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We study the phase diagram of the Hubbard model in the weak-coupling limit for coexisting spin-density-
wave order and spin-fluctuation-mediated superconductivity. Both longitudinal and transverse spin fluctuations
contribute significantly to the effective interaction potential, which creates Cooper pairs of the quasiparticles of
the antiferromagnetic metallic state. We find a dominant dx2−y2 -wave solution in both electron- and hole-doped
cases. In the quasi-spin-triplet channel, the longitudinal fluctuations give rise to an effective attraction supporting
a p-wave gap, but are overcome by repulsive contributions from the transverse fluctuations which disfavor p-wave
pairing compared to dx2−y2 . The subleading pair instability is found to be in the g-wave channel, but complex
admixtures of d and g are not energetically favored since their nodal structures coincide. Inclusion of interband
pairing, in which each fermion in the Cooper pair belongs to a different spin-density-wave band, is considered for
a range of electron dopings in the regime of well-developed magnetic order. We demonstrate that these interband
pairing gaps, which are nonzero in the magnetic state, must have the same parity under inversion as the normal
intraband gaps. The self-consistent solution to the full system of five coupled gap equations gives intraband and
interband pairing gaps of dx2−y2 structure and similar gap magnitude. In conclusion, the dx2−y2 gap dominates
for both hole and electron doping inside the spin-density-wave phase.
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I. INTRODUCTION

Pairing of electrons by exchange of spin fluctuations
is a popular paradigm proposed for unconventional super-
conductivity including Fe-based superconductors, cuprates,
and heavy-fermion systems. Since many of these systems
exhibit an ordered magnetic phase coexisting with, or in close
proximity to, the superconducting phase, a small number
of studies have addressed the subsidiary problem of pairing
of quasiparticles in the symmetry-broken spin-density-wave
(SDW) phase. While this problem has a long history, recent
experimental and theoretical developments have led a number
of authors to revisit it [1–3].

For the simplest case of a doped one-band Hubbard model
with standard commensurate (π,π ) ordering, the existence
of pairing and its consequences for the symmetry of the
superconducting order parameter was initially investigated
in a seminal paper by Schrieffer et al. [4], where the
effective pairing interaction was obtained within the random
phase approximation (RPA) arising from longitudinal spin
fluctuations in the magnetically ordered phase. These authors
neglected the contribution to pairing from the transverse spin
fluctuations corresponding to the Goldstone mode of the
spin-symmetry-broken state, arguing that while such modes
lead to a divergent contribution to the spin susceptibility at the
ordering vector Q, the coherence factors of the SDW phase
screen the bare electron-electron interaction vertex, which
therefore vanishes at Q. Soon after, Frenkel and Hanke [5]
showed that the transverse fluctuations do contribute to the
pairing interaction in the same order as the longitudinal fluc-
tuations; the divergence of the transverse spin susceptibility
is eliminated by the coherence factors, but a residual constant
interaction remains.

For electron-doped cuprates, the one-band Hubbard model
seems to provide a reasonable minimal model since the
doped electrons reside primarily on the copper sites. Further-
more, calculations of band parameters for the electron-doped
cuprates point to the fact that the Coulomb interaction is
smaller than the bandwidth [6], in contrast to their hole-doped
counterparts. In consequence, the mean-field treatment of the
SDW order works quite well for the normal-state properties
of the electron-doped systems. In particular, ARPES reports
show a Fermi surface evolution upon increased electron doping
which agrees well with the band reconstruction of the one-band
Hubbard model due to commensurate (π,π ) order. Upon
electron doping, the Fermi surface consists of electron pockets
around (π,0), (0,π ). Close to critical electron doping, the
emergence of hole pockets at (or close to) the Fermi level
around (π

2 , π
2 ), (−π

2 , π
2 ) may occur [6].

Theoretically, the study of spin-fluctuation pairing for
the electron-doped cuprates has been addressed mostly in
the paramagnetic phase [7–13], where the mechanism was
found to give rise to a gap with dx2−y2 symmetry with
strong nonmonotonic features as a function of momentum
as a result of Fermi surface intersections with the magnetic
zone boundary, the so-called hot spots. At these positions the
pairing becomes particularly pronounced. This behavior was
found to agree qualitatively with ARPES [14] and Raman [15]
observations. In Ref. [12] the possibility for a crossover to
dxy symmetry was found at large dopings. In a later work,
Krotkov and Chubukov [16] studied the spin-mediated pairing
gap close to the quantum critical point of antiferromagnetic
(AF) order and found an anisotropic dx2−y2 gap symmetry,
but the anisotropic behavior was not related to the hot spots,
as opposed to previous work. A few studies also addressed
the coexistence of superconductivity and long-range AF order
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but treated the pairing phenomenologically, and also found a
dx2−y2 -wave solution [1,17,18].

For hole-doped cuprates, stronger interactions imply that
application of a weak-coupling approach to pairing is some-
what less justified. In addition, calculations of the spin wave
spectrum suggest that the commensurate (π,π ) order in this
case is not the ground-state solution [19,20], complicating the
theoretical modeling. Spin-fluctuation-mediated pairing has,
however, been extensively applied to study also hole-doped
cuprates within the one-band Hubbard model. First, for the
paramagnetic phase Scalapino et al. [21] generalized the
approach of Berk and Schrieffer [22] and found a dominant
dx2−y2 -wave pairing instability. Later, the study was extended
by various methods and numerical approaches [13,23–27]
including discussions of the possibility of other supercon-
ducting pairing symmetries arising from spin fluctuations.
From a strong-coupling approach, as derived from the t-J
model, analysis of the effective pairing at low hole dop-
ing [28] suggests a d-wave superconducting ground state
in any coexistence phase. This is consistent with rigorous
perturbative weak-coupling calculations in the presence of
weak density-wave order [29] as well as a study of hole-
doped cuprates in the coexistence phase [30]. In addition, a
recent study of spin-fluctuation-mediated superconductivity
in the SDW ordered metal attacked the problem by analytical
RPA calculations in the large-magnetization (small-pocket)
limit [3] and found that interactions were dominated by
longitudinal fluctuations on the electron-doped side, support-
ing a nodeless dx2−y2 gap, whereas on the hole-doped side
both longitudinal and transverse fluctuations support a nodal
dx2−y2 gap.

Recently, Lu et al. [31] studied the case of underdoped
cuprates in a t-J-like model and came to a rather different
conclusion. In this paper, the coexistence of commensurate AF
and superconductivity was investigated in a phenomenological
model where the pairing interaction arises based on nearest-
neighbor magnetic exchange neglecting the double-occupancy
constraint. In the coexistence phase, this study found the
leading superconducting instability to be triplet p wave in
the case of hole doping, providing a potential explanation
for recent photoemission measurements indicating a “nodal
gap,” a state with a full gap near the usual positions of the
dx2−y2 gap nodes whose existence is well established at higher
dopings [32,33]. It is worth noting, however, that in the original
strong-coupling study of unconventional superconductivity
driven by the spin waves, studied within the t-J model, the
dx2−y2 -wave symmetry of the superconducting gap was found
to be the only stable solution [34,35]. We also note that
there exist other potential explanations of the existence of
the nodeless gap in the literature [36–38].

