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Ground-state phase diagram of Gaussian-core bosons in two dimensions
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The ground state of a two-dimensional (2D) system of Bose particles of spin zero, interacting via a repulsive
Gaussian-core potential, has been investigated by means of quantum Monte Carlo simulations. The quantum
phase diagram is qualitatively identical to that of 2D Yukawa bosons. While the system is a fluid at all densities
for weak coupling, in the strong-coupling regime it transitions upon compression from a low-density superfluid
to a crystal, and then into a reentrant superfluid phase. No evidence of a (supersolid) cluster crystal phase is seen.
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I. INTRODUCTION

In the absence of disorder, frustration, or an external
potential, the ground state of an interacting scalar Bose
system is always ordered, i.e., a well-defined symmetry of the
Hamiltonian is spontaneously broken. Only two types of order
are believed to be possible, namely, crystalline order, which
breaks translational symmetry, or off-diagonal long-range
order (superfluid), in which case the global U (1) symmetry
is broken.

Normally, only one of these two types of order is present,
as a result of the competition between particle interactions,
typically favoring crystallization, and quantum delocalization,
promoting superfluidity. Such is the case for 4He, featuring
either a superfluid or an insulating crystal in the ground state,
depending on the external pressure [1]. No exceptions are
known in continuous space when the interaction potential is
of Lennard-Jones type. However, supersolid ground states,
simultaneously displaying both types of order [2], have been
predicted for a class of Bose systems with pairwise interpar-
ticle potentials featuring a soft and flat repulsive core at short
distances. The supersolid phase arises through the formation
at high density of a cluster crystal (CC) with more than one
particle per unit cell. At sufficiently low temperature, particle
tunneling across adjacent clusters establishes superfluid phase
coherence throughout the whole system [3–5].

Cluster crystals have been extensively investigated in
the context of classical soft-core systems [6]. It has been
conjectured [7] that a necessary condition for the presence of
a CC phase in a soft-core system is that the Fourier transform
of the potential go negative in a wave-vector range close
to k ∼ 1/d, with d the range of the soft core. Computer
simulations of a classical two-dimensional (2D) system of
particles interacting through a Gaussian-core [8] potential

V (r) = ε exp

[
− r2

2σ 2

]
, (1)

whose Fourier transform is positive definite, has yielded no
evidence of a CC at low temperature [9], thus supporting the
hypothesis of Ref. [7]. The classical ground state is a crystal
at all densities; at low temperature, equilibrium low- and high-
density fluid phases exist on both sides of the crystal, with
hexatic phases, characterized by the absence of positional order

but by a nonvanishing orientational order parameter, separating
the crystal from the fluid.

An interesting theoretical question is to what a degree
quantum-mechanical effects alter the classical phase dia-
gram. Mean field theoretical treatments based on the Gross-
Pitaevskii [10] equation suggest that a negative Fourier
component in the pair potential is a necessary condition for
a roton instability toward crystallization [11–14]. On the other
hand, such an approach essentially describes a supersolid
as a superfluid with a density modulation and is therefore
applicable to crystals with a very large number of particles
per unit cell. If the number of particles per unit cell is only a
few, it is known that Bose statistics can considerably extend
the domain of existence of the CC in soft-core systems with
respect to what one would observe classically [15]. Thus, it is
conceivable that a CC phase (turning superfluid at low temper-
ature) could be stabilized by quantum-mechanical exchanges
in a system of Gaussian-core bosons. Also, the investigation
of a quantum-mechanical version of the Gaussian-core model
can offer insight into the role of those quantum fluctuations in
the context of soft matter systems [16].

