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We analyze the interplay between superconductivity and the formation of bound pairs of fermions (BCS-BEC
crossover) in a 2D model of interacting fermions with small Fermi energy EF and weak attractive interaction,
which extends to energies well above EF . The 2D case is special because a two-particle bound state forms
at arbitrary weak interaction, and already at weak coupling, one has to distinguish between the bound-state
formation and superconductivity. We briefly review the situation in the one-band model and then consider two
different two-band models: one with one hole band and one electron band and another with two hole or two
electron bands. In each case, we obtain the bound-state energy 2E0 for two fermions in a vacuum and solve the
set of coupled equations for the pairing gaps and the chemical potentials to obtain the onset temperature of the
pairing Tins and the quasiparticle dispersion at T = 0. We then compute the superfluid stiffness ρs(T = 0) and
obtain the actual Tc. For definiteness, we set EF in one band to be near zero and consider different ratios of E0

and EF in the other band. We show that at EF � E0, the behavior of both two-band models is BCS-like in the
sense that Tc ≈ Tins � EF and � ∼ Tc. At EF � E0, the two models behave differently: in the model with two
hole/two electron bands, Tins ∼ E0/ ln E0

EF
, � ∼ (E0EF )1/2, and Tc ∼ EF , like in the one-band model. In between

Tins and Tc, the system displays a preformed pair behavior. In the model with one hole and one electron bands,
Tc remains of order Tins, and both remain finite at EF = 0 and of the order of E0. The preformed pair behavior
still does exist in this model because Tc is numerically smaller than Tins. For both models, we reexpress Tins in
terms of the fully renormalized two-particle scattering amplitude by extending to the two-band case (the method
pioneered by Gorkov and Melik-Barkhudarov back in 1961). We apply our results for the model with a hole and
an electron band to Fe pnictides and Fe chalcogenides in which a superconducting gap has been detected on the
bands that do not cross the Fermi level, and to FeSe, in which the superconducting gap is comparable to the
Fermi energy. We apply the results for the model with two electron bands to Nb-doped SrTiO3 and argue that our
theory explains the rapid increase of Tc when both bands start crossing the Fermi level.

DOI: 10.1103/PhysRevB.93.174516

I. INTRODUCTION

The discovery of superconductivity in Fe pnictides and
later in Fe chalcogenides opened up several new directions
in the study of nonphononic mechanisms of electronic pairing
in multiband correlated electron systems [1,2]. Two issues
were brought about by recent angle-resolved photoemission
and other experiments in Fe-based superconductors (FeSCs).
First, in recent experiments on LiFe1−xCoxAs, Miao et al.
observed [3] a finite superconductive gap of 4–5 meV on the
hole band, which is located below the Fermi level, with the top
of the band at 4–8 meV away from EF . Moreover, the gap on
this hole band is larger than the gaps on electron bands, which
cross the Fermi level. A similar observation has been reported
for FeTe0.6Se0.4 [4], where superconductivity with the gap
� = 1.3 meV has been observed on an electron band that lies
above the Fermi level, with the bottom of the band at 0.7 meV
away from EF . Second, recent photoemission measurements
have demonstrated that in almost all Fe-based superconductors
either electron or hole pockets are smaller than previously
thought and the corresponding dispersions either barely cross
the Fermi level or are fully located below or above it [5]. The
“extreme” case in this respect is FeSe. In this material, Fermi
energies on all hole and electron pockets are small and are

comparable to the magnitudes of the superconducting gaps
(the reported EF on different bands vary between 4 and 10
meV, while the gaps are 3–5 meV [6,7]).

The observation of a sizable superconducting gap on a
band which does not cross the Fermi level was originally
interpreted [3] as the indication that the pairing in the FeSCs
is a strong coupling phenomenon for which the pairing gap is
not confined to the Fermi surface and develops at all momenta
in the Brillouin zone. Later, however, the experiments were
re-interpreted [8] in a more conventional weak/moderate
coupling scenario, as a consequence of the fact that in FsSCs
the pairing interaction primarily “hops” a pair of fermions with
momenta k and −k from one band to the other [9,10]. In this
situation, the gap on the band that does not cross the Fermi level
is determined by the density of states at EF of the band that
does cross the Fermi level. A solution of the coupled set of BCS
gap equations for fermions in the two bands then shows that
one crossing is sufficient to obtain BCS instability already at
weak coupling [8]. This reasoning also naturally explains why
the gap is larger on a band that does not cross the Fermi level.

The observation of superconductivity with � ∼ EF

brought FeSCs into the orbit of a long-standing discussion
about the interplay between superconductivity and the forma-
tion of the bound pair of two fermions. This issue has been
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FIG. 1. Energy scales relevant to the interplay between the
formation of bound pairs of fermions and true superconductivity
in 2D fermionic systems with weak attractive pairing interaction. �

is the upper energy cutoff, EF is the Fermi energy, and E0 is the
energy of a bound state of two fermions in a vacuum, i.e., at μ = 0.
At weak coupling, E0 � �. We assume that EF is also small and can
be tuned by doping to be either larger or smaller than E0. We show
that in one-band model and in two-band model with two hole or two
electron bands, the system displays BCS-like behavior at EF � E0

and BEC-like behavior at EF � E0. In the latter case, bound pais
develop at Tins ∼ E0/ ln E0

EF
but the true superconductivity with full

phase coherence develops at Tc ∼ EF . In between Tins and Tc, the
system displays preformed pair behavior and the spectral function
displays pseudogap behavior. In the two-band model with one hole
and one electron pockets, Tins and Tc also split when EF gets smaller
than E0, but both remain of order E0 even when EF vanishes. Still,
the superconducting Tc in this limit is several times smaller than Tins,
so there is a wide temperature range of preformed pair behavior.

discussed in the condensed matter context [11–27], and also for
optical lattices of ultracold atoms [28,29]. The phenomenon in
which bound pairs of fermions form at a higher Tins and con-
dense at a smaller Tc is often termed Bose-Einstein condensa-
tion (BEC) because the condensation of preformed pairs (i.e.,
the development of a macroscopic condensate) bears a direct
analogy with BEC of bosons in a Bose gas. When � and Tc are
much smaller than EF , bound pairs and true superconductivity
develop at almost the same temperature, i.e., Tc ≈ Tins. How-
ever, when EF gets smaller, superconducting Tc is generally
smaller than the onset temperature for bound-state formation.

In the present communication, we discuss superconduc-
tivity versus a bound-state formation in 2D systems with
weak attractive interaction U in the proper symmetry channel.
(s+− for the two-band model for FeSCs.) We consider the
situation when U remains energy independent up to an energy
�, which well exceeds EF , see Fig. 1. Elementary quantum
mechanics shows that in 2D, two fermions with dispersion
k2/(2m) form a bound state at an arbitrary small attraction U ,
and the bound-state energy is 2E0, where E0 ∼ �e−2/λ and
λ = mU/(2π ) is a dimensionless coupling. We analyze the
evolution of the system behavior and the interplay between Tc

and Tins by varying the ratio EF /E0 while keeping both EF

and E0 well below �. We briefly review BCS-BEC crossover
in the one-band two-dimensional (2D) model and consider two
different two-band models.

The first model, which we apply to FeSCs, consists of
one hole and one electron bands. We follow usual path and
consider the case when the dominant pairing interaction is
weak interband pair hopping interaction U > 0, in which

case the superconducting state has s+− symmetry. We use
the same computational procedure as in the studies of
one-band model [11,13–15,20,26,27]. Namely, we first obtain
the bound-state energy 2E0 for two fermions in a vacuum.
Then we consider the actual system with a nonzero density of
carriers in one of the bands n = 2N0EF , where N0 is a 2D
density of states at low energies and solve the set of coupled
equations for the chemical potential μ(T ) and the pairing gaps
at a finite T . The solution of the linearized gap equations
yields the onset temperature of the pairing Tins. The solution
of nonlinear gap equations at T = 0 yields the pairing gaps
�h,e. We next use the values of �h,e and μ at T = 0 as inputs
and compute a superfluid stiffness ρs(T = 0). For definiteness,
we consider the case when the chemical potential at T = 0 in
the would be normal state is at the bottom of the electron band
but crosses the hole band, i.e., the Fermi energy is zero for the
electron band but finite for the hole band.

We present the results in the two limits when EF is either
larger or smaller than E0 and in the case when EF = E0.
We show that in all cases the pairing gap develops on both
bands and is larger on the electron band (the one which
does not cross the Fermi level). This agrees qualitatively
but not quantitatively with the results obtained previously
within the conventional BCS theory [8,30], neglecting the
renormalization of the chemical potential. We argue, however,
that the renormalization of the chemical potential by both a
finite temperature and a finite gap is not a small perturbation
when the bare chemical potential touches the bottom of the
electron band.

We argue that the onset temperature of the pairing, Tins (the
one obtained by solving the set of equations for the pairing gaps
and the chemical potentials) evolves when EF /E0 changes
and is of order E

1/3
F E

2/3
0 when EF � E0 and of order E0

when EF � E0. We further ague that superconducting Tc is
of order Tins for arbitrary EF /E0, but is numerically smaller
than Tins. The numerical smallness implies that there exists a
finite range of temperatures between Tins and Tc, where pairs
are already formed but their phases are random and there is no
superconductivity (the “preformed pairs” regime).