This controversy suggests the need for a better understand-
ing of the phase diagram of the single-band Hubbard model
within a single, reliable approximation scheme which can
encompass paramagnetic, superconducting, and coexistence
phases, and which is capable of identifying the strength of pair-
ing by both longitudinal and transverse spin fluctuations and
charge fluctuations, and their relative importance for pairing
across a large doping range, for different electronic structures,
and for both weak and strong magnetism. Therefore, we extend

the work of Ref. [3] by a more complete, fully numerical solu-
tion of the problem to both confirm the analytical calculations
and extend them to the larger phase diagram.

We address the question of how the pairing interactions
and resulting gap symmetry in the one-band Hubbard model,
treated within the full spin-fluctuation approach with self-
consistently determined SDW order, evolve as a function of
doping throughout the phase diagram, including the coexis-
tence dome of SDW order and superconductivity. We show
that the dx2−y2 solution is in fact the leading superconducting
instability for all electron doping levels. In the hole-doped
case, we limit ourselves to small hole doping only and force
the (π,π ) order to be stable by a suppression of additional
intrapocket nesting contributions to the transverse spin sus-
ceptibility. This approach also yields a coexistence phase with
dx2−y2 order. Thus, the weak-coupling approach where pairing
is mediated by spin fluctuations gives qualitatively different
results than the “strong-coupling” approach of Ref. [31] in the
case of hole doping. We find that the subleading instability is a
singlet g-wave solution, which shares common nodes with the
dx2−y2 solution along the zone diagonals, and has additional
nodes along the momentum axes. In the hole-doped case where
the Fermi pockets are located far away from the zone axis, g

and dx2−y2 become nearly degenerate. However, since the two
solutions share common nodes, there is no gain in condensation
energy by, e.g., a time-reversal-symmetry broken solution of
the form d + ig, and the solution of the full gap equation in
fact favors dx2−y2 over g.

We find further that extended s wave is always suppressed
in the coexistence phase, in agreement with the findings in
Ref. [3] for small doping levels, and on the electron-doped
side we do not encounter a leading triplet gap at any moderate
doping away from half filling. The spin-fluctuation-pairing
mechanism becomes strongly suppressed above the critical
doping for which long-range magnetic order vanishes, since
the nesting conditions are rapidly weakening as the Fermi
surface segments of the paramagnetic phase move apart.

In a recent study of the iron-based superconductors by
Hinojosa et al. [44] it was pointed out that additional interband
gaps may develop in the coexistence phase due to pairing
of two fermions residing on different bands. Such pairs
are naively expected to be negligible because they involve
fermionic states far from the Fermi energy and do not alone
manifest a Cooper instability. In this regard, these interband
pairs can be considered as “anomalous.” However, they are
nonzero in the SDW state due to a combined effect of the
SDW gap and coupling to the intraband gaps (dubbed in the
following as normal gaps). In the iron-based system, this effect
is predicted to create a different superconducting phase which
explicitly breaks time-reversal symmetry by development of
chiral gaps. We find from a self-consistent treatment of the
coupled gap equations that the one-band Hubbard model
also supports substantial anomalous interband pairings. The
structural factor of the anomalous gaps is dx2−y2 as for
the intraband gaps, but the phase structure of the intraband
and interband gaps can be different. However, unlike the
case of iron-based systems [44], the chiral solution d intra

x2−y2 +
eiφd inter

x2−y2 does not appear to be favored in our numerical
calculations.
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II. MODEL AND METHOD

A. SDW mean-field Hamiltonian

The model is the one-band Hubbard Hamiltonian

H = −
∑
i,j,σ

ti,j c
†
iσ cjσ + U

∑
i

ni↑ni↓ − μ
∑
i,σ

niσ , (1)

where c
†
iσ creates an electron on site i with spin σ . The

interaction term U denotes the energy cost associated with
having two electrons on the same site. In reciprocal space the
Hamiltonian reads

H =
∑
kσ

εkc
†
kσ ckσ + U

2N

∑
k,k′,q

∑
σ

c
†
k′σ c

†
−k′+qσ c−k+qσ ckσ ,

(2)
with

εk = −2t[cos(kx) + cos(ky)] − 4t ′ cos(kx) cos(ky) − μ. (3)

The parameter −t is the energy gain corresponding to hopping
between neighboring sites, and −t ′ denotes the energy gain
by hopping to next-nearest-neighbor sites. The doping level
of the system is controlled by changing the chemical potential
μ. The interaction between two electrons is first treated in the
Hartree-Fock approximation giving rise to AF ordering of the
spins. We therefore consider the mean-field Hamiltonian

HSDW =
∑

k

′ ∑
σ

(c†kσ c
†
k+Qσ )

(
εk σW

σW εk+Q

)(
ckσ

ck+Qσ

)
, (4)

where W = −U
N

∑
k[〈c†k+Q↑ck↑〉 − 〈c†k+Q↓ck↓〉] is the AF

order parameter, and
∑′ refers to summation over the

reduced Brillouin zone only. Diagonalization of the mean-
field Hamiltonian leads to the energy spectrum E

α,β

k = ε+
k ±√

(ε−
k )2 + W 2, ε±

k = εk±εk+Q

2 . The magnetic gap equation is
solved self-consistently given the hopping integrals t = 1,
t ′, the Coulomb repulsion U , and the doping. A gapless

Goldstone mode at Q = (π,π ) in the transverse spin channel
is obtained automatically, since the magnetic gap equation
is equivalent to the condition 1 − UReχ+−

0 (Q) = 0 [4].

B. Superconducting pairing interactions

Higher order interactions in U generate superconductivity
on top of the AF order through longitudinal and transverse spin
fluctuations, following the original proposals of Refs. [4,21].
Since U scatters the bare electrons, the diagrammatics are
performed in terms of the bare-electron Green’s functions, but
the Cooper pairing takes place between the quasiparticles of
the AF state. The quasiparticle operators are related to the
bare-electron operators by the transformation

ckσ = ukαkσ + vkβkσ , (5)
ck+Qσ = sgn(σ )[vkαkσ − ukβkσ ]. (6)

Transverse and longitudinal spin fluctuations give rise to fun-
damentally different interactions. Inspection of the interaction
vertex formulated in real space [39] shows that the charge
and longitudinal interaction vertices give rise to no spin flips,
whereas the transverse interaction does. In the latter channel,
we have the gapless Goldstone mode of the AF phase which
gives rise to a divergent interaction potential between the bare
electrons. However, when we consider pairing between the
quasiparticles of the AF state, this divergence is removed
by the coherence factors as noted in earlier works [3,5]. In
the case of pairing between opposite spin electrons, spin-flip
processes are possible and the effective interaction is mediated
both by longitudinal and transverse spin fluctuations. If pairing
occurs between same-spin electrons, only longitudinal spin
fluctuations contribute and the pairing potential does not
include the bare Coulomb repulsion U since this acts only
between opposite spin electrons. The interaction Hamiltonian
is formulated in terms of the SDW quasiparticles, and in line
with earlier work [3,4] we show the interactions in the longitu-
dinal and transverse channel individually, with the transverse
part of the interaction stated as a spin-flip vertex explicitly,

