periodically varying
potential at one site, there is a complete breakdown of
conductance even for an infinitesimally small amplitude, if
the frequency  is tuned to the corresponding resonance. We
call this phenomenon the quantum resonance catastrophe,
which is characterized by an extremely sharp linewidth and
highly nonlinear switching and tuning opportunities. This is in
contrast to the well-known phenomenon of tunneling, which
allows nonzero transmission for any finite barrier.

The generic model system is described by a one-
dimensional tight-binding chain for bosons or fermions with a
periodically varying potential p at one impurity site (i = 0)

H=-J Z (cjci+1+ CLlci) — Mcos(wt)cgco, (1)
i
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where we have used standard notation and the hopping
amplitude is denoted by J. This model captures the essential
physics of a single one-dimensional band, which is useful for
the description of corresponding driven experimental setups
mentioned above.

The goal of this paper is to calculate the transmission coef-
ficient of an incoming particle with a given momentum k and
corresponding energy € = —2J cos k, which is the dispersion
relation of the model in Eq. (1) away from the impurity. Just
like in the static case, the transmission coefficient can be
determined from the steady-state solution of the Schrodinger
equation (H(t) — i9;)|¥(¢)) = 0. Due to the periodicity of the
Hamiltonian H(¢t) = H(t + 2n/w) it is possible to use the
Floquet formalism [2,34] to express any steady-state solution
in terms of so-called Floquet states |W(t)) = e~'“/|d(z)),
where € is the quasienergy of the resulting (d + 1)-dimensional
eigenvalue equation (H —i9d,)|®P(¢)) = €|®(¢)) and the Flo-
quet modes |P(r)) = |D(f + 27w /w)) are periodic in time.
Using the spectral decomposition

|D(1) = Y e D,), )

n=—0oo

the eigenvalue equation for a Hamiltonian of the form H(¢) =
H,y + 2H, cos(wt) becomes discrete in the time direction

Ho|®y) + Hi(|Pps1) + [ Pp—1) = (€ + n0)|Py). ()
A general steady state on the tight-binding lattice is given by

D) = Y ¢jnct0). )
j

The model in Eq. (1) therefore results in the following set of
coupled equations:

_J(¢—l,n + ¢l.n) - %(‘PO,/H-I + ¢(),n—1) = (6 + "0))¢0,n,
_J(¢j—l.n + ¢j+l,n) = (6 + nw)¢j,n for ] ?é 0’ (5)

which effectively corresponds to a static Hamiltonian with
eigenvalue € for an infinite number of chains labeled by n, each
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FIG. 1. Left: Sketch of the model mapped onto a set of static
coupled chains. The n = 0 chain is locally connected to two side-
coupled systems of chains with a corresponding chemical potential
nw. Right: Dispersion relation with the special frequencies w =
2J = e below which the side-coupled chains n = F1 start to support
unbound solutions for the case € = 0.5J.

with additional overall chemical potential of nw, analogous to a
Wannier-Stark ladder [2]. The chains are coupled to each other
only at site j = 0 by a hopping term /2 as depicted in Fig. 1
(left). Notice that the entire problem is symmetric under parity
transformation j — —j, so that solutions are either parity
symmetric or parity antisymmetric. The parity-antisymmetric
solutions obey ¢o, = 0, Vn, so they do not couple to the
driving potential and can be ignored.

Transmission coefficient. We now want to calculate the
transmission of an incoming particle with momentum k and

€ = —2J cosk for the chain n = 0. The parity symmetric
solution is given by plane waves of the general form
¢jo = Acos(|jlk —0). (6)

Since the potential x only affects a single impurity site for all
chains, the solutions for j # 0 must correspond to wavelike
states (unbound solutions) for |€ 4+ nw| < 2J and bound states
otherwise according to Eq. (5). As indicated in Fig. 1 (right) a
critical frequency can be defined:

we. =2J + |€]. @)

For w > w, all chains with n # 0 are outside the band
le + nw|>2J and correspond to bound states. Below the
frequency w =, the first side-coupled chain starts to support
unbound solutions. A second unbound solution starts to appear
below w=2J — |€| and so on.

Let us first consider frequencies w > w, with bound states
for all n # 0 of the form

¢jn = Cpe™"Vlsign(—n)’*", ®)

where € + nw = 2Jsign(n) cosh k,,. Inserting these states into
Eq. (5), we arrive at a recurrence relation for the coefficients
C, for |n| > 0,

2
YpCp = Cr_1 + Cpyq with y, = —y/(e + nw)? —4J%, (9)
"

where we have defined Cy = A cos 8. The solution for this
second-order recurrence relation is fixed up to an overall
constant by requiring convergence for [n| — oo and can be
solved efficiently numerically. The angle 6 is then given by
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FIG. 2. Exact results for transmission coefficient 7 as a function
of amplitude p and frequency w for an incoming wave of energy
€ = 0.5J. Top: The solid lines (blue) indicate the exact values of the
resonances (7' = 0) while the dashed lines are analytical expressions
from the first zeros of Bessel functions i, in Eq. (13) at large
frequencies and the small pu approximations in Eq. (14). Bottom:
Behavior close to the critical frequency w ~ w, = 2.5J. For v = w,
the transmission approaches T — (2J — |€|)/8J as u — O.