The emergence of the bound pairs at Tins > Tc and the
existence of the preformed pairs regime is often associated
with the crossover from BCS to BEC behavior. Such crossover
has been studied in detail in the finite T analysis of 3D
one-band model (Ref. [15]). The temperatures Tins and Tc were
found to differ strongly at EF � E0: Tins ∼ E0/ ln E0

EF
� EF ,

while Tc ∼ EF , i.e., the ratio Tc/Tins vanishes at EF → 0.
The behavior in the 2D case is quite similar (see below). In
our two-band model, the behavior is similar to the one-band
model in that Tins becomes parametrically larger than EF

at EF � E0 but differs in that Tc remains finite and of the
same order as order Tins even at EF → 0. The reason, as
we argue below, is that the development of the pairing gap
below Tins reconstructs the fermionic dispersion and creates
images, with opposite dispersion, of original hole and electron
bands. This in turn gives rise to the shift of fermionic density
from the filled hole band and empty electron band into these
image bands. As a consequence, there appear new holelike
and electronlike bands with a finite density of carriers in each
band, proportional to Tins. Superconducting Tc scales with this
density and is a fraction of Tins. We show that preformed pair
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FIG. 2. The onset temperature Tins for the bound-state formation
and the superconducting transition temperature Tc in the three models
that we consider—the model with one electron band (a), with one
electron and one hole bands (b), and with two electron bands (c).
For all three cases, we plot Tins and Tc in units of EF , as functions
of E0/EF , where E0 is the bound-state energy for two free fermions
in 2D. Dashed lines show Tc and Tins in the intermediate regime
EF /E0 = O(1), where we did not obtain the explicit formulas. The
highest superconducting Tc at small EF is for the model with one
hole and one electron pockets. In this model, both Tins and Tc are of
order E0 at large E0/EF .

behavior still exists at EF � E0, but only because Tc, set by
superconducting stiffness, is numerically smaller than Tins.

We next consider the two-band model consisting of two
electron bands. We again assume that the dominant pairing
interaction is inter-band pair hopping U > 0 and that the
chemical potential is at or near the bottom of one of the bands,
but crosses the dispersion of the other band at some finite EF .
We show that, at EF � E0, the behavior of this model is nearly
identical to that in the model with a hole and an electron band.
However, in the opposite limit EF � E0, the behavior of the
model with two electron bands differs qualitatively from that
of the model with a hole and an electron bands and is quite
similar to the behavior of the 2D one-band model in the BEC
limit. Namely, Tins ∼ E0/ ln E0

EF
and Tc ∼ EF , such that the

ratio Tc/Tins vanishes at EF = 0. The reason is that for the
two bands with the same sign of dispersion, there are no free
carriers at EF → 0, hence the pairing cannot create images of
the original bands. Indeed, we show that in the model with two
electron bands, the pairing gap �, which is responsible for the

Fermi surface reconstruction, scales at T = 0 as
√

E0EF and
vanishes at EF = 0. The same behavior holds at T = 0 in the
2D one-band model [11,13].

Superconductivity in a system with two electron bands is
realized experimentally in Nb-doped SrTiO3 and, possibly, in
heterostructures of LaAlO3 and SrTiO3 (see Refs. [22,23,31]
and references therein). The Fermi energy in one of the bands is
finite already at zero doping and EF is likely much larger than
E0. The other electron band is above the chemical potential
at zero doping, but the chemical potential μ moves up with
doping and enters this band once it exceeds the critical value
μ∗. The data indicate [32,33] that, when this happens, Tc

rapidly increases. To analyze this behavior we compute Tc for
μ 	= μ∗. We show that Tc indeed increases when μ exceeds
μ∗, and the rate of the increase is (1 − μ∗/μ)(EF /E0)2/3, i.e.,
it is enhanced by a large ratio of EF /E0. We summarize our
results for all three models in Fig. 2 and Table I.

Another goal of our work is to compare the analysis of
BCS/BEC crossover with the approach put forward by Gorkov
and Melik-Barkhudarov (GMB) back in 1961 (Refs. [35,36]).
GMB considered a one-band model with attractive Hubbard
interaction U at weak coupling in D = 3. They argued
that superconductivity comes from fermions with energies
not exceeding EF , while all contributions to the pairing
susceptibility from fermions with higher energies can be
absorbed into the renormalization of the original 4-fermion
interaction into a quantum-mechanical scattering amplitude.
GMB explicitly separated the Cooper logarithm (associated
with the presence of a sharp Fermi surface at EF 	= 0)
from the renormalization of the interaction into the scattering
amplitude and obtained Tc = 0.277EF e−π/(2|a|kF ), where a is
the s-wave scattering length. They argued that this is the right
formula for comparison with the experimental data because
the scattering length is the physically observable parameter,
while the interaction U is not.

The GMB analysis does not include phase fluctuations,
hence their instability temperature is the same as Tins, re-
expressed in terms of scattering amplitude. In the original
GMB analysis (which we review in Sec. V below), |a|kF is

TABLE I. The summary of the results for the onset temperature of the pairing Tins, the actual superconducting transition temperature Tc,
the gap magnitude at T = 0 �, and the chemical potentials μi for different ratios of the Fermi energy EF and the bound-state energy of two
fermions in a vacuum E0. For the one band model, superconductivity is an ordinary s wave. For the two-band models, the superconducting
state has s± symmetry (opposite signs of the gaps on the two bands). The gap magnitudes on different bands are approximately the same in the
two-band models, up to small corrections, but nevertheless, the gap on the band that does not cross the chemical potential at T � Tins is larger
than that on the other band, which crosses the chemical potential. The chemical potentials satisfy μh + μe = EF for the two-band model with
a hole and an electron band, and μ1 − μ2 = EF for the model with two electron bands.

single band two electron (hole) bands one electron and one hole bands

EF � E0 Tins ∼ √
EF E0, μ(Tins) ≈ EF Tins ∼ E

1/3
F E

2/3
0 , μ1(Tins) ≈ EF Tins ∼ E

1/3
F E

2/3
0 , μe(Tins) ≈ −0.5Tins

Tc ≈ Tins, � = 2
√

EF E0 μ2(Tins) ≈ −0.5Tins, Tc ≈ Tins μh(Tins) ≈ EF , Tc ≈ Tins

� ≈ 1.78E
1/3
F E

2/3
0 � ≈ 1.78E

1/3
F E

2/3
0 ,

EF � E0 Tins ≈ E0/ ln E0
EF

, μ(Tins) ≈ −E0 Tins ∼ 4.5E0/ ln E0
EF

, μ1(Tins) ≈ −2.3E0 Tins ∼ 1.13E0(1 + 0.22 EF

E0
),

Tc ∼ EF /8 � Tins, � = 2
√

EF E0 μ2(Tins) ≈ −2.3E0, Tc ∼ EF /8 � Tins, μh(Tins) ≈ 3EF /2, μe(Tins) ≈ −EF

2
� ≈ √

2EF E0 Tc ∼ 0.22Tins, � = 1.76Tins

EF = E0 Tins = 1.09EF , μ(Tins) = −0.09EF Tins ∼ 0.9EF , μ1(Tins) = 0.1EF Tins = 1.35EF , μe(Tins) = −0.35EF

μ2(Tins) = −0.9EF , � = 1.4EF μh(Tins) = 1.35EF , Tc ∼ 0.4EF

� = 2.4EF
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assumed to be small, and no bound state develops. We extend
GMB analysis to one-band and two-band models in 2D and
will specifically consider the limit EF < E0. In this limit,
the scattering amplitude diverges at the onset of bound-state
development at T ∼ E0 and changes sign at a smaller T . It
is then a priori unclear whether the onset temperature of the
pairing, Tins, can be expressed via the 2D scattering amplitude
a2 (dimensionless in 2D) with EF in the prefactor, particularly
given that the ratio Tins/EF tends to infinity when EF = 0.
We, however, show that the GMB approach remains valid
even when EF < E0, and Tins can be explicitly expressed via
the exact 2D scattering amplitude, with EF in the prefactor.

The paper is organized as follows. In Sec. II, we review
the one-band 2D Fermi system with small EF . We reproduce
earlier results [11,13,27] for the onset temperature for the pair-
ing, Tins, the pairing gap, the renormalized chemical potential,
and the spin stiffness. We argue that the superconducting Tc

scales with EF and vanishes when EF = 0. In Sec. III, we
consider in detail the case of one hole and one electron bands,
relevant to FeSCs. We show that in this model both Tins and Tc

remain finite even when neither band crosses the Fermi level.
The superconducting Tc is smaller than Tins in this case, but the
smallness is only numerical. In Sec. IV, we consider the case
of two hole/two electron pockets and show that that Tc remains
nonzero as long as one of the bands crosses the Fermi level but
vanishes when EF = 0 for both bands. In Sec. V, we review
the GMB formalism and then apply it first to a 2D one-band
model and then to a 2D model with a hole and an electron
band. In both cases, we show that the instability temperature
TGMB is precisely Tins, even when EF → 0. We present our
conclusions in Sec. VI. Discussion of some technical details
is moved into Appendix.

In this work, we only consider s-wave pairing (ordinary
s wave and s+−) with angle-independent gap functions. The
extension to the cases when the gaps are angle-dependent and
have either symmetry-related or accidental nodes is straight-
forward, but requires separate, more involved calculations.

II. ONE-BAND MODEL

To set the stage for the analysis of the two-band model, we
first review pairing and superconductivity in the 2D one-band
model. Consider a set of 2D fermions with the parabolic disper-
sion εk = k2

2m
and chemical potential μ0 = EF , see Fig. 3(a).