Hc/z = 1

4N

∑
kk′σ

′
	z

k,k′(α
†
k′σα

†
−k′σα−kσαkσ + β

†
k′σ β

†
−k′σ β−kσ βkσ ) + 	̃z

k,k′(α
†
k′σα

†
−k′σ β−kσ βkσ + β

†
k′σβ

†
−k′σα−kσαkσ ), (7)

H± = − 1

2N

∑
kk′σ

′
	+−

k,k′(α
†
k′σα

†
−k′σα−kσαkσ + β

†
k′σ β

†
−k′σ β−kσ βkσ ) + 	̃+−

k,k′(α
†
k′σα

†
−k′σ β−kσ βkσ + β

†
k′σ β

†
−k′σα−kσ αkσ ), (8)

H ss
c/z = 1

2N

∑
kk′σ

′
	ss

k,k′(α
†
k′σα

†
−k′σα−kσ αkσ + β

†
k′σ β

†
−k′σ β−kσ βkσ ) + 	̃ss

k,k′(α
†
k′σα

†
−k′σ β−kσ βkσ + β

†
k′σ β

†
−k′σα−kσαkσ ), (9)

with

	z
k,k′ = [2U − Vc(k − k′)]l2(k,k′) − [2U − Vc(k − k′ + Q)]m2(k,k′) + Vz(k − k′)l2(k,k′) − Vz(k − k′ + Q)m2(k,k′), (10)

	+−
k,k′ = V+−(k − k′)n2(k,k′) − V+−(k − k′ + Q)p2(k,k′), (11)

	ss
k,k′ = −Vc(k − k′)l2(k,k′) − Vc(k − k′ + Q)m2(k,k′) − Vz(k − k′)l2(k,k′) − Vz(k − k′ + Q)m2(k,k′). (12)

The main ingredients in the pairing interactions are the spin and charge susceptibilities within the RPA approximation:

Vc(q) = U 2χz
0 (q)

1 + Uχz
0 (q)

, (13)

Vz(q) = U 2χz
0 (q)

1 − Uχz
0 (q)

, (14)

V+−(q) = U 2χ+−
0 (q)

1 − Uχ+−
0 (q)

, (15)
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where the spin susceptibilities are defined by χz
0 (q,ω) =

i
2N

∫
dteiωt 〈T Sz

q(t)Sz
−q〉 and χ+−

0 = i
2N

∫
dteiωt 〈T S+

q (t)S−
−q〉.

As seen from Eqs. (10)–(12) the bare interaction vertices
are modified by coherence factors of the SDW phase given

by u2
μ(k,k′) = 1

2 [1 + (−1)μ
ε−

k ε−
k′+νμW 2√

(ε−
k )2+W 2

√
(ε−

k′ )2+W 2
] with u2

μ =
m2,l2,p2,n2 and νμ = (−1,1,1,−1).

The interaction Hamiltonians stated in Eqs. (7)–(9) are
restricted to Cooper pairing between quasiparticles residing in
the same band, i.e., 〈α†

kσα
†
−kσ 〉 and 〈β†

kσ β
†
−kσ 〉. In Sec. II E we

introduce an extended model which includes Cooper pairing
between fermions residing on different pockets, i.e., mean
fields of the form 〈α†

kσ β
†
−kσ 〉. For now we restrict ourselves

to normal intraband Cooper pairs and include pair-scattering
interactions within each band as well as between the bands.
The expression for the interband couplings between pairs
of (k,k′) with k residing on the α band and k′ on the β

band, which are dubbed 	̃z
k,k′ , 	̃+−

k,k′ , and 	̃k,k′ , are obtained
by interchanging the coherence factors p2(k,k′) ↔ l2(k,k′)
and m2(k,k′) ↔ n2(k,k′) in Eqs. (10)–(12) in agreement with
Refs. [3,4].

The presence of magnetic order breaks spin-rotational
symmetry, but inversion symmetry is preserved. This allows
us to express the superconducting gap in an even and odd
parity form which corresponds to a quasi-spin-singlet and a
quasi-spin-triplet gap, respectively. We label the gaps by the
superscript “s” for even parity (singlet) and superscript “t”
for the odd parity (triplet) gap, i.e., �

α(s/t)
k = 〈α−k↓αk↑〉 ∓

〈α−k↑αk↓〉. As we show later when discussing the interband
(anomalous) pairing terms, it is more useful to classify the
superconducting gaps in the SDW background by parity rather
than by spin quantum numbers. In this regard calling Cooper
pairing spin singlet or spin triplet in the SDW background
actually refers to the even or odd parity of the wave function,
respectively.

In the derivation of the superconducting gap equations
the splitting of these two channels leads to the symmetriza-
tion/antisymmetrization of the pairing potential in the quasi-
spin-singlet/triplet gap equation

�
α,(s/t)
k = − 1

8N

∑′
k′

[
	

(s/t)
k,k′

�
α,(s/t)
k′


α,(s/t)
k′

tanh

(


α,(s/t)
k′

2kBT

)

+ 	̃
(s/t)
k,k′

�
β(s/t)
k′


β(s/t)
k′

tanh

(


β(s/t)
k′

2kBT

)]
, (16)

and similarly for �
β,(s/t)
k by interchanging α ↔ β. In the case

of opposite spin interaction the effective pairing interactions
for the singlet and triplet channel are given by

	
(s)
k,k′ = (

	z
k,k′ + 2	+−

k,k′
) + (

	z
−k,k′ + 2	+−

−k,k′
)
, (17)

	
(t)
k,k′ = (

	z
k,k′ − 2	+−

k,k′
) − (

	z
−k,k′ − 2	+−

−k,k′
)
, (18)

for the intraband contributions and equivalent expressions
for the interband, 	̃, contributions. Similarly, for same-
spin electron interactions, the singlet and triplet potential is
obtained directly by a symmetrization/antisymmetrization of
the potential stated in Eq. (12).

The strength of the pairings is calculated by evaluating the
real part of the RPA susceptibilities at zero energy. Note that
due to broken spin-rotation symmetry there is a difference
between χz

0 and χ+−
0 . The pairing vertex V+−(q) diverges at

q = Q due to the Goldstone mode in the transverse channel.
This divergence is removed, however, by the coherence factors
p2(k,k′) of the SDW phase, as discussed above.

In the paramagnetic phase where W = 0, pairing takes
place between the bare electrons and the gap equation then
reduces to

�
(s/t)
k = − 1

4N

∑
k′

(
V

(s/t)
k,k′ ± V

(s/t)
−k,k′

)�
(s/t)
k′

E
(s/t)
k′

tanh

(
E

(s/t)
k′

2kBT

)
, (19)

with E
(s)/(t)
k =

√
ξ 2

k + |�(s/t)
k |2. The effective pairings are given

by

V
(s/t)

k,k′ = U + 1

2
[Vz(k − k′) − Vc(k − k′)] ± V+−(k − k′).