In this work, we present results of extensive quantum Monte
Carlo simulations at low temperature of a 2D system of spin-
zero particles interacting via a Gaussian pair potential. Our
study shows that, as expected, quantum effects strengthen the
fluid phase, which extends all the way to temperature T = 0
in a wide region of the quantum phase diagram. No cluster
crystal and no supersolid phase is found. Indeed, superfluid
and (insulating) crystal are the only two phases observed. The
resulting quantum phase diagram is qualitatively identical with
that of 2D Yukawa bosons [17,18], suggesting that it may
generically describe all Bose systems featuring the same type
of repulsive interaction at short distances, i.e., one that is strong
enough to prevent the formation of clusters of particles but not
enough to stabilize the crystalline phase at high density.

The remainder of this paper is organized as follows: in
Sec. II we describe the model of our system of interest and
provide details of the calculation; in Sec. III we illustrate our
results; and we outline our conclusions in Sec. IV.

II. MODEL AND METHODOLOGY

We consider a system of N spin-zero bosons of mass
m, enclosed in a simulation box with periodic boundary
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conditions in both directions. The aspect ratio of the box is
designed to fit a triangular solid. Particles interact via the pair
potential described by Eq. (1). The many-body Hamiltonian
of the system in reduced units reads

H = −�

2

N∑
i=1

∇2
i +

∑
i<j

exp

[
−1

2
r2
ij

]
, (2)

where ri is the position vector of the ith boson, rij ≡ |ri − rj |,
and � ≡ �

2/(mεσ 2) is the quantum coupling constant. All
lengths are expressed in units of σ , whereas ε sets the
energy and temperature scale (Boltzmann’s constant kB is
set to 1). Besides �, the only other parameter of the system
at temperature T = 0 is the density ρ, or, equivalently, the
(dimensionless) mean interparticle distance rs = 1/

√
ρσ 2.

We obtained the thermodynamic phase diagram by means
of quantum Monte Carlo simulations based on the worm
algorithm in the continuous-space path integral representation.
Because this well-established computational methodology is
thoroughly described elsewhere [19,20], we do not review it
here. The most important aspect to be emphasized is that it
enables one to compute thermodynamic properties of Bose
systems at finite temperature directly from the microscopic
Hamiltonian. In particular, energetic, structural, and superfluid
properties can be computed in practice with no approximation.

Technical aspects of the calculations are standard. We
carried out simulations of systems comprising up to 1024
particles, using the standard form [20] for the high-temperature
imaginary-time propagator accurate up to fourth order in
the time step τ . The smoothness of the potential, however,
allows one to obtain accurate results with the primitive
form as well, with comparable CPU time. We identify the
different thermodynamic phases (superfluid and crystalline)
through the computation of the superfluid density using the
well-known winding number estimator [21], the one-body
density matrix, as well as the pair-correlation function. As
we aim at obtaining the ground-state (T = 0) phase diagram,
we performed calculations at temperatures sufficiently low so
as not to see any changes in the values of cogent physical
quantities (e.g., the energy) within the statistical uncertainties
of the calculations; typically, this means T � T � ≡ �/r2

s .

III. RESULTS

A. Phase diagram

Our findings are summarized in Fig. 1, showing the
ground-state phase diagram of the system, as described by
the Hamiltonian (2), in the (rs–�) plane. All of the results
presented here are extrapolated to the τ → 0 limit. We identify
the following phases: (i) A superfluid phase at all densities for
� � 0.03, and in the low- and high-density limit for lower
values of �, where the physics of the system is dominated
by quantum delocalization and Bose statistics. All of our
numerical data at finite temperature show consistency with
the Berezinskii-Kosterlitz-Thouless (BKT) scenario of the
superfluid transition in 2D [22,23], i.e., the transition between
a quasi-long-range superfluid and a normal phase at finite
temperature occurs through the standard unbinding of vortex-
antivortex pairs with charge 1. However, the microscopic
properties of the reentrant superfluid phase (see below) are

FIG. 1. Ground-state phase diagram of a Bose system with
Gaussian-core interaction for different values of the parameter � (see
text) and mean interparticle spacing rs . For low values of � a crystal
phase becomes increasingly stable. At low densities a superfluid phase
is seen, while a reentrant superfluid phase is found for high densities.
Numerical data are represented by symbols. The dashed line is a
guide for the eye.

unconventional. (ii) A crystalline (triangular) phase becomes
stable for � � 0.03, centered around rs = 3. It extends its
domain of existence as � → 0, as the potential energy plays
an increasingly important role. We found no evidence of other
phases such as supersolid phases.