We assume that fermions get paired by a weak attractive pairing
interaction U (q,�), which for simplicity we approximate as
momentum and frequency independent U up to the upper
momentum cutoff qmax and the corresponding frequency cutoff
� = q2

max/(2m). For electron-phonon interaction, � is of the
order of the Debye frequency. The actual dispersion does not
have to be parabolic, however, at weak-coupling, the energies
relevant for the pairing are much smaller than � and εk = k2

2m

can be just viewed as the leading term in the expansion of the
lattice dispersion in small momentum.

We introduce the dimensionless parameter

λ = N0|U | = m|U |
2π

, (1)

where N0 = m
2π

is the density of states in 2D. We assume that
λ is a small number. The conventional weak coupling BCS

FIG. 3. The bare dispersion for the models considered in the
present manuscript: (a) a one-band model of 2D fermions with the
parabolic dispersion and a positive bare chemical potential (i.e., a
nonzero EF ) and (b) a two-band model with one hole and one electron
band separated in the momentum space. For definiteness, we set the
bare chemical potential such that it touches the bottom of the electron
band and crosses the hole band at a finite distance from its top; (c) a
two-band model with two electron bands separated in the momentum
space. For definiteness, we set the bare chemical potential to touch
the bottom of one band and cross the other.

analysis is valid when the attraction is confined to energies
much smaller than EF , i.e., when � � EF . We consider the
opposite situation when EF is much smaller than the cutoff
energy �.

For two fermions with 2D k2 dispersion in a vacuum (i.e.,
at EF = 0), an arbitrary small attraction U gives rise to the
formation of a bound state [37]. The bound-state energy at
T = 0 is 2E0, where

E0 = �e− 2
λ . (2)

The bound state develops at T0 = 1.13E0. The 2D scattering
amplitude a2 ∝ 1/ ln T0

T
diverges at T = T0 and changes sign

from negative at T > T0 to positive at T < T0. We consider
the system at a nonzero EF , i.e., at a finite density of fermions
n = mEF /π . We show that the system behavior is different at
EF � E0 and at EF � E0.

A. The onset temperature of the pairing, the pairing gap, and
the renormalization of the chemical potential

The onset temperature of the pairing instability, Tins (not
necessary a true superconducting transition temperature) is
obtained by introducing infinitesimal pairing vertex and dress-
ing it by renormalizations to obtain the pairing susceptibility.
The temperature Tins is the one at which the pairing suscepti-
bility diverges. To logarithmical accuracy, one needs to keep
only ladder series of renormalizations in the particle-particle
channel and neglect all renormalizations coming from the
particle-hole channel because the first contain series of λ ln �

Tins
while the latter contain series in λ. We assume and then verify
that in all cases that we consider, Tins � �, hence ln �

Tins
is a

large factor. However, as we will see, the ratio of Tins
EF

is small
only when EF � E0 and is actually large in the opposite
limit EF � E0. Because the temperature variation of the
chemical potential μ(T ) in the normal state holds in powers
of Tins/EF , this variation generally cannot be neglected, i.e.,
the equation for the pairing vertex at T = Tins has to be
combined with the equation for the chemical potential μ(Tins).
The latter follows from the condition that the total number of
fermions is conserved [13,15]. The two coupled equations are
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[μ = μ(Tins)]

1 = λ

2

∫ �

0
dε

tanh ε−μ

2Tins

ε − μ

= λ

2

(∫ μ

0
dx

tanh x
2Tins

x
+

∫ �

0
dx

tanh x
2Tins

x

)
,

EF =
∫ �

0
dε

1

e(ε−μ)/Tins + 1
= Tins ln (1 + eμ/Tins ). (3)

At EF � E0, the solution of these equations yields

Tins = 1.13(�EF )1/2e− 1
λ ∼

√
EF E0,

μ(Tins) ≈ EF . (4)

In the opposite limit EF � E0, we obtain [27]

Tins = E0

ln E0
EF

,

(5)
μ(Tins) ≈ −E0.

This behavior is rather similar to that in three-dimensional
case [15]. The behavior of Tins and μ at intermediate EF ∼ E0

can be easily obtained numerically.
For EF = E0, Tins ≈ 1.09EF , and μ(Tins) ≈ −0.09EF .

Note that at EF � E0, the instability temperature Tins � EF ,
while at EF � E0, Tins � EF and μ(Tins) is negative.

The prefactor 1.13 in Eq. (4) is in fact obtained by going
beyond logarithmical accuracy in the particle-particle channel.
To get the correct prefactor, one also needs to include fermionic
self-energy to order λ and the renormalization of U by
corrections from the particle-hole channel [35,36]. These two
renormalizations are not essential for our consideration and
in the bulk of the text we neglect them. For completeness,
however, we obtain the result for Tins with the full prefactor in
Appendix.

The pairing gap � and the renormalized chemical potential
μ at T < Tins are obtained by solving simultaneously the
nonlinear gap equation and the equation on μ(T ). The set looks
particularly simple at T = 0 [here, μ = μ(T = 0) and � =
�(T = 0)]:

1 = λ

2

∫ �

0
dε

1√
(ε − μ)2 + �2

,

(6)

EF = 1

2

∫ �

0
dε

(
1 − ε − μ√

(ε − μ)2 + �2

)
.

Solving these equations we obtain at T = 0

μ +
√

μ2 + �2 = 2EF ,
(7)√

μ2 + �2 − μ = 2E0,

hence

μ = EF − E0,
(8)

� = 2
√

EF E0.

These results were first obtained in Ref. [13].

FIG. 4. The dispersion in the one-band model. Red dashed line—
the bare dispersion (the one that the system would have at T = 0 in
the absence of the pairing). Black line: the dispersion right above Tins;
blue line: the dispersion below Tins. The plot is for the case when the
chemical potential μ is already negative at T = Tins. Observe that the
minimal gap is

√
�2 + μ2 and the minimum of the dispersion is at

k = 0 rather than at kF .

When EF � E0, the expressions for μ and � are the same
as in BCS theory:

μ ≈ EF ,
(9)

� = 2(�EF )1/2e− 1
λ = 1.76Tins.

In the opposite limit EF � E0,

μ ≈ −E0,
(10)

� ∼ Tins

(
EF

E0

)1/2

ln
E0

EF

.

Observe that while � = 2
√

EF E0 stays the same in both
limits, the ratio �/Tins changes: � ∼ Tins at EF � E0 and
� � Tins at EF � E0. At EF = 0, �, Tins, and �/Tins all
vanish. The vanishing of � is easy to understand—a finite gap
would reconstruct fermionic dispersion and open up a hole
band with a finite density of carriers proportional to �, which is
impossible at EF = 0 because the density of fermions is zero.
A negative μ implies that the Fermi momentum kF (defined
as position of the minimum of Ek =

√
(εk − μ)2 + �2) is

zero. In fact, the Fermi momentum shifts downwards already
in the normal state at a finite T because μ(T ) < EF . It
becomes zero at T = Tins at E0/EF ≈ 0.882. The downward
renormalization of kF has been recently obtained in the study
of the superconductor-insulator transition [16].

In Fig. 4, we plot the actual dispersion below and above
Tins along with the bare fermionic dispersion (the one which
the system would have at T = 0 in the absence of the pairing).
We emphasize that the gapping of excitations above Tins (the
black line in Fig. 4) is just the consequence of the temperature
variation of the chemical potential and as such is not related
to pairing.
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B. Superconducting Tc

The temperature Tins appears in the ladder approximation
as the transition temperature, but is actually only the crossover
temperature as pair formation by itself does not break the
gauge symmetry. To obtain the actual Tc, at which the
gauge symmetry is broken (i.e., the phases of bound pairs
order), one needs to treat the phase φ(r) as a fluctuating
variable and compute the energy cost of phase variation
δE = (1/2)ρs(T )

∫
dr|∇φ|2 (see Refs. [38,39] for a generic

description of fluctuations in superconductors). The prefactor
ρs(T ) is the superfluid stiffness. In 2D, the superconducting
transition temperature Tc ∼ ρs(Tc) (see, e.g., Refs. [40,41]).
The interplay between Tc and Tins depends on the ratio
ρs(T = 0)/Tins. If this ratio is large, the superfluid stiffness
rapidly increases below Tins. In this situation, Tc = Tins minus
a small correction, i.e., the phases of bound pairs order almost
immediately after the pairs develop (phase fluctuations cost
too much energy). If ρs(T = 0)/Tins is small, ρs(T ) increases
slowly below Tins and Tc is of order ρs(T = 0) � Tins.

The superfluid stiffness ρs has been evaluated before by
looking at the diamagnetic tensor [19,42,45,46]. We show
below how one can extract the stiffness directly from the
d-dependent condensation energy.

Within our model with local interaction U , δE is the O(q2)
term in the ground-state energy of an effective model described
by the effective fermionic Hamiltonian with the anomalous
term

Hanom =
∫

d2r�(r)c†↑(r)c†↓(r) + H.c.

=
∑
k,q

�(q)c†↑(k + q/2)c†↓(−k + q/2) + H.c. (11)

with �(r) = �eiφ(r) ≈ �ei(∇φ)r whose Fourier component is
�(q) = �δ(q − ∇φ).

The ground-state energy is the sum of the kinetic and the
potential energy. The kinetic energy depends on |�(r)|2 =
�2 and is not sensitive to phase fluctuations (i.e., it does not
have (∇φ)2 term) and is simply given by the convolution of
the quasiparticle dispersion with a single fermionic Green’s
function (see Fig. 5). At T = 0

Ekin = 2N0

∫
dεkdω

2π
εkGs(k,ω)

= −2N0

∫
dεkdω

2π
εk

iω + (εk − μ)

ω2 + (εk − μ)2 + �2
, (12)

where Gs is the normal of the superconducting Green’s
function.