(20)

C. Gap symmetries in the SDW phase

In the SDW phase, the effective pairings contain Umklapp
terms, which are the terms in Eqs. (10)–(12) containing
the argument k − k′ + Q. Due to these terms, there are
attractive pair scatterings (k,k′) on the reconstructed Fermi
surface. This contrasts with the situation in the paramagnetic
phase, where the spin-fluctuation part of singlet potential is
always purely repulsive for all pairs of (k,k′), as seen from
Eq. (20). However, despite the presence of a partially attractive
potential, a conventional s-wave superconducting gap is not
possible. This is due to a symmetry constraint on the pairing
potentials, which must obey 	k,k′ = −	k+Q,k′ = −	k,k′+Q, a
property that is fulfilled for both the longitudinal and transverse
pairing interactions. This symmetry also carries over to the
superconducting gap, which must satisfy

�k = −�k+Q. (21)

For the two-dimensional square lattice, the gap solutions can
be classified according to the five irreducible representations
of the D4h group that are even under reflection through the
horizontal plane, i.e., extended s-wave (s∗), dx2−y2 , dxy , g,
and the triplet solution, px/py , which is doubly degenerate.
First we consider whether these solutions all comply with the
additional symmetry constraint, Eq. (21), present in the SDW
phase. This disqualifies the dxy solution and as a result we
consider the leading gap symmetries from among the set

A1g : s∗ = cos(kx) + cos(ky), (22)

B1g : dx2−y2 = cos(kx) − cos(ky), (23)

A2g : g = [cos(kx) − cos(ky)] sin(kx) sin(ky), (24)

Eu : px = sin(kx), py = sin(ky). (25)

We emphasize that these basis functions are only the lowest
order functions corresponding to the given irreducible repre-
sentations. In the construction of higher order solutions in the
SDW phase, it is important to note that an odd number of
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FIG. 1. Fermi surfaces in the case of (a) small hole doping, 〈n〉 =
0.96, and (b) small electron doping, 〈n〉 = 1.05, for U = 3 and t ′ =
−0.35.

the above basis functions must be multiplied in order for the
resulting higher order gap function to comply with Eq. (21).
Further allowed higher order solutions can also be achieved by
a multiplication of the dxy basis function [sin(kx) sin(ky)] with
any A1g , B1g , or Eu basis functions. A relevant triplet solution
is constructed by a multiplication of the triplet p wave with
the lowest order A1g and B1g basis functions,

p′
x = [cos(kx) − cos(ky)][cos(kx) + cos(ky)] sin(kx), (26)

which for tetragonal symmetry belongs to the same Eu

symmetry representation as the original p-wave solution.
Therefore, we dub this state p′ wave. Note that in the literature
on Sr2RuO4 this function is sometimes called fx2−y2 wave [40].
We find that this is the leading solution among the triplet
solutions for any doping. However, as we shall see below, it
does not dominate over the singlet solutions.

The consequences of a dx2−y2 solution are manifested very
differently depending on the Fermi surface geometry. In the
presence of only electron pockets, as in Fig. 1(b), it is nodeless
at the Fermi surface, as opposed to the other solutions, which
all display nodes. If both electron and hole pockets are present
at the Fermi surface as in Fig. 5(e), the dx2−y2 solution has
nodes only at the hole pockets, whereas the extended s-wave
as well as the g-wave solutions exhibit nodes at both types
of pockets. Naively, we might expect the preferred solution
to have the minimum number of nodes at the Fermi surface.
In this respect, the dx2−y2 solution clearly wins, but ultimately
the leading solution relies on a detailed investigation of the
structure of the pairing interaction in the SDW phase and
the solution to the full gap equation. Finally, when only hole
pockets are present at the Fermi surface as shown in Fig. 1(a),
the px solution becomes nodeless, whereas none of the singlet
gap symmetries will provide nodeless superconductivity. As
we show below, the px solution is supported from the structure
of the longitudinal fluctuations, but becomes overall less
favorable compared to dx2−y2 due to an effective repulsion
arising from the transverse spin fluctuations.

D. Linearized gap equation in the SDW phase

In order to determine the leading and subleading instabil-
ities, we linearize the full gap equation stated in Eq. (16) to

obtain the eigenvalue problem

− 1

4(2π )2
Mk,k′�k′ = λ�k′ . (27)

The eigenvector of this equation

�k =

⎡
⎢⎢⎣

�α
k

�
βh1
k

�
βh2
k

⎤
⎥⎥⎦ (28)

is a function of momentum k. The momentum is located
either on the electron pocket around (π,0), which we denote
by α, or on the two hole pockets, denoted by βh1/βh2 ,
around (π

2 , π
2 )/(−π

2 , π
2 ), respectively; see Fig. 1. We solve the

eigenvalue problem Eq. (27) for k and k′ on these three closed
pockets, which is equivalent to solving it in the whole magnetic
Brillouin zone. All intraband and interband interactions are
included in Mk,k′ :⎡

⎢⎢⎣
	αα

k,k′ l
α
k′
/∣∣vα

k′
∣∣ 	̃

αβh1
k,k′ l

β

k′
/∣∣vβ

k′
∣∣ 	̃

αβh2
k,k′ l

β

k′
/∣∣vβ

k′
∣∣

	̃
βh1 α

k,k′ lαk′
/∣∣vα

k′
∣∣ 	

βh1 βh1
k,k′ l

β

k′
/∣∣vβ

k′
∣∣ 	

βh1 βh2
k,k′ l

β

k′
/∣∣vβ

k′
∣∣

	̃
βh2 α

k,k′ lαk′
/∣∣vα

k′
∣∣ 	

βh2 βh1
k,k′ l

β

k′
/∣∣vβ

k′
∣∣ 	

βh2 βh2
k,k′ l

β

k′
/∣∣vβ

k′
∣∣

⎤
⎥⎥⎦.

Here, lk′ denotes the length of the Fermi surface line segment
represented by the point k′, and vk′ is the Fermi velocity at
k′. The intraband (	kk′) and interband (	̃kk′) pairings must be
expressed in the singlet and triplet symmetrized versions in
accordance with Eqs. (17) and (18). The largest eigenvalue, λ,
gives the leading instability since it corresponds to the largest
superconducting critical temperature and the symmetry of the
gap is given by the corresponding eigenvector.

The linearized gap equation does not allow for a deter-
mination of complex gap solutions, which are time-reversal-
symmetry broken (TRSB) solutions, since higher order in-
teractions in �k are removed in the linearization process.
Therefore, we have additionally solved the full nonlinear gap
equation as given in Eq. (16). This allows us to compare
the real solutions and TRSB solutions energetically. The
latter type of solutions arise naturally in situations where
the pairing potential allows for two degenerate eigenfunctions
of Mk,k′ . Therefore, they are likely to appear in the triplet
channel, where all solutions to the linearized gap equation
are twofold degenerate. Since the linearized equation in fact
also exhibits accidentally degenerate solutions in the singlet
channel upon hole doping, this opens the possibility of TRSB
states in this case. The prospect of observation of transitions
to TRSB states as a function of doping or other control
parameters, potentially the first observation of this kind, has
recently been the subject of considerable attention in Fe-based
superconductors [41–43].