Eq. (5) for n = 0 in terms of those coefficients

c, ¢
tang = (==L _ =L (10)
2uk C() C()

where we defined u; = 2J sink as the particle velocity.

Since the bound states for |n| > 0 do not contribute in
the transmission, it is now straightforward to calculate the
transmission coefficient to be

2
Uy

u? + [(C_ — C1)/2Co P

The transmission obeys 7' (¢) = T'(—¢). For € = 0 the solution
becomes symmetric C,, = C_,, whichresultsin 7' (e = 0) = 1
independent of u for w > w,. due to Klein tunneling [35]. In
the following we assume € # 0.

Next we consider lower frequencies w < w,, when unbound
states also exist for n # 0. In this case it is useful to make an
ansatz for an incoming wave at energy € as well as transmitted
and reflected waves in all unbound channels [36]. In this way
it is possible to solve for all parameters. Finally, the total
transmission coefficient can again be expressed by the solution
of the recurrence relation in Eq. (9), which now involves the
remaining bound states.

Results. Using this procedure the exact numerical solution
for the transmission coefficient was obtained as shown in Fig. 2
for a given energy € = 0.5J as a function of u and w. Perfect

T =cos’6 =

an
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transmission 7 — 1 can be observed for small p or large fre-
quencies. For increasing u there is a sharp drop, however, and
at special resonances a vanishing transmission 7 = 0 can be
observed (blue solid lines). Interestingly, the transmission then
increases again with increasing u before more resonances with
T = 0 are reached and so on. This apparent nonmonotonic
behavior with potential 1 and frequency w can be understood in
the high-frequency limit, where the recurrence relation can be
solved analytically. In particular, note that y,, — 2|nw + €|/
for w > J, so that Eq. (9) becomes exactly the defining
recurrence relation for the Bessel functions [37] in this limit.
For convergence as |n| — oo the coefficients therefore can be
chosen to be Bessel function of the first kind

Con = Tintejol(t/ @) (12)

The recurrence relation then approaches Co ~ Jic/ for
n — 0% from above/below. Accordingly Eq. (10) can be
approximated for w > J

n A Ti—cjolit/®) $+e/w(u/w)>
o~ — - . 13
o ( T—ejo(t/®) Tejo(pt/w) (13)

These Bessel functions explain some of the observed features
of T in Eq. (11), namely the oscillating behavior with © and
o and resonances of 7 = 0 close to the zeros of the Bessel
functions Ji./,, which are marked in Fig. 2 as dashed lines
(green). Moreover, the behavior in Fig. 2 indeed only depends
on the ratio i /w for large frequencies.

While the description in terms of Bessel functions is useful,
this does not explain the behavior in the most interesting
region close to w &~ w, where the data shows large gradients
in the transmission coefficient. In Fig. 2 (bottom) the behavior
changes dramatically with frequencies just above or below
w.=2.5J for small driving potential u. There is a resonance
with T = 0 which quickly shifts to smaller u as the frequency
is lowered (w=2.51J and 2.5009/) and suddenly disappears
completely once the n =—1 chain supports unbound solutions
(w=2.49J). Exactly at the critical frequency w,=2.5J the
results for w — O show a well-behaved finite value T —
(2J — le])/8J, which corresponds to C%,/C5 — y2, and is
neither close to unity nor zero. By looking very carefully one
observes that there is another resonance close to u ~ 11.5J
which disappears at .. Away from these singular points the
changes of the transmission are very small, however, and
appear to be continuous as the frequency goes through the
critical value.

Resonances. It is worth noticing that the resonances
T =cos?f =0 for w > w. are special points at which the
coefficient ¢p o = Cop = A cos 8 vanishes exactly. In this case
the side-coupled systems of the corresponding static problem
in Eq. (5) become decoupled from the chain with n =0 in
Fig. 1 (left). Therefore, a resonance with T = 0 for w > w,
occurs if and only if the isolated side system has an eigenenergy
inside the band |€| < 2J.

This is a remarkable statement since the decoupled side
chains for n # 0 only support bound states outside the band.
However, due to the local coupling u between the chains one of
these energies is pushed inside the band, for which 7'(¢) = 0.
Such bound states in the continuum (BIC) were first proposed
by von Neumann and Wigner for a spatially oscillating
potential in the early days of quantum mechanics [38].
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FIG. 3. Transmission coefficient as a function of incoming
particle energy € at w = 3J (top) and w = 10J (bottom). The dashed
lines in the bottom plot depict the high-frequency approximation in
Eq. (13). The inset shows an enlarged region of the resonance for
w=25J.