The potential energy, on the other hand, does depend on
q. Within the model of Eq. (11) it is given by the sum of
the convolutions of two normal and two anomalous Green’s
functions with � in the vertices [18,38,42] (see Fig. 5). In the
analytic form

Epot(q) = −�2
∫

d2kdω

(2π )3
[Gs(k + q/2,ω)Gs(−k + q/2, − ω)

+Fs(k + q/2,ω)Fs(−k + q/2, − ω)], (13)

FIG. 5. Diagrammatic representation of the kinetic and potential
energy of a one-band superconductor. The sum Ekin + Epot(q = 0)
gives the condensation energy, and the prefactor for the q2 term in
Epot(q) determines the superfluid stiffness.

where Fs is the anomalous Green’s function. Integrating over
frequency in Eq. (13), we obtain at T = 0

Epot(q) = − �2

|U | + �2

4

∫
d2k

4π2

(εk+q/2 − εk−q/2)2

((εk − μ)2 + �2)3/2
+ . . .

= − �2

|U | + q2 �2

8π

∫
dεk

εk

((εk − μ)2 + �2)3/2
+ . . . ,

(14)

where dots stand for the terms of higher orders in q2. The
difference between Epot(q = 0) + Ekin in a superconductor
and the kinetic energy in the normal state gives the condensa-
tion energy Econd. To obtain Econd, we evaluate the frequency
integrals in (12) and (14) and write the condensation energy as

Econd

= −N0

[
E2

F + �2

2

∫ �

−μ

dx√
x2 + �2

(
1− 2(x + μ)

x + √
x2 + �2

)]
.

(15)

The integral over x is ultraviolet convergent and one can safely
replace the upper limit by infinity. We then obtain

Econd = −N0

[
E2

F + �2

4
− μ

2
(μ +

√
μ2 + �2)

]
. (16)

Using μ = EF − E0 and �2 = 4EF E0 [see Eq. (8)],
we immediately obtain μ +

√
μ2 + �2 = 2EF and

μ(μ +
√

μ2 + �2)/2 = E2
F − �2/4. Substituting into (16),

we obtain

Econd = −N0
�2

2
= −N0E0EF (17)

no matter what the ratio EF /E0 is.
The prefactor for the q2 term in Eq. (14) determines

ρs(T = 0)

ρs(T = 0) = N0
�2

8

∫
dεk

(
dεk

dk

)2

((εk − μ)2 + �2)3/2
. (18)

Using

�2

((εk − μ)2 + �2)3/2
= − d

dεk

[
1 − εk − μ

((εk − μ)2 + �2)1/2

]
(19)

174516-6



SUPERCONDUCTIVITY VERSUS BOUND-STATE . . . PHYSICAL REVIEW B 93, 174516 (2016)

and integrating by parts Eq. (18), we obtain

ρs(T = 0) = N0

8

∫
dεk

×
[

1 − εk − μ

((εk − μ)2 + �2)1/2

][
d

dεk

(
dεk

dk

)2]
.

(20)

The term in square brackets is simply a constant (= 2/m), and
the remaining integral gives exactly the total energy density
equal to 2EF . As a result,

ρs = EF

4π
. (21)

This result is exact for the parabolic dispersion k2

2m
, which

we consider in this paper [43]. A consideration based on the
diamagnetic tensor shows (Refs. [19,42,45,46]) that it also
holds, up to corrections of order (E2

0 + E2
F )/�2, for arbitrary

lattice dispersion.
At EF � E0, ρs is parametically larger than Tins ∼

(EF E0)1/2. As a consequence, phase fluctuations are costly
and Tc ≈ Tins, i.e., fermionic pairs condense almost imme-
diately after they develop. In the opposite limit EF � E0,
ρs(T = 0) � Tins, and hence Tc ∼ ρs(T = 0) � Tins. Using
the criterium [40] Tc = (π/2)ρs(T ) and approximating ρs(T )
by ρs(T = 0), we obtain an estimate Tc = EF /8. (A more
accurate analysis [44] yields Tc ∼ EF / ln (ln E0/EF ).)

The superconducting transition temperature approaches
zero as O(EF ) when EF → 0, while Tins ∼ E0/ ln E0

EF
drops

only logarithmically. The ratio Tc/Tins scales as EF

E0
ln E0

EF

and obviously vanishes when EF = 0. In the temperature
region between Tins and Tc, bound pairs develop but remain
incoherent.

The splitting between Tins and Tc once EF gets smaller than
Tins (BCS-BEC crossover) and the corresponding preformed
pairs behavior at Tins > T > Tc has been originally studied in
3D systems [14,15,20]. The physics in 2D is similar, however,
in 2D the splitting occurs already at weak coupling, provided
that EF is small enough. Also, the distance between fermions
in a bound pair (the coherence length ξ0) scales at � � |μ|
as ξ0 ∼ ( 1

m|μ| )
1/2 ∼ 1/(mE0)1/2. Like in 3D systems, this ξ0

is much smaller than inter-fermion spacing (V/N )1/2 ∼∼
1/(mEF )1/2. On the other hand, ξ0 is much larger than the
interatomic distance a0 ∼ 1/(m�)1/2 ∼ 1/qmax, where qmax =
(2m�)1/2. (The ratio ξ0/a0 ∼ (�/E0)1/2 � 1.) As a result,
fermions in a bound pair are on average located much farther
away from each other than interatomic spacing. Hence, the
pairs cannot be viewed as nearest-neighbor “molecules” in the
real space.

We summarize the results for the one-band model in Fig. 6,
where we plot Tins and Tc in units of EF and E0, in both cases
as functions of E0/EF . Our results for both Tc and Tins differ
from Refs. [8,30]. In these references, Tc was found to remain
finite at EF = 0. The authors of Refs. [8,30] solved BCS-like
equations, hence their Tc is in fact the onset temperature for
the pairing Tins. Still, we found that even this temperature
vanishes at EF = 0, once one includes into consideration the
temperature variation of the chemical potential.

FIG. 6. The onset temperature Tins for the bound-state formation
and the superconducting transition temperature Tc in the one-band
model as functions of E0/EF . The temperatures are normalized to
EF (a) and E0 (b). Dashed lines show Tc and Tins in the intermediate
regime EF /E0 = O(1), where we did not obtain the explicit formulas.
Observe that Tins scales as E0/ ln E0/EF at large E0/EF . This Tins

increases when plotted in units of EF and decreases when plotted in
units of E0.

C. The density of states at T = 0

In a conventional BCS superconductor with EF � Tc,
μ(T = 0) is positive, and the density of states (DOS) at T = 0
is, for electron dispersion,

N (ω) = − 1

π
Im

∫
d2k

4π2
Gs(k,ω)

=
∫

d2k

4π2

(
u2

kδ(ω − Ek) + v2
k δ(ω + Ek)

)

= N0

2

(
2ω√

ω2 − �2
θ (ω − �) − ω − √

ω2 − �2

√
ω2 − �2

×θ (ω−
√

μ2 + �2)

)
+ N0

2

(
2|ω|√

ω2 − �2
θ (−ω − �)

− |ω| + √
ω2 − �2

√
ω2 − �2

θ (−ω −
√

μ2 + �2)

)
, (22)

where Ek =
√

(εk − μ)2 + �2, N0 = m/(2π ), θ (x) = 1 for
x > 0, μ = μ(T = 0), and

u2
k = 1

2

(
1 + εk − μ√

(εk − μ)2 + �2

)
,

(23)

v2
k = 1

2

(
1 − εk − μ√

(εk − μ)2 + �2

)
.

This N (ω) vanishes at |ω| < �, has a square-root singularity
1/

√|ω − �| above the gap, and drops by a finite amount at
|ω| =

√
μ2 + �2 + 0, when |ω| crosses the edge of the band.

The DOS is nearly symmetric between positive and negative
ω, at least for � < ω � EF .

In our case, this behavior holds for the case EF � E0,
but not for EF � E0. In the latter case, μ(T = 0) is negative

174516-7



CHUBUKOV, EREMIN, AND EFREMOV PHYSICAL REVIEW B 93, 174516 (2016)

 / E0

-3 -2 -1 0 1 2 3

D
O

S 
(a

rb
. u

ni
ts

)

0

0.5

1

 / E0

-3 -2.5 -2 -1.5 -1 -0.5 0

D
O

S 
(a

rb
. u

ni
ts

)

0

0.05

0.1

FIG. 7. The DOS in the single-band model at T = 0 for EF �
E0. We set EF = 0.1E0, in which case μ = −9EF and � =
2
√

E0EF ≈ 6.3EF . We added the fermionic damping γ = 0.001EF .
In the clean limit, the density of states vanishes at |ω| <

√
μ2 + �2

and jumps to a finite value at |ω| =
√

μ2 + �2 + 0 [see Eq. (24)].
Due to the difference between coherence factors, the DOS is strongly
particle-hole anisotropic and has much larger value at positive
frequencies, unobservable in photoemission experiments. At large
|ω|, the DOS tends to a finite value at positive ω and vanishes as
1/ω2 at negative ω. To make the power-law suppression of the DOS
at negative ω more visible, we plot the negative frequency region
separately in the inset.