E. Anomalous pairing gaps

So far, we have restricted the discussion to Cooper pairing
between quasiparticles residing on the same band, which are
Cooper pairs of the form 〈α†

kσα
†
−kσ 〉 and 〈β†

kσ β
†
−kσ 〉. Now we

introduce an extension of the model to also include anomalous
pairings between fermions belonging to different pockets, i.e.,
〈α†

kσ β
†
−kσ 〉. The complete interaction Hamiltonian includes
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pair-scattering processes between normal and anomalous gaps,
as well as scatterings between anomalous gaps.

Anomalous pairs of the form 〈α†
kσ β

†
−kσ 〉 involve fermions

far from the Fermi level, since the two bands are gapped by
|Eα

k − E
β

k | � 2W . Nevertheless, the anomalous gaps become
sizable due to the coupling to the normal intraband pairs
and exist only in the SDW phase since the coupling between
normal and anomalous gaps is proportional to W . A detailed
analysis of the interaction Hamiltonian reveals that even parity
intraband gaps, i.e., 〈α†

k↑α
†
−k↓〉 − 〈α†

k↓α
†
−k↑〉, couple to even

parity anomalous interband gaps. In the iron-pnictide study
of Ref. [44] the reported anomalous gap was dubbed quasi-
spin-triplet and coupled to an even-parity singlet intraband

gap. However, in that case the triplet gap is actually of even
parity, which is allowed due to the band index. As a matter of
fact, in the SDW background it is more useful to classify the
superconducting gaps by parity rather than by spin quantum
numbers, as spin-rotational symmetry is explicitly broken.
Thus, in our case as well as in Ref. [44] one has an even-parity
normal intraband gap coupling to even-parity anomalous
pairing contributions. As we shall see below, calculations of
the normal intraband gaps reveal an even-parity dx2−y2 -wave
solution. Because of this, and also as a result of the structure
of the interaction Hamiltonian, we restrict ourselves to the
even-parity channel which we label by a quasi-spin-singlet
index, s. In the even-parity channel, the mean-field interaction
Hamiltonian takes the form

H� = −
∑

k

′[
�s

αα(k)α−k↓αk↑ + �s
ββ(k)β−k↓βk↑ + �s

αβ(k)[α−k↑βk↓ − α−k↓βk↑ + β−k↑αk↓ − β−k↓αk↑]

+�s
αβ↑↓(k)α−k↓βk↑ − �s

αβ↓↑(k)β−k↓αk↑ + H.c.
]
, (29)

with the mean fields

�s
αα(k) = − 1

8N

∑
k′

′
iσ

y

γ δ[	s
k,k′ 〈α†

k′γ α
†
−k′δ〉 + 	̃s

k,k′ 〈β†
k′γ β

†
−k′δ〉] + iσ

y

γ δ	
αβ,s

k,k′ 〈α†
k′δβ

†
−k′γ + β

†
k′δα

†
−k′γ 〉, (30)

�s
ββ(k) = − 1

8N

∑
k′

′
iσ

y

γ δ[	s
k,k′ 〈β†

k′γ β
†
−k′δ〉 + 	̃s

k,k′ 〈α†
k′γ α

†
−k′δ〉] − iσ

y

γ δ	
αβ,s

k,k′ 〈α†
k′δβ

†
−k′γ + β

†
k′δα

†
−k′γ 〉, (31)

�s
αβ(k) = − 1

8N

∑
k′

′
iσ

y

γ δ	
αβ,s

k,k′ 〈α†
k′γ α

†
−k′δ − β

†
k′γ β

†
−k′δ〉, (32)

�s
αβ↑↓(k) = − 1

4N

∑
k′

′
	

αβαβ,1,s

k,k′ 〈α†
k′↑β

†
−k′↓〉 + 	

αβαβ,2,s

k,k′ 〈β†
k′↑α

†
−k′↓〉, (33)

�s
αβ↓↑(k) = − 1

4N

∑
k′

′
	

αβαβ,1,s

k,k′ 〈α†
k′↓β

†
−k′↑〉 + 	

αβαβ,2,s

k,k′ 〈β†
k′↓α

†
−k′↑〉. (34)

In these gap equations we have introduced three new spin-fluctuation-mediated pairing interactions:

	
αβ

k,k′ = ∓[Vlo(k − k′)ν(k,k′) + Vlo(k − k′ + Q)μ(k,k′)] − [2V+−(k − k′)μ(k,k′) + 2V+−(k − k′ + Q)ν(k,k′)], (35)

	
αβαβ,1
k,k′ = −[Vlo(k − k′)p2(k,k′) + Vlo(k − k′ + Q)n2(k,k′) + 2V+−(k + k′)n2(k,k′) + 2V+−(k + k′ + Q)p2(k,k′)], (36)

	
αβαβ,2
k,k′ = [Vlo(k − k′)l2(k,k′) + Vlo(k − k′ + Q)m2(k,k′) + 2V+−(k + k′)m2(k,k′) + 2V+−(k + k′ + Q)l2(k,k′)], (37)

where Vlo(q) = 2U − Vc(q) + Vz(q), and ∓ in Eq. (35)
refers to the quasi-spin-singlet and -triplet, respectively. In
Eqs. (30)–(34) the superscript s refers to the symmetrized
potentials, e.g., 	

αβ,s

k,k′ = 	
αβ

k,k′ + 	
αβ

−k,k′ . This ensures that all
mean fields are of even parity.

We have introduced two new coherence factors, which are
proportional to the magnetic order parameter W :

μ(k,k′) = W

2

(
ε−

k′ + ε−
k

E−
k E−

k′

)
, (38)

ν(k,k′) = W

2

(
ε−

k′ − ε−
k

E−
k E−

k′

)
. (39)

Note that the coupling between the normal intraband
gaps and the anomalous pairings occurs due to the pairing

stated in Eq. (35) which is proportional to the SDW order
parameter.

III. RESULTS

In the next sections, we discuss the results of spin-
fluctuation-mediated pairing in the SDW phase. First, we
restrict the model to normal intraband Cooper pairs only. In
Sec. III A we study how the effective interactions mediated
by transverse and longitudinal spin fluctuations evolve as a
function of doping. Thereafter, we turn to the implications for
the evolution of different gap symmetry solutions in Sec. III B.
We focus on electron doping, since this is the most relevant
regime for a coexistence phase of commensurate AF order and
superconductivity. In the case of hole doping, we restrict the
investigation to small hole doping levels below 10%. Lastly, we
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provide a discussion of the extended model, where anomalous
pairings are included, in Sec. III D.

A. Pairing interactions from longitudinal
and transverse fluctuations

First we focus on the strength and structure of the pairing
potentials between opposite-spin electrons arising from longi-
tudinal and transverse spin fluctuations for hole and electron
doping. In Fig. 2 we plot the value of the pair scattering 	

s/t

k,k′
for which the pairing strength is maximal for any pair of
momenta (k,k′) on the Fermi surface. In the low-doping limit,
we observe that the interaction through transverse fluctuations
is much stronger for hole doping than for electron doping.
For interactions in the longitudinal channel, the situation is
opposite, since in this case the pairings are strongest for small
electron doping compared to small hole doping.