Since then BIC’s have received extensive attention in the
context of transport phenomena [29,39,40]. The suppression
of transmission is closely related to the Fano effect in this
case [41,42].

In order to illustrate the connection with the Fano effect the
behavior as a function of incoming energy at fixed frequency
o = 3J is shown in Fig. 3 (top). The characteristic asymmetric
line shape of Fano resonances is clearly visible. In analogy to
the critical frequency in Eq. (7), itis possible to define a critical
energy €. = w — 2J, above which the first side chain supports
an unbound solution. We observe that a sharp resonance occurs
just below this energy for small © which then broadens and
moves quickly away from this point with increasing ©. The
lower part of Fig. 3 shows the behavior for larger frequency
o = 10J, where the resonances are further apart and less
pronounced (see inset). In this limit the agreement with the
high-frequency approximation in Eq. (13) fits reasonably well
(dashed lines in Fig. 3). The drop of the transmission 7 — 0
for e — 2J occurs due to the vanishing of the particle velocity
uy — 0 and is not connected to any resonance phenomenon.

As shown in Fig. 3 for fixed u and w there is at most
one energy with 7 = 0 and in some cases it is not possible
to find a resonance at all, e.g., for o =3J and pu = 10J.
This is in contrast to the situation of a given energy discussed
above in Fig. 2 where there are always one or more resonance
frequencies for any value of .

In order to predict the location of the resonances with 7 = 0
we now follow the strategy to consider the eigenenergies
of the decoupled side system in Fig. 1 using Eq. (§) with
¢00 =0. In fact, the two sides for n>0 and n <0 have
identical eigenenergies €, due to the symmetry transformation
$jn— (=1 _,. Of course there are infinitely many
eigenenergies, but only those inside the band |e| < 2J are
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of interest. Let us focus on the resonances 7 = 0 close to
the critical frequency @ & @, in the limit of small u© < J. In
this case, Eq. (9) must still hold for Cy = 0, with y,; > 1
and y; < 1. Looking at the first few terms of the recurrence
relation it becomes clear that the coefficients grow beyond
bounds unless 1 — y1y» < y1 < 1. Solving for the frequency
at which y;y, = 1 we find for the resonance positions

ot

Vet I (] — P —a77)

~
~

(14)

which is marked by dashed lines (red) in Fig. 2 and agrees
well with the exact results. Using the condition y;y, = 1,
resonances can also be found at fixed w for small deviations
from the critical energy €., which are again proportional
to u4.

Conclusions. In summary we have developed a framework
to study the transmission across an AC driven barrier connected
to leads of finite bandwidth based on the Floquet formalism.
The resulting transmission coefficient 7 can be calculated
exactly and shows versatile tunability with frequency w, energy
€, and impurity strength p. At high frequencies w > J the
transmission can be expressed in terms of Bessel functions,
which also appear in the description of so-called coherent
destruction of tunneling. In this limit the oscillations can
be averaged to form an effective quasistatic hopping Jegf =
JJo(/w) [4,43]. In our case, a slightly more refined picture
emerges in terms of Bessel functions with a fractional index
V=|n|te/w.

However, much more interesting effects appear at lower
frequencies w ~ w, = 2J + |€| where there are sharp changes
in T and a complete breakdown of the transmission 7 = 0 may
appear even for arbitrarily small barriers w. The explanation of
such a quantum resonance catastrophe can be found in the dy-
namically created side-coupled chains in Fig. 1, which contain
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bound states for all energies outside the band for @ > w,. The
effect of the local coupling i between the chains is to push
one energy from just above the band into the continuum. Thus
effectively a discrete bound state in the continuum is formed,
which is known to have drastic effects on the transmission [38]
based on the Fano effect [41]. In fact, static side-coupled
systems can also be used to engineer Fano resonances [42], but
the virtual side-coupled systems in Fig. 1 by periodic driving
are simpler and more versatile. The location of the resulting
resonances for u — 0 are predicted accurately by Eq. (14).
The width of the resonance also changes dramatically near
w, (proportionally to p~=*). Therefore noise will become the
limiting factor for observing a very sharp quantum resonance
catastrophe. For example, in order to observe a suppression of
transmission by a factor of ten for a small potential © = 0.1J,
the uncertainty of the energy must be below 107J. On the
other hand, there has been tremendous progress in stabilizing
lasers and oscillators using a frequency comb, leading in some
cases to world-record accuracy of up to 107'8 [44]. It is there-
fore promising to use the quantum resonance catastrophe in the
design of an energy filter that limits the transmission at exactly
one energy and in turn prepares reflected particles at a well-
defined momentum (corresponding to a reflection grating in
frequency). In this way the remarkable accuracy of oscillators
and state-of-the-art lasers can be transferred to high-fidelity
quantum state preparation as a tool in quantum technology. The
sharp resonance catastrophe also presents a unique opportunity
for the design of switches, where a huge change of transmission
for small parameter changes is a desirable feature.
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