(μ(T = 0) ≈ −E0), and the DOS is given by

N (ω) = − 1

π
Im

∫
d2k

4π2
Gs(k,ω)

= Im

∫
d2k

4π2

(
u2

kδ(ω − Ek) + v2
k δ(ω + Ek)

)

= N0

2

(
ω + √

ω2 − �2

√
ω2 − �2

)
θ (ω −

√
μ2 + �2)

+ N0

2

( |ω| − √
ω2 − �2

√
ω2 − �2

)
θ (−ω −

√
μ2 + �2), (24)

where μ = μ(T = 0). This N (ω) vanishes at |ω| <
√

μ2 + �2

and jumps to a finite value at |ω| =
√

μ2 + �2 + 0. Because
μ ≈ −E0 is much larger than � = 2(EF E0)1/2, the coherence
factors u2

k and v2
k are quite different: u2

k ≈ 1 for all momenta,
while v2

k ≈ �2

4(εk+|μ|) is small. As a result, N (ω) in (24) is highly
anisotropic between positive and negative frequencies—it
approaches N0 at large positive frequencies and scales as
N0�

2/(4ω2) at large negative frequencies. We plot the DOS at
zero temperature for EF � E0 in Fig. 7. Because only negative
frequencies are probed in photoemission experiments, the
features associated with the bound-state development below
Tins are weak and disappear at EF → 0. This last feature has
been also found in the recent study of superconductor-insulator
transition [16].

Note in passing that within our approximate treatment,
based on the effective quadratic Hamiltonian, the DOS van-
ishes below |ω| = (μ2 + �2)1/2 already at T < Tins. A more
accurate treatment would require one to compute the imaginary
part of the fermionic self-energy at a finite temperature and
analyze the feedback on this self-energy from the development
of the bound pairs. On general grounds, the density of states

at |ω| < (μ2 + �2)1/2 should remain finite at temperatures
between Tins and Tc, as no symmetry is broken in this T range.
Below Tc, however, the true gap develops at these frequencies
and the DOS should be as in Fig. 7.

III. TWO-BAND MODEL WITH ONE HOLE AND
ONE ELECTRON BANDS

We now extend the analysis to two-band models. We
consider two models: one with a hole and an electron bands
and one with two hole/two electron bands. In both cases, we
assume, to make presentation compact, that the dominant
pairing interaction U (q,�) is the pair hopping between
fermions on the two bands. The repulsive interaction of this
type gives rise to s+− pairing with the phase shift by π between
�’s on the two bands.

In this section, we consider the model with one band with
holelike dispersion εh

k = EF,h − k2

2mh
and another with elec-

tronlike dispersion εe
k = k2

2me
− EF,e. This model is relevant

to FeSCs, at least, at a qualitative level. The Fermi energies
EF,h and EF,e and the masses mh and me are generally
not equivalent. We keep EF,h and EF,e different, but set
mh = me = m to simplify the formulas.

BCS analysis of the pairing in multiband models with two
electron bands and two or three hole bands, as in FeSCs,
has been presented in series of recent publications [8,30]. In
particular, Ref. [8] considered the case of two hole bands,
only one of which crosses the Fermi level. A FS-constrained
superconductivity in this last case emerges due to interaction
between the hole band with EF,h > 0 and the electron band(s).
Reference [8] has demonstrated that the presence of the
additional hole band increases Tc, despite that this band is
full located below the Fermi level.

We analyze different physics—the crossover in the system
behavior once the largest EF becomes smaller than the
two-particle bound-state energy E0. This physics has not been
analyzed before, to the best of our knowledge. We restrict
to one hole and one electron band because the inclusion of
additional bands affects the details of the analysis but does not
qualitatively affect BCS-BEC crossover. Like in the previous
section, we set the upper energy cutoff at � � EF,i (i = h,e),
approximate U (q,�) by a constant below the cutoff, and set the
dimensionless coupling constant λ = mU/(2π ) to be small.
We set U > 0, in which case superconducting order parameter
has s+− symmetry. As our goal is to analyze BCS-BEC
crossover, we consider the particular case when EF,e = 0, see
Fig. 3(b). The extension of the analysis to small but finite EF,e

(positive or negative) is straightforward and does not bring
qualitatively new physics.

The analysis of the bound-state energy for two particles at
EF ≡ 0 does not differ from that in previous section, and the
result is that the scattering amplitude diverges at T0 = 1.13E0,
where, like before, E0 = �e−2/λ. The bound-state energy at
T = 0 is 2E0.

The onset temperature for the pairing at a finite EF is
obtained by solving simultaneously the linearized equations
for �e and �h and the equations for the chemical potentials
μe(T ) and μh(T ), subject to μe(T ) + μh(T ) = EF . The
equation for the chemical potential follows for the conservation
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of the total number of fermions. The set of equations is
[μe = μe(Tins),μh = μh(Tins)]:

�e = −λ

2
�h

∫ �

−μh

dx

x
tanh

x

2Tins
,

�h = −λ

2
�e

∫ �

−μe

dx

x
tanh

x

2Tins
,

μe = T ln
1 + e−μh/T

1 + eμe/T
,

μe + μh = EF . (25)

The first two equations reduce to

4

λ2
=

∫ �

−μe

dx

x
tanh

x

2Tins
×

∫ �

−μh

dx

x
tanh

x

2Tins
. (26)

Below Tins, �e, and �h become nonzero and one has to
consider nonlinear gap equations and modify the equation for
the chemical potential. At T = 0, the set of equations becomes
[μh = μh(T = 0),μe = μe(T = 0)]

�h = −λ

2
�e ln

2�√
μ2

e + �2
e − μe

,

�e = −λ

2
�h ln

2�√
μ2

h + �2
h − μh

,

(27)√
μ2

h + �2
h + μh − 2EF = μe +

√
μ2

e + �2
e,

μh + μe = EF .

A. The case EF � E0

We assume and then verify that in this situation Tins � EF

and for all T � Tins, μh ≈ EF , while μe ∼ Tins Under these
assumptions, the equations on the chemical potentials in (25)
yield

μe(Tins) = Tins ln

√
5 − 1

2
= −0.48Tins,

(28)
μh(Tins) = EF − μe(Tins).

Substituting these values of the chemical potentials into the
first two equations in (25), we obtain after simple algebra

�e = −λ

2
�h

(
2 ln

1.13�

Tins
− 2

λ
+ ln

EF

E0

)
,

(29)
�h = −λ

2
�e ln

1.13D�

Tins
,

where D = 0.79 (ln D = − ∫ |μe|/2T

0 dx tanh x
x

). Combining the
two equations and introducing Z = ln 1.13D�

Tins
, we obtain at

small λ,

Z = 2

λ
− 1

3
ln

EF

D2E0
+ O(λ). (30)

Hence

Tins = 1.13D1/3E
1/3
F E

2/3
0 = 1.04E

1/3
F E

2/3
0 . (31)

This expression is valid when λ ln EF /E0 � 1. At even larger
EF � �, when λ ln EF /E0 = O(1), Tins is given by

Tins ∼ �

(
EF

�

)1/4

e−
√

2
λ . (32)

The ratio of the gaps on electron and hole bands at T =
Tins − 0 is

�e

�h

≈ −
(

1 + λ

6
ln

EF

E0

)
. (33)

We see that the gap on the electron band, which touches the
Fermi level, is larger than the gap on the hole band, which
crosses Fermi level. The ratio of �e/�h increases when EF

gets larger and approaches
√

2 when EF becomes of order �.
At T = 0, the solution of the set (27) at EF � E0 but

λ ln EF /E0 � 1 shows that the ratio of �e and �h remains
the same as in Eq. (33), i.e., up to subleading terms �e(T =
0) = −�h(T = 0) = �. Solving for the chemical potentials,
we then find

μe(T = 0) = − �

2
√

2
, μh(T = 0) = EF − μe(T = 0).

(34)
Substituting this into the first two equations in Eq. (27) and
solving for �. we obtain

� = 25/6E
1/3
F E

2/3
0 = 1.78E

1/3
F E

2/3
0 . (35)

The minimum energy on the hole band is Eh = �, at k ≈
kF . The minimum energy on the electron band is at k = 0, and
Ee = √

μ2
e(T = 0) + �2 = 3�/2

√
2 = 1.06�. For the ratio

of the minimal energy to Tins, we then have, up to corrections
of order λ ln EF /E0,

Ee

Tins
= 1.71,

Eh

Tins
= 1.81. (36)

Note that both ratios are rather close to BCS values, although
our consideration includes the renormalization of the chemical
potential, neglected in BCS theory.

B. The case EF = E0

To establish the bridge to the case of small EF /E0, consider
the intermediate case when EF is comparable to E0. To be
specific, we just set EF = E0, although the analysis can be
easily extended to arbitrary EF /E0 ∼ O(1). Because EF is
now the only relevant low-energy scale, we express Tins =
aEF ,μe(Tins) = bEF ,μh(Tins) = EF (1 − b). Substituting this
into Eq. (25) and using the fact that

2

λ

∫ �

0

tanh x
2Tins

x
= 2

λ
ln 1.13�/Tins = 1 − 2

λ
ln

a

1.13
, (37)

we obtain, to leading order in λ, the set of two equations on
the prefactors a and b:

b = a ln
1 + e

b−1
a

1 + e
b
a

.

2 ln
a

1.13
=

∫ b
2a

0
dy

tanh y

y
+

∫ 1−b
2a

0
dy

tanh y

y
(38)
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Solving the set we obtain Tins = 1.351EF ,μe(Tins) =
−0.349EF and μh(Tins) = 1.349EF . As expected, the chemi-
cal potential μe becomes negative at a finite temperature.