On general grounds we expect a superfluid phase at T = 0
in the low-density limit by analogy to superfluid helium. In
the dilute limit, the potential energy is much smaller than the
energy of zero point fluctuations, i.e., the quantum pressure
prevents crystallization. That a superfluid phase might also
occur at high densities is different from helium. In the present
case the soft core of the potential is unable to prevent the
overlap of particles at high enough density, leading to a
reentrant superfluid, just as in the phase diagram of 2D Yukawa
bosons [17,18].

Insight into the structure of the various phases is offered
by the pair-correlation function g(r), shown in Fig. 2 for
the crystal and both conventional and reentrant superfluids.
For rs � 3 (i.e., in the crystalline and low-density superfluid
phases), the physics effectively mimics that of a hard-core
system, characterized by a vanishing g(r) at short distances and
resulting in conventional looking pair-correlation functions,
as is shown in Fig. 2 for rs = 3. The peak structure in g(r)
is washed out as the system is compressed and rs is reduced
below 3, at which point g(r) suddenly acquires a finite value at
the origin, as the finite potential energy cost no longer prevents
particles from overlapping. Further compression of the system
into the reentrant superfluid phase has the effect of raising the
value of g(0), as the system approaches the behavior of a free
Bose gas. Note that the first peak of g(r) in the conventional
superfluid phase is more pronounced than the corresponding
peak of the reentrant superfluid; this is a consequence of
the effective hard-core interaction between the particles. As
a finite-temperature method is employed, the magnitude of
the peaks of g(r) decreases even in the solid phase. This is
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FIG. 2. Ground-state pair-correlation functions for different val-
ues of rs at � = 1/30. Error bars are too small to be seen on the
scale of the figure. While the pair-correlation functions for rs = 4
and rs = 3 (corresponding to the superfluid and crystal phases)
show hard-core separation of particles, the reentrant superfluid phase
(rs = 1.5) acquires a finite value at the origin. In this phase, only very
weak peaks are left, rendering g(r) essentially flat for r � 2.

expected, as thermal fluctuations do not allow true crystalline
order in two dimensions. The important observation is that the
distance between neighboring peaks is constant over a large
range of r .

B. Reentrant superfluid phase in the limit of low �

Next, we investigate the point rs = 1, � = 0.001, and T =
0.001, which corresponds to high density and weak quantum
fluctuations. Figure 3 shows the total number of particles
for different grand-canonical simulations [20] in an initially
solid configuration of N = 256 particles for several values of
the chemical potential μ. While the curve suggests a linear
relationship between chemical potential and particle number
(implying a constant nonzero compressibility), tiny deviations
of much lower compressibility can be seen. These may hint
at a tendency towards insulating behavior, but this is not the
case here; they are a consequence of low temperature and finite
system size, similar to the observation of finite charging levels
in a quantum dot. It is well known that in dilute superfluids
the compressibility at very low temperatures can also be very
small on small system sizes and very low temperatures due to
the same mechanism. What is surprising here is that this occurs
already for temperatures of the order of the Kosterlitz-Thouless
temperature. Nevertheless, a gapped solidlike structure can
certainly be ruled out in the thermodynamic limit on the
basis of the pair-correlation function. In addition, the corre-
sponding Green’s function at zero momentum, G(τ,p = 0),
goes up with increasing system size for |τ | � 0, i.e., adding
particles to the simulation becomes easier. This is one of the
manifestations that this parameter regime is very difficult to
simulate. In particular, the superfluid density has anomalously
large autocorrelation times, which are unusual for the worm
algorithm. Interestingly, bosonic particle exchanges do not
suffer from the same decorrelation problem. Figure 4 shows a