Generally, for the hole-doped system, transverse fluc-
tuations are quantitatively stronger than the longitudinal
fluctuations. For electron dopings, the longitudinal fluctuations
dominate close to half filling, whereas both types of pairings
contribute more equally at larger doping levels. In fact, the
strength of the pairing interactions in both channels builds
up towards the critical electron doping where the AF order
disappears. This naively suggests an increase in supercon-
ductivity close to critical electron doping. However, a closer
inspection of the (k,k′) dependence of the pairing reveals that
it develops a sign change for a part of the intrapocket potential
and becomes strongly repulsive for nearby points at the Fermi
surface. This leads to an overall gap suppression despite the
increased interaction strength.

In general, knowledge of the (k,k′) structure of the
pairing potential is crucial in order to decide what kind of
superconducting instabilities are favored in the AF phase. To
address this question, in Figs. 3 and 4 we map out both the
singlet and triplet pair-scattering potentials due to longitudinal
and transverse spin fluctuations for hole and electron doping,

n
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|Γ
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FIG. 2. Maximum value of the pairing contributions from lon-
gitudinal and transverse spin fluctuations in the singlet and triplet
channel, 	

s/t

k,k′ , in the SDW phase as a function of doping, for the
parameters t ′ = −0.35 and U = 3.

FIG. 3. Effective pairing contributions from longitudinal [(a), (c)]
and transverse [(b), (d)] spin fluctuations in the singlet and triplet
channel on the hole pocket centered at ( π

2 , π

2 ). The black cross denotes

the position of k′ and the value of 	
s/t

k,k′ is shown as a function of k
around the hole pocket. Negative potential contributions correspond
to effective attraction. The zone diagonal is indicated by a dashed line.
The filling is 〈n〉 = 0.96 and U = 3.0, t ′ = −0.35. Note the different
color scale for pairing potentials in the longitudinal and transverse
channels.

respectively. In the case of small hole doping (Fig. 3), the
singlet pairing interactions from longitudinal and transverse
spin fluctuations are similar in structure; there is an effective
attractive (negative) interaction for k and k′ on the same
side of the zone diagonal, whereas the interaction becomes
repulsive (positive) when k and k′ are on opposite sides
of the zone diagonal, as deduced from Figs. 3(a) and 3(b).
This structure supports d-wave as well as g-wave states.
In this case, the pairing interaction due to transverse spin

FIG. 4. Effective pairing contributions from longitudinal [(a), (c)]
and transverse [(b), (d)] spin fluctuations in the singlet and triplet
channel on the electron pocket centered at (π,0). The black cross
denotes the position of k′ and the value of 	

s/t

k,k′ is shown as a function
of k around the electron pocket. The filling is 〈n〉 = 1.05 and U =
3.0, t ′ = −0.35. Note the different color scale for singlet and triplet
pairing potentials.
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fluctuations is much stronger than the pairing arising from
longitudinal spin fluctuations, as was also deduced from Fig. 2,
and expected from Refs. [3,5,19]. In the triplet channel, the
effective interaction arising from the two different types of
spin fluctuations has very different character. The longitudinal
fluctuations in fact give rise to a locally attractive pairing
on the entire pocket, as shown in Fig. 3(c). This type of
pairing supports a nodeless gap of p-wave character, i.e.,
�k ∝ sin(kx). However, due to the strong intrapocket repulsive
interaction mediated by transverse spin fluctuations shown in
Fig. 3(d), the total pairing interaction does not allow for a
p-wave solution [3]. Therefore the triplet solution becomes
higher order and will display nodes at the Fermi level.

For electron doping, the pairing interaction in the singlet
channel is locally attractive for k and k′ residing on the same
electron pocket, as shown in Figs. 4(a) and 4(b). Attractive
pairing occurs due to both longitudinal and transverse spin
fluctuations. As opposed to the hole-doped case, it is the
longitudinal fluctuations that mediate the strongest effective
pairing. In this regime, it is clearly the dx2−y2 solution which
will be favored due to the symmetry 	k,k′+Q = −	k,k′ . Upon
increasing the electron doping the purely attractive intrapocket
interaction is replaced by partly repulsive regions and this will
diminish the resulting superconducting gap value. In the triplet
channel the pairings from both types of fluctuations will be
quite weak; see Figs. 4(c) and 4(d). As in the case of hole
doping, the longitudinal fluctuations support a p-wave gap
since it is attractive for k and k′ located at the same side of
the Fermi pocket and repulsive for k and k′ on opposite sides,
as shown in Fig. 4(c). The transverse fluctuations display the
reverse structure as evident in Fig. 4(d), which is the reason
why the p-wave solution becomes suppressed also on the
electron-doped side.

B. Solutions to the linearized gap equation

Keeping in mind the structure of the pairing interactions
described above, we now turn to the solutions to the linearized
gap equation (27) in order to determine the subleading
solutions and the doping evolution of the three leading
solutions. We consider three qualitatively different types of
Fermi surfaces. First, we study a Fermi surface consisting of
hole pockets at (±π

2 ,±π
2 ) which occurs on the hole-doped side;

see Fig. 5(a). Second, we turn to electron pockets at (±π,0)
and (0,±π ) which occur for small and intermediate electron
doping levels, see Fig. 5(c), and third, we study the occurrence
of both electron and hole pockets very close to critical doping
as in Fig. 5(e), i.e., the doping level for which AF order
disappears. As discussed above, the presence of hole pockets
destabilizes the commensurate AF by additional intrapocket
contributions to the bare spin susceptibilities. In this case, we
force stability of the commensurate AF order by turning off
the intrapocket contributions by hand, which is justified from
the work by Chubukov and Frenkel [19] showing that vacuum
renormalization leads to a stability of the commensurate AF
order at small hole dopings.

By inspection of the intrapocket potential structure on the
hole pocket shown in Figs. 3(a) and 3(b), we expect either of the
two solutions dx2−y2 or g for the weakly hole-doped system.
From the intrapocket potential structure it is not possible to
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FIG. 5. Solutions to the linearized gap equation in the presence
of (a), (b) only hole pockets (4% hole doping and U = 3), (c), (d)
only electron pockets (5% electron doping and U = 3), or (e), (f)
both types of pockets (5% electron doping and U = 2.735). The last
situation is obtained very close to the AF quantum critical point, i.e.,
for W → 0. The leading solutions are shown in the first column and
the subleading solutions are shown in the second column. In all three
cases the leading solution is dx2−y2 , and the subleading solution is g

wave. The latter differs from s wave by being odd under kx → −kx

and ky → −ky . Note that in the case of hole doping the two solutions
dx2−y2 and g are nearly degenerate with λd = 0.384 and λg = 0.381.
In the case of small and intermediate electron doping, the dx2−y2

solution becomes strongly dominant. Upon increased electron doping
approaching the quantum critical point, the g-wave solution becomes
increasingly important, although always subdominant.