At T = 0, the renormalized chemical potentials μh(T =
0) and μe(T = 0) and the gaps �h and �e are also of
order EF . We express �h = chEF ,�e = ceEF , μe(T = 0) =
b̄EF ,μh(T = 0) = EF (1 − b̄). Substituting into Eq. (27), we
obtain to leading order λ, ch = −ce = c, i.e., �e ≈ −�h. [For
nonequal masses mh and me, �h = �(me/mh)1/4 and �e =
−�(mh/me)1/4]. The prefactors c and b̄ are the solutions of

(
√

b̄2 + c2 − b̄) ∗ (
√

(1 − b̄)2 + c2 − (1 − b̄)) = 4,
(39)√

(1 − b̄)2 + c2 −
√

b̄2 + c2 = 1 + 2b̄.

Solving this set we find b̄ = −0.34 and c = 2.43, i.e.,
μe(T = 0) = −0.34EF , μh(T = 0) = 1.34EF , and �h ≈
−�e = 2.43EF . We see that μe and μh change little between
T = Tins and T = 0.

Because μe is negative, the minimal excitation energy
for the electron band is (for mh = me) Ee = √

μ2
e + �2 ≈

2.45EF . For the hole band, μh positive and the minimal
energy is Eh = �. We emphasize that the minimal energy
Ee is larger than Eh, despite that the gaps �e and �h have
equal magnitudes. The ratios of the minimal energy and Tins

are

Ee

Tins
= 1.82,

Eh

Tins
= 1.80. (40)

Both are a bit larger than the BCS value of 1.76.

C. The case EF � E0

We assume and then verify that in this limit, the onset
temperature for the pairing Tins and the gaps �h and �e become
progressively larger than EF , while μh and μe remain of order
EF . Assuming that Tins � EF and solving (25) for Tins, we
then immediately obtain

Tins = 1.13�e− 2
λ + EF

4
+ O(λ) ≈ 1.13E0

(
1 + 0.22

EF

E0

)

= T0

(
1 + 0.22

EF

E0

)
. (41)

Note that this differs from BCS formula because the exponent
contains 2/λ rather than 1/λ. The reason is that only fermions
with energies above EF contribute to the logarithm. Solving
the last two equations from Eq. (25), we obtain for the chemical
potentials at T = Tins

μe(Tins) ≈ −EF

2
, μh(Tins) ≈ 3EF

2
. (42)

Solving next for the gaps and the chemical potentials at
T = 0, we obtain (for mh = me) that the μe and μh move only
little below Tins, while �h ≈ −�e = � is related to Tins by the
same formula as in BCS theory, i.e.,

� = 1.76Tins � EF .

μh ≈ 3EF

2
, μe ≈ −EF

2
. (43)

FIG. 8. Fermionic dispersions for the two-band model with one
hole and one electron band in the limit EF � E0. Red dashed
line: the bare dispersions (the one which the system would have
at T = 0 in the absence of the pairing). Black lines: the dispersions
right above Tins, blue lines: the dispersion below Tins. The chemical
potential for the electron band is negative, and the minimal gap is√

�2
e + μ2. For the hole band, the chemical potential is positive and

the dispersion ±
√

�2
h + (k2/(2m) − μh)2 is nonmonotonic, with the

minimal energy �h at kF = √
2mμh. Note that this kF is larger than

the bare kF,0 = √
2mEF .

The results for Tins,�, and the chemical potential are all consis-
tent with what we assumed a priori, hence the computational
procedure is self-consistent.

In Fig. 8, we plot the dispersions of fermions from hole and
electron bands at T > Tins and T � Tins along with the bare
dispersions (the one the system would have at T = 0 in the
absence of the pairing). The figure is for the case EF < E0,
the dispersion at EF > E0 is quite similar. Observe that the
minimal energy of a fermion on the hole band (often associated
with the “gap”) is

√
�2

e + μ2
e , while the minimal energy of a

fermion on the electron band is just |�h| ≈ |�e|, i.e., it is
smaller.

Returning to Eq. (41), we notice that the temperature Tins is
only slightly higher than T0 = 1.13E0, at which the scattering
amplitude for two particles in a vacuum diverges [to obtain
T0 one just has to set EF = 0 in Eq. (41)]. Like in the one-
band case, this poses the question what is the actual Tc in
this situation, because the development of the two-particle
bound state does not generally imply the breaking of U(1)
gauge (phase) symmetry. To understand what Tc is we need to
compute superconducting stiffness. This is what we do next.

D. Superconducting Tc

We express U(1) order parameters �e and �h as �e−φh

and �e−φe (we recall that, for equal masses mh = me, the
magnitudes of �e and �h are equal, up to small corrections).
In the equilibrium, φe − φh = π . To obtain the superfluid
stiffness at T = 0, we need two ingredients [45,46]; the
gradient terms in the energy (∇φh)2, (∇φe)2, and (∇φh)(∇φe),
and the mixing term �e�

∗
h + �∗

e�h ∝ cos (φe − φh). The last
term is important when the stiffnesses on the hole and the
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FIG. 9. Diagrammatic representation of the two-loop diagram for
the potential energy Epot(q) in two-band models with a constant
interband interaction U (the dashed line). Dark and light lines
represent fermions from two different bands. The prefactor for q2

term in Epot(q) determines the superfluid stiffness. For a constant
(i.e., angle-independent) U , the q2 term appear by expanding GG or
FF terms either on the right side of on the left side of each diagram,
but there is no cross-term from taking linear in q terms on the right
and on the left.

electron bands substantially differ in magnitude because it
generates the mass for phase fluctuations on the band with a
smaller stiffness once the phase of the gap on the band with a
larger stiffness gets ordered.

The prefactors for the gradient terms can be evaluated
in the same way as in the one-band model, by allowing the
phases to vary as ei(∇φ)r , i.e., by taking the Fourier transform
�(q) = �δ(q − ∇φ), and evaluating the prefactors for the q2

terms in the potential energy (see Sec. II). The cross term
∇φh∇φe could potentially come from the two-loop diagram
shown in Fig. 9. There are no symmetry restrictions which
would prevent the cross term to be present [49], however,
in our case the prefactor for ∇φh∇φe contains the integral∫

dkdp(qk)(qp)U (k − p) (k is near an electron band, p is
near the hole band), which vanishes because we set U (k − p)
to be independent on the angle between k and p. The gradient
part of the energy then comes solely from the bubbles made
by fermions from the same band and is given by

δEgr = 1
2ρh

s (∇φh)2 + 1
2ρe

s (∇φe)2. (44)

The two-loop diagram, shown in Fig. 9, however, gives rise to
the mixed term �e�

∗
h + �∗

e�h. To see this, we evaluate this
diagram at q = 0. The sum of Gs(k)Gs(−k) and Fs(k)Fs(−k)
terms in the right and in the left gives exactly 1/U , hence

δEmix = 1

U
(�e�

∗
h + �∗

e�h) = 2
�2

U
cos (φe − φh). (45)

Without loss of generality, we can assume that in equilibrium
φe = 0, φh = π (note that the overall sign in (45) is negative
in equilibrium). Expanding in (45) to quadratic order in devi-
ations of φe,h from the equilibrium values and combining (44)
and (45), we obtain fluctuation part of the energy in the form

δEfl = 1

2

[
ρh

s (∇φ̃h)2 + ρe
s (∇φ̃e)2 + 2

�2

U
(φ̃e − φ̃h)2

]
, (46)

where φ̃e,h are deviations from equilibrium values. This δEfl

can be treated as an effective Hamiltonian for fluctuations

of φ̃ in the sense that 〈φ̃2〉 ∝ ∫
dφ̃e−δEfl/T . This effective

Hamiltonian can be also obtained by starting with fermionic
Hamiltonian with 4-fermion interaction in the Cooper channel
and using Hubbard-Stratonovich transformation to re-express
the partition function as the integral over bosonic variables
�e,h(r) = |�|eiφe,h(r) (see Refs. [21,45–48]).

Transforming into the momentum space and evaluating
〈|φ̃e,h(k)|2〉, we obtain

〈|φ̃e(k)|2〉 = T
(
k2ρh

s + 2�2

U

)
k4ρe

s ρ
h
s + 2�2

U
k2

(
ρe

s + ρh
s

) ,

(47)

〈|φ̃h(k)|2〉 = T
(
k2ρe

s + 2�2

U

)
k4ρe

s ρ
h
s + 2�2

U
k2

(
ρe

s + ρh
s

) .

If the mixing term was absent [i.e., if there was no �2/U

term in (47)], we would have 〈|φ̃e(k)|2〉 = T/(ρe
s k

2) and
〈|φ̃h(k)|2〉 = T/(ρh

s k2), i.e., phase fluctuations of �e and �h

would be decoupled and the actual Tc, below which the system
displays full coherence, would be determined by the smaller of
the two stiffnesses. The presence of the mixed term changes the
situation because now the ordering of one φ̃ produces the mass
term for fluctuations of the other phase variable. To estimate
Tc, we need to look at the small momentum asymptotic of
Eq. (47) where

〈|φ̃e(k)|2〉 = 〈|φ̃h(k)|2〉 = T(
ρh

s + ρe
s

)
k2

. (48)

Hence Tc is determined by the combined stiffness ρcomb =
ρe

s + ρh
s . When ρcomb � Tins, phase fluctuations are costly

and Tc almost coincides with Tins. When ρcomb � Tins, we
again use the approximate criterium Tc ≈ (π/2)ρcomb(T ) =
1.57ρcomb(0).