FIG. 3. Particle number as a function of grand-canonical chemi-
cal potential μ for rs = 1, T = 0.001, and � = 1/1000. The initial
configuration is always a solid configuration at N = 256 in a
commensurate box. As the grand-canonical simulation allows the
particle number to fluctuate, noninteger values of N are possible.
However, for the point of μ = 5.8 (corresponding to N = 256), no
particle number changes are observed; this happens for several values
of μ. The horizontal line corresponds to 256 particles. Error bars are
not visible on this scale. In the inset, a zoom on the data shows regions
of nearly constant particle number.

typical distribution of particle permutations where exchanges
up to the total number of particles are reached. The distribution
can already be reliably measured in the early stages of the
simulation without observing any superfluid response. This
disagrees with the perception that macroscopic exchanges
directly trigger superfluidity (which holds for dilute systems).
The superfluidity of the phase is never in doubt though, as
can be seen from the the one-body density matrix n(r), shown
for a similar point (� = 0.002) in Fig. 5. It experiences a
weak power-law decay (setting in at a distance r∗) after a
fast initial drop with a power less than 1/4, demonstrating
the existence of off-diagonal long-range order in the system.

FIG. 4. For rs = 1, � = 0.001, T = 1/6400, and 256 particles,
the probability P (n) of bosonic exchanges involving n particle world
lines is shown.
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FIG. 5. The equal-time one-body density matrix at rs = 1 for
� = 0.002, T = 0.002, and different system sizes. After a rapid
initial decay, a nonintegrable power-law decay is seen for big enough
system sizes, rendering the phase a superfluid. The dashed line
illustrates the linear regime which holds for all r > r∗ (see text).

Although the asymptotic behavior of the curve is consistent
with conventional superfluids, the low value of n(r∗) at which
this power law sets in is unusual. Comparing this curve with
measurements for higher �, it follows that we can tune n(r∗)
with �. For increasing �, the winding estimator yields the
correct superfluid response more and more reliably (cf. Fig. 1).

On the basis of all these observations, we can state that
the system is ultimately a superfluid based on its properties
for big enough system sizes. The unusual microscopics are
due to the denseness witnessed in this parameter regime.
Finally, we note that the behavior of n(r) and g(r) for
sufficiently large values of r , as well as of the superfluid
density, is remarkably similar to the observations of the
superglass in Ref. [24]. However, as we are looking for the
thermodynamic ground state of the system, such a metastable
state can be excluded. Hence, the claim for a superglass, as
in Ref. [24], should only be made on the basis of additional
real-time considerations. We leave for future work the static

response of this phase, i.e., how it responds to pinning or
disorder.

IV. CONCLUSION

In conclusion, a first-principles numerical investigation of
the phase diagram of a 2D Bose system with Gaussian-core
pairwise interactions has yielded two different phases: a crystal
and a superfluid, which also shows reentrant behavior at high
densities. No supersolid or cluster crystal phases were found.
This was anticipated by the positiveness of the interaction
potential in Fourier space and affirms the cluster crystal
conjecture of Ref. [7].

The reentrant superfluid phase demonstrates unexpected
behavior for high particle mass. The power-law decay of the
one-body density matrix sets in at large distances, where
its value is already quite low. This requires big system
sizes to capture the relevant length scales. Likewise, grand-
canonical simulations experience deviations from nonzero
compressibility for finite systems. This is complemented by the
occurrence of large cycles of particle world line permutations,
independent of system size.

Whether such a system may lend itself to experimental
realization is difficult to assess. Recent progress in cold
atom manipulation allows one to tailor, to some degree,
the interaction among atoms [25]. The other aspects of
the system, including its detection, are already well within
current technology [25]. The crucial part is that the Gaussian
potential has no preferred length scale, unlike the softened
dipolar [26] or Rydberg potentials, whereas a system of
Yukawa bosons [17,18] shows a qualitatively similarly looking
phase diagram.
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