qualitatively distinguish between these two solutions. The only
other way that the system might choose one solution over the
other would be from the structure of the pairing potential for k
on one hole pocket and k′ on the neighboring pocket. However,
from the numerical potential evaluation it turns out that the
interpocket pairing contribution is an order of magnitude
smaller than the intrapocket pairing and its symmetry does not
favor one of the solutions over the other. This is the reason we
obtain two nearly degenerate singlet solutions, namely dx2−y2

and the g solutions, in Figs. 5(a) and 5(b).
Turning to the case of 5% electron doping shown in

Figs. 5(c) and 5(d), we see that the dx2−y2 solution is
clearly favored over the subleading solution g, which becomes
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strongly suppressed. This is a direct consequence of the
intrapocket attraction between k and k′ residing on the same
electron pocket. Upon increasing doping, the electron pockets
grow in size, but throughout the SDW region, the dx2−y2

solution continues to be the leading solution although the
subleading g wave gets closer. Also close to the crossover to
the paramagnetic phase, where both electron and hole pockets
are present at the Fermi surface, the leading solution remains
dx2−y2 as shown in Figs. 5(e) and 5(f).

C. Coexistence phase diagram

The complete doping evolution of the three leading super-
conducting order parameters, dx2−y2 , g, and p′ wave, is shown
in the phase diagram in Fig. 6. On the hole-doped side, we limit
the study to the underdoped region. Very close to half filling we
observe a near-degeneracy of the dx2−y2 - and g-wave solutions.
The existence of two degenerate solutions in principle allows
for their mixture as a TRSB solution, or for orthorhombic
distortions as a direct mixture. At the mean-field level, the
preference of a low-temperature TRSB solution might be
expected when it is possible to remove gap nodes at the Fermi
surface, since removal of gaps from |�k| leads to a gain in
the condensation energy. In the present case of the degenerate
solutions dx2−y2 and g, however, we note that these share the
same nodes along the zone diagonal. Thus, there will be no
apparent gain of energy by constructing a TRSB solution of the
form dx2−y2 ± ig. In fact, solving the full gap equation as stated
in Eq. (16) reveals that the dx2−y2 solution is energetically
favored. Upon larger hole doping, the near-degeneracy of the
dx2−y2 - and g-wave solutions is split and the dx2−y2 solution
becomes clearly dominant in this regime. In the case of electron
doping, the d-wave solution is strongest very close to half
filling even though this is not where the longitudinal and
transverse pairing potentials achieve their maximum strengths;
see Fig. 2. The reason is that in the limit where electron pockets
are small, the structure of the intrapocket pairing potentials is
purely attractive, as shown in Figs. 4(a) and 4(b), and this
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FIG. 6. Three leading superconducting instabilities as a function
of filling. The SDW region is shown by the green area. The three
largest eigenvalues to the linearized gap equation, Eq. (27), are
shown. The dx2−y2 solution (red line) dominates at all fillings. The
next-nearest-neighbor hopping is t ′ = −0.35 and the bare Coulomb
interaction is U = 3.

strongly supports a d-wave solution. We note that this feature
of a well-developed gap in the limit of small electron dopings
is an inherent result of the weak-coupling approach to the co-
existence phase. At critical electron doping for which W → 0,
the Fermi arcs just touch the magnetic zone boundary and as a
consequence, nesting by Q on the paramagnetic side is rapidly
weakened upon increased electron doping. The ordering of the
leading solutions remains the same as in the SDW phase, with
the p′ solution, which in the paramagnetic phase takes the sim-
pler form [cos(kx) − cos(ky)] sin(kx), the least favorable. The
paramagnetic Fermi surface, which is a hole pocket centered at
(π,π ), is roughly circular thereby preventing nesting not only
at Q, but at any q vector. As a result spin-fluctuation-mediated
superconductivity rapidly dies off. The evolution of the dx2−y2

solution was previously discussed in Ref. [8], where the
possibility of a different pairing mechanism close to the
crossover between SDW and paramagnetism was speculated.
In Ref. [8] the pairing was treated at a phenomenological
level and here we note that also the full treatment of the
spin-mediated pairing gives rise to a rapid decrease in the
superconductivity upon entering the paramagnetic region.

Finally, we show estimations for the critical temperatures of
the commensurate AF order, TN , as well as the superconduct-
ing ordering temperature, Tc, in Fig. 7. The Tc is estimated from
the eigenvalue λ obtained for the leading d-wave solution as a
function of doping. Whereas Tc drops off upon increasing elec-
tron doping it shows the opposite evolution as a function of hole
doping. At 〈n〉 = 1 the superconducting instability is absent
due to a full gapping of the Fermi surface by the magnetic order.
Similar behavior was found by variational cluster perturbation
theory in the work by Sénéchal and coworkers [45].

As discussed in the Introduction, the results on the hole-
doped side contradict the recent findings of Ref. [31], where
a p-wave solution appears as the leading instability. In fact,
the Cooper pairing in Ref. [31] is mediated by an exchange
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FIG. 7. The critical temperature, Tc = 1.13εce
−1/λ, with the

energy cutoff set to εc = 0.25 and t = 400 meV. The superconducting
instability is dx2−y2 at all fillings. The SDW region which is
determined from the mean-field gap equation is shown by the green
area. The next-nearest-neighbor hopping is t ′ = −0.35 and the bare
Coulomb interaction is U = 3. Note that within the weak-coupling
approach the SDW ground state is always metallic away from 〈n〉 = 1
and therefore does not cover the Mott-insulating behavior in the
underdoped region of hole-doped cuprates.
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interaction which involves only nearest-neighbor sites, while
in our approach the interaction potential in the Cooper channel
invokes effectively also sites which are farther apart. The
similarity of the treatment of the coexistence phase in Ref. [31]
and our approach allows for a direct comparison of the
interaction Hamiltonians. In the simplified case of only hole
pockets at the Fermi surface, the interaction Hamiltonian reads
generally

Hhole =
∑
k,k′σ

	(k,k′)β†
kσβ

†
−kσ β−k′σ βk′σ . (40)

In the t-J-like model without double-occupancy constraint
employed in Ref. [31], the effective interaction entering
Eq. (40) takes the form

	t−J(k,k′) = −J (k − k′)
2

[m2(k,k′) + l2(k,k′)]

−J (k + k′)[n2(k,k′) + p2(k,k′)], (41)

with J (q) = J [cos(qx) + cos(qy] and J > 0. By contrast, in
the Hubbard model the effective interaction entering Eq. (40)
is given by

	Hub(k,k′) = 	z
k,k′ ± 2	+−

k,k′ , (42)

with the longitudinal and transverse effective interactions
stated in Eqs. (10) and (11). The lower sign of Eq. (42)
belongs to the triplet channel and this is the source of an
effective intrapocket repulsion on the hole-doped side as
shown in Fig. 3(d). On the contrary, the effective interaction
as stated in Eq. (41) gives rise to a purely attractive triplet
potential for k and k′ residing on the same hole pocket,
and therefore the p-wave solution would indeed appear to
be the dominating instability. Note, however, that the model
of Ref. [31] cannot be considered strictly as a strong-coupling
limit of the single-band Hubbard model as it does not include a
constraint for no double occupancies of the fermions explicitly.
This could play an important role. For example, as mentioned
in the Introduction, the original strong-coupling study of
unconventional superconductivity driven by the spin waves,
studied within the t-J model with the constraint of no double
occupancies, does find the dx2−y2 -wave symmetry of the
superconducting gap to be the only stable solution [34,35].