We now proceed with the calculations of ρe
s and ρh

s . The
q-dependent part of the energy for each band is again given by
the sum of the convolutions of normal and anomalous Green’s
functions with the total momentum q, with � in the vertices,
i.e., by the integrals of �2(Gs(k + q/2)Gs(−k + q/2) +
Fs(k + q/2)Fs(−k + q/2)) [see Eq. (13)]. Each stiffness at
T = 0 is then given by Eq. (18) with μ = μe or μh, i.e.,

ρe
s (T = 0) = �2

e

8π

∫ �

0
dε

ε(
(ε − μe)2 + �2

e

)3/2 ,

(49)

ρh
s (T = 0) = �2

h

8π

∫ �

0
dε

ε(
(ε − μh)2 + �2

h

)3/2 .

Using the same manipulations as in Sec. II B, one can relate
ρh

s and ρe
s to the total number of fermions in the hole and the

electron band, Nh and Ne. The two are given by

Ne = N0

∫ �

0
dε

(
1 − ε − μe√

(ε − μe)2 + �2
e

)
,

(50)

Nh = N0

∫ �

0
dε

⎛
⎝1 + ε − μh√

(ε − μh)2 + �2
h

⎞
⎠,

and the relations are
Ne

N0
= 8πρe

s ,
Nh

N0
= 2� − 8πρh

s . (51)
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The conservation of the total number of particles implies that
Nh + Ne = 2N0(� − EF ), hence

ρh
s − ρe

s = EF

4π
. (52)

This condition, however, only specifies the difference between
ρh

s and ρe
s , the combined stiffness ρcomb is not fixed and

depends on the ratio EF /E0, as we see below.
At EF � E0, we obtained from Eq. (49), using � � EF

and μe(T = 0) = − �

2
√

2
, μh(T = 0) = EF − μe(T = 0) ≈

EF :

ρh
s (T = 0) ≈ EF

4π
,

(53)
ρe

s (T = 0) ≈ 0.71
�h

8π
= 0.05Tins � ρh

s (T = 0),

where, we remind, Tins ∼ � ∼ (EF E2
0)1/3 � EF . Adding the

two stiffnesses, we find ρcomb(T = 0) ≈ EF /(4π ) � Tins. The
inequality ρcomb � Tins implies that phase fluctuations are
costly and hence Tc ≈ Tins.

Note in passing that at EF � E0, T/(ρcombk
2) behavior of

the Fourier transform of the correlation function for phase
fluctuations holds in the full momentum range where the
gradient expansion is applicable. Indeed, gradient expan-
sion holds when k is smaller that inverse superconducting
coherence length ξ−1

0 = �/vF . Comparing the mixed term
�2/U with even the larger k2ρh

s ∼ k2EF , we find that at
k ∼ ξ−1

0 , k2ρh
s ∼ m�2 is already parametrically smaller than

�2/U ∼ (m�2)/λ. Hence Eq. (47) is valid for all k < ξ−1
0 .

At EF = E0, we obtain from Eq. (49), using the results for
�e,h and μe,h from Sec. III B,

ρh
s (T = 0) = 2.05

EF

4π
, ρe

s (T = 0) = 1.05
EF

4π
. (54)

Observe that ρh
s (T = 0) − ρe

s (T = 0) = EF /(4π ), as it should
be, according to (52). Combining the two we obtain ρcomb =
3.1EF /(4π ). Using Tc ≈ 1.57ρcomb, we obtain Tc ≈ 0.39EF .
The onset temperature for the pair formation is Tins =
1.35EF ≈ 3.49Tc. We see that now Tins is substantially larger
than Tc, hence already at EF = E0 the system should display
preformed pair behavior in a wide range of temperatures.

Finally, at EF � E0 the chemical potentials μe,h ∼ EF are
parametrically smaller than �. In this situation, we obtain from
Eq. (49)

ρh
s ≈ ρe

s ≈ �2

8π

∫ ∞

0
dε

ε

(ε2 + �2)3/2
= �

8π
= 0.07Tins.

(55)

Hence

ρcomb = 0.14Tins, Tc ≈ 0.22Tins. (56)

This holds even when EF = 0, i.e., when the electron band
is empty. The stiffnesses ρh

s and ρe
s are equal in this limit,

as required by (52) but each remains nonzero and of order
Tins. As the consequence, Tc remains finite and also of order
Tins. Still, because numerically Tc � Tins, there exists a sizable
temperature range of preformed pair behavior.

Because now Tins almost coincides with the temperature
T0 of bound-state formation for two particles in a vacuum,

FIG. 10. The onset temperature Tins for the bound-state formation
and the superconducting transition temperature Tc in the two-band
model with one hole and one electron Fermi surface, as functions of
E0/EF . The temperatures are in units of EF (a) and E0 (b). Observe
that both Tins and Tc scale as E0 at large E0/EF .

the change of system behavior between EF � E0 and EF �
E0 can be interpreted as BEC phenomenon. We emphasize,
however, that the ratio of Tins

Tc
remains finite at EF → 0, in

distinction to ordinary BCS-BEC crossover, where this ratio
tends to infinity when EF vanishes [13].

The still existence of a finite Tc at vanishing EF is in
variance with the situation in the one-band model and, as
we will see in the next section, also with the two-band
model with two electron/two hole bands. There, Tc vanishes
when EF = 0 on both bands. The difference can be easily
understood because in the other two models there are no
carriers at EF = 0 to form superconducting condensate, hence
the gap must vanish at EF = 0, otherwise there would appear
an image band at negative energies with a finite density of
carriers in it. In the model with a hole and an electron bands,
there is charge reservoir in the hole band, and the charge
density can be re-distributed into the image bands even at
EF = 0. The image of the electron band appears at negative
energies E = −√

�2
e + (εe

k − μe)2. The states in this new band
are filled by electrons, and their total density is given by
N0

∫
dεk(1 − εe

k−μe√
�2

e+(εe
k−μe)2

) ∼ � ∼ Tins. The electrons from

the filled states in this image band can form superconducting
condensate, and, because all energy scales are of order Tins,
superconducting Tc is also a fraction of Tins.

Note also that at EF � E0, the Fourier transform of
the correlation function for phase fluctuations is given by
T/(ρcombk

2) = T/(2ρh
s k2) at the lowest k, but crosses over

to a similar but not identical expression at larger k, which
are still smaller than ξ−1

0 . The reasoning is that k2ρh
s ≈ k2ρe

s

becomes comparable to the mixing term �2/U at ktyp ∼
ξ−1

0 (EF /λE0)1/2, which, at small enough EF , is smaller than
ξ−1

0 . In between ktyp and ξ−1
0 , the correlation function scales

as T/(ρh
s k2), i.e., the functional form is the same as at the

smallest k but the prefactor differs by 2.
Our results for Tc and Tins in the model with one hole and

one electron pocket are summarized in Fig. 10. Like in Fig. 6,
we plot Tc and Tins in units of either E0 or EF , both times as
functions of E0/EF . We reiterate that the key result for this
model is that both Tins and Tc scale as E0 at large E0/EF .

E. The density of states at T = 0

The DOS in the model with one hole and one electron
bands is different from that in the one-band model because
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FIG. 11. The DOS at T = 0 for the model with one hole and
one electron pockets. (a) E0 = EF and (b) E0 = 10EF . For E0 =
EF , μe = −0.34EF ,μh = 1.34EF , and �h ≈ −�e = 2.43EF . For
EF = 0.1E0, μh ≈ 3EF

2 , μe ≈ −EF

2 , and �e ≈ −�h ≈ 20.3EF . To
cut the singularities and make other features of DOS visible, we added
fermionic damping γ = 0.001EF . Main figures: the DOS separately
for the hole band (dashed blue) and the electron band (dashed red).
For the hole band, the DOS has a square-root singularity at |ω| =
|�h| + 0, symmetric between negative and positive frequencies, and
van Hove singularity at |ω| =

√
�2

h + μ2
h + 0 [see Eq. (22); for

hole dispersion positive and negative frequencies in (22) have to be
interchanged]. The latter is stronger for positive frequencies, due to
anisotropy of coherence factors. For EF = 0.1E0, the singularity and
the discontinuity are almost undistinguishable. For the electron band,
the DOS jumps to finite value at |ω| = √

�2
e + μ2

e + 0 and is highly
anisotropic between negative and positive frequencies, again due to
anisotropy of the coherence factors [see Eq. (24)]. For EF = 0.1E0,
� >> μe, and the DOS right after the jumps are large, of order
�/μe. (Insets) The total DOS. Observe that at large frequencies the
total DOS tends to a finite value for both positive and negative ω.

now fermionic excitations in the normal state exist at both
positive and negative frequencies. In the main parts of the two
panels in Fig. 11, we show the behavior of the DOS at T = 0
separately for hole and electron bands, E0 = EF and E0 �
EF , respectively. The behavior of the DOS on the electron band
is very similar to that in the one-band model [see Eq. (24) and
Fig. 6]. Namely, the DOS vanishes at |ω| <

√
�2

e + μ2
e and

jumps to a finite value at |ω| = √
�2

e + μ2
e + 0. The DOS is

highly anisotropic between negative and positive frequencies
due to anisotropy of coherence factors. It is much larger at
positive frequencies, where it tends to a finite value at large
ω. At negative frequencies, the discontinuity is weaker (and
rapidly suppressed by a fermionic damping), and the DOS
falls off as 1/ω2 for larger negative frequencies. On the hole

band, the DOS vanishes at |ω| < |�h| and has a BCS-like
square-root singularity at |ω| = |�h| + 0, symmetric between
negative and positive frequencies. At larger |ω|, the DOS on the
hole band has a discontinuity at |ω| =

√
�2

h + μ2
h−0, when |ω|

crosses the edge of the band and the corresponding momentum
k = 0 [see Eq. (22); for hole dispersion positive and negative
frequencies in (22) have to be interchanged]. In the normal
state, this would be a discontinuity at the top of the hole band.
In a superconductor, the discontinuity holds for both positive
and negative ω, but the coherence factor is much larger for a
positive ω. At higher frequencies, the DOS on the hole band
tends to a finite value at negative frequencies and scales as
1/ω2 at positive frequencies.