D. Anomalous pairing gap

We introduced the possibility of additional pairing gaps in
the coexistence phase in Sec. II E. Such anomalous pairings
were neglected in the previous discussion, see Figs. 2–7, where
we demonstrated that the dominating symmetry of the normal
intraband pairing gaps is dx2−y2 at all doping values. Now we
address the question of whether the inclusion of anomalous
interband gaps introduces essential modifications to this result.
The anomalous gaps develop under the constraint that they
must have the same parity as the normal intraband gaps. In
the current case, this means that anomalous pairing gaps must
necessarily be of even parity.

We solve the system of five coupled gap equations as stated
in Eqs. (30)–(34) numerically to obtain the fully self-consistent
solutions in the coexistence phase. Since we have not included
any energy dependence of the effective pairing vertices, we

restrict the momentum sums of Eqs. (30)–(34) to states in the
vicinity of the Fermi surface. The effective potential for pair
scattering between anomalous gaps, 	αβαβ,2

k,k′ stated in Eq. (37),
formally includes a divergent contribution for k′ = −k. To
avoid such contributions we cut off all pairings 	

αβαβ,2
k,k′ to a

maximum value of Vmax = 200t . By this procedure, we find
that also the anomalous gaps acquire a dx2−y2 structure. In
Fig. 8 we present the normal and anomalous mean-field gaps
given in Eqs. (30)–(34) in the case of an electron-doped system
in the regime of well-developed SDW order. We show the
gap value averaged over k states close to the Fermi surface,
e.g., �s

αα = 1
Ns

∑
k |�s

αα(k)|, where Ns is the number of k
states with |Eα

k | < εc and εc = 0.15t is the cutoff energy. Upon
approaching half filling where W = 0.85 for this band, the
self-consistent solutions gradually decrease. This differs from
the results obtained for the linearized gap equation in Fig. 6
where the decrease is very abrupt. The gradual decrease in
Fig. 8 follows the decrease in the number of states within the
energy range around the Fermi surface towards half filling.

From the results presented in Fig. 8, it is evident that the
mean field �s

αβ is the most important contributor to anomalous
pairing whereas �s

αβ↑↓ and �s
αβ↓↑ are negligible. This illus-

trates the point that it is the linear coupling to the normal gaps
via the pairing interaction 	

αβ

k,k′ of Eq. (35) which generates
the anomalous pairings. Without this coupling term also the
subdominant mean fields �s

αβ↑↓ and �s
αβ↓↑ would vanish.

Furthermore, the inclusion of anomalous pairings slightly
enhances the size of the intraband gap. This is seen from
Fig. 8 by comparing �s

αα as deduced from the self-consistent

W
0.85 0.79 0.74 0.67 0.61 0.55 0.48

1 1.02 1.04 1.06 1.08 1.1 1.12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

FIG. 8. Self-consistent solution for the normal and anomalous su-
perconducting gaps as stated in Eqs. (30)–(34) for the electron-doped
system with β bands outside the energy cutoff. The superconducting
gap symmetry is dx2−y2 for both normal and anomalous gaps. The
next-nearest-neighbor hopping is t ′ = −0.35 and the bare Coulomb
interaction is U = 3. The energy cutoff is set to εc = 0.15. We show
the absolute value of the gap averaged over k states within the energy
range ±εc, e.g., �s

αα = 1
Ns

∑
k |�s

αα(k)|. Within this energy range no
normal superconducting gap develops on the β band, i.e., �s

ββ = 0.
The dashed blue line shows �s

αα in the case where all anomalous gaps
are excluded.
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FIG. 9. Form factors of (a) the normal superconducting gaps �αα
s

and �ββ
s and (b) the anomalous gap, �αβ

s . All gaps have dx2−y2

structure. Whereas the normal gaps show the same overall phase
on electron and hole pockets, the anomalous gaps display an internal
π shift between the electron and hole pockets.

determination of all five gaps shown by blue circles with a full
line with the self-consistent calculation of the normal intraband
gaps alone, which is shown by the blue dashed line. In the latter
case the gap magnitudes are slightly smaller.

If hole pockets are included within the energy cutoff, i.e.,
|Eβ

k | < εc, the self-consistent calculation finds a π shift of
the anomalous superconducting phase at the hole pockets
compared to the electron pockets; see Fig. 9(b). This is a
robust feature arising from the momentum structure of the
normal-anomalous pair-scattering potential and as a result of
the internal sign between α and β operators in Eq. (32). We
have tested numerically that this result is insensitive to the
relative ratio of normal and anomalous pairing potentials.

Lastly, we mention that the self-consistent gap solutions are
all real-valued. Therefore unlike the iron-based case studied
in Ref. [44], we do not find a TRSB superconductor in
the coexistence phase. In conclusion, the incorporation of
anomalous pairings in the effective interaction Hamiltonian
gives only small quantitative changes to the intraband gap
results presented in the previous sections.

IV. CONCLUSIONS

This study represents a very detailed investigation of
spin-fluctuation-mediated superconductivity in a system with
well-developed itinerant antiferromagnetic order and includes
a calculation of the complete coexistence phase diagram of the

Hubbard model. The spin fluctuations bear important finger-
prints of the spin order with the transverse spin fluctuations
corresponding to the Goldstone mode of the spin-symmetry-
broken state. We find that longitudinal and transverse spin
fluctuations are equally important for the development of an
effective pairing glue between the fermionic quasiparticles of
the spin-density-ordered metal. Both types of spin fluctuations
act in concert in the even-parity quasi-spin-singlet channel and
this gives rise to a robust gap solution of dx2−y2 structure at all
doping levels within the coexistence doping region. The situa-
tion is quite different in the case of odd-parity quasi-spin-triplet
superconductivity. Here longitudinal spin fluctuations promote
a nodeless p-wave solution in the hole-doped system due to an
effective intrapocket attraction. However, a strong intrapocket
repulsive contribution from transverse fluctuations destroys
this effective attraction and destabilizes the p-wave solution.
Thus, the coexistence phase treated within the Hubbard model
does not support a nodeless gap on the hole-doped side, in
contrast to a recent study of the coexistence phase within
the t-J model without double-occupancy constraint [31]. A
modified version of the Hubbard model in which the relative
contribution from the transverse fluctuations is suppressed
could also stabilize a nodeless p-wave state.

Finally, we have investigated the additional interband pair-
ing amplitudes that appear in the SDW phase as a consequence
of the linear coupling to the normal intraband gaps. Such
anomalous pairing gaps are required to have the same parity
under inversion as the normal intraband gaps. Specifically, the
anomalous pairing amplitudes also manifest a dx2−y2 structure
and the gap magnitude is similar to the normal pairing gaps.
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