In the insets of Fig. 11, we show the total (combined) DOS
for E0 = EF and E0 � EF . Observe that DOS tends to a finite
value at both positive and negative frequencies.

IV. TWO-BAND MODEL WITH TWO ELECTRON BANDS

In this section, we analyze the model with two bands of
equal type. The results are identical for the model with two hole
bands and for the one with two electron bands. For definiteness,
we consider the model with two electron bands as in Fig. 3(c).
We consider the same electronic configuration at T = 0 as
for one hole/one electron band model. Namely, we set the
chemical potential to touch the bottom of one of the bands
and cross the other band, i.e., the Fermi energy to zero in one
band (band 2) and finite in the other (band 1). At the end of
this section, we consider how the onset temperature for the
pairing evolves when we move the chemical potential such
that both bands cross the Fermi level. Like in the previous
section, we restrict with interband (pair-hopping) pairing
interaction.

The behavior of Tins,�, μ, and ρs in the model with
two electron bands (and in a more general model with
intraband pairing interaction) has been discussed analytically
in Refs. [50] for the case when EF � E0. The set of equations
for Tins,�, and μ has been solved numerically for arbitrary
EF /E0 (Refs. [20,26]). When the comparison is possible,
our results agree with these works, but we also present new
analytical results for Tins,�, μ, and the superfluid stiffness
for the cases when EF ∼ E0 and EF < E0. The pairing
at EF � E0 has been considered recently in Refs. [22,31].
Our results agree with these earlier works modulo that
they computed Tins without including into consideration the
temperature dependence of the chemical potential in the
band 2, while we argue that this renormalization is O(1)
effect.

The analysis of the bound-state energy for two particles at
EF ≡ 0 does not differ from that in previous sections, and the
result is that the scattering amplitude diverges at T0 = 1.13E0,
where, like before, E0 = �e−2/λ. The bound-state energy at
T = 0 is 2E0.

The onset temperature for the pairing at a finite EF

is obtained by solving simultaneously the linearized
equations for �1 and �2 and the equations for the
chemical potentials μ1(T ) and μ2(T ), subject, in this case,
to μ1(T ) − μ2(T ) = EF . The set of equations is
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[μ1 = μ1(Tins),μ2 = μ2(Tins)]

�1 = −λ

2
�2

∫ �

−μ2

dx

x
tanh

x

2Tins
,

�2 = −λ

2
�1

∫ �

−μ1

dx

x
tanh

x

2Tins
,

EF = T ln [(1 + eμ1/T ) × (1 + eμ2/T )],

μ1 − μ2 = EF . (57)

The first two equations reduce to

4

λ2
=

∫ �

−μ1

dx

x
tanh

x

2Tins
×

∫ �

−μ2

dx

x
tanh

x

2Tins
. (58)

Below Tins, �1, and �2 become nonzero and one has to
consider nonlinear gap equations and modify the equation
for the chemical potential. At T = 0, we have [μ1 = μ1(T =
0),μ2 = μ2(T = 0)]

�1 = −λ

2
�2 ln

2�√
μ2

2 + �2
2 − μ2

,

�2 = −λ

2
�1 ln

2�√
μ2

1 + �2
1 − μ1

,

(59)
2EF =

√
μ2

1 + �2
1 +

√
μ2

2 + �2
2 + μ1 + μ2,

μ1 − μ2 = EF .

A. The case EF � E0

Like we did in the previous section, we assume and then
verify that Tins � EF and that at T = Tins, μ1 ≈ EF , while
μ2 ∼ Tins Under these assumptions, the equations on the
chemical potentials in (57) yield [μ1,2 ≡ μ1,2(Tins)]

μ2 = T ln

(
1

1 + eμ2T

)
, μ1 = EF + μ2. (60)

Solving for μ2, we obtain

μ2 = Tins ln

√
5 − 1

2
= −0.48Tins, μ1 = EF − 0.48Tins.

(61)
This is the same result as Eq. (28). Substituting these results
into the first two equations in (25), we obtain after simple
algebra

�2 = −λ

2
�1

(
2 ln

1.13�

Tins
− 2

λ
+ ln

EF

E0

)
,

(62)
�1 = −λ

2
�2 ln

1.13D�

Tins
,

where D = 0.79. Solving the set, we obtain

Tins = 1.13D1/3E
1/3
F E

2/3
0 = 1.04E

1/3
F E

2/3
0 (63)

in full similarity with Eq. (31) for the model with a hole and
an electron pocket. Like in that case, Eq. (63) is valid when
λ ln EF /E0 � 1. At even larger EF � �, when λ ln EF /E0 =

O(1), Tins is given by

Tins ∼ �

(
EF

�

)1/4

e−
√

2
λ . (64)

The ratio of the gaps on electron and hole bands at T = Tins − 0
is

�2

�1
≈ −

(
1 + λ

6
ln

EF

E0

)
. (65)

We see that the gap on the band that touches the Fermi level
is larger than the gap on the band that crosses the Fermi level,
in full agreement with the case of one hole and one electron
band. This result holds even when the full band 2 is located
above the Fermi level. The ratio of �2/�1 increases when EF

gets larger and approaches
√

2 when EF becomes of order �.
At T = 0, the solution of the set (59) at EF � E0 but

λ ln EF /E0 � 1 shows that the ratio of �1 and �2 remains
the same as in Eq. (65), i.e., up to subleading terms �1(T =
0) = −�2(T = 0) = �. Solving for the chemical potentials
we then find (μ1,2 ≡ μ1,2(T = 0))

μ2 = − �

2
√

2
, μ1 = EF + μ2. (66)

Substituting this into the first two equations in Eq. (59) and
solving for �, we obtain

� = 25/6E
1/3
F E

2/3
0 = 1.78E

1/3
F E

2/3
0 . (67)

B. The case EF = E0

Like we did in the previous section, we express Tins =
aEF , μ1(Tins) = bEF , and μ2(Tins) = EF (b − 1). Substitut-
ing these relations into Eq. (57) and using the fact that

2

λ

∫ �

0

tanh x
2Tins

x
= 2

λ
ln 1.13�/Tins = 1 − 2

λ
ln

a

1.13
, (68)

we obtain, to leading order in λ, the set of two equations on a

and b:

1 = a ln [(1 + e
b−1
a ) (1 + e

b
a )],

(69)

2 ln
a

1.13
=

∫ b
2a

0
dy

tanh y

y
+

∫ b−1
2a

0
dy

tanh y

y
.

Solving the set we obtain Tins = 0.924EF , μ1(Tins) =
0.115EF , and μ2(Tins) = −0.885EF . As expected, the chem-
ical potential μ2 becomes negative at a finite temperature.

At T = 0, we express � = c̄EF , μ1(T = 0) =
b̄EF , and μ2(T = 0) = (b̄ − 1)EF . Substituting into Eq. (59),
we obtain the set of two equations

(
√

b̄2 + c̄2 − b̄) × (
√

(b̄ − 1)2 + c̄2 + (1 − b̄)) = 4,
(70)√

(b̄ − 1)2 + c̄2 +
√

b̄2 + c2 = 3 − 2b̄.

Solving this set we find c̄ = 1.38 and b̄ = −0.05, i.e., μ1(T =
0) = −0.05EF , μ2(T = 0) = −1.05EF , and �1 ≈ −�2 =
1.38EF . We see that μ1 changes from a slightly positive to
a slightly negative value between T = Tins and T = 0.
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FIG. 12. Fermionic dispersions for the two-band model with two
electron bands in the limit EF � E0. Red dashed line – the bare
dispersions (the one which the system would have at T = 0 in the
absence of the pairing). Black lines – the dispersions right above Tins ,
blue lines – the dispersion below Tins . The chemical potentials for
both bands are now negative at T � Tins and in the BEC state below
Tins , and the minimal gaps on each band is

√
�2 + μ2. The minimum

of dispersion on both bands is at k = 0. This is very similar to the
behavior of the one-band model (see Fig. 4).

C. The case EF � E0

We assume and then verify that at small EF both μ1 and
μ2 become negative at T = Tins, and each exceeds EF by
magnitude. Solving Eq. (57) under these assumptions, we
obtain

μ1(Tins) = −Tins

2
ln

Tins

EF

+ EF

2
,

(71)
μ2(Tins) = −Tins

2
ln

Tins

EF

− EF

2
.

Substituting these chemical potential into the equation for Tins

an solving it, we obtain

Tins = 4.52E0

ln E0
EF

. (72)

This Tins has the same functional form as Tins for the one-
band model in the same limit EF � E0. This Tins scales as
E0, up to a logarithmic factor, but still vanishes at EF = 0
due to logarithmic suppression. Plugging Tins from (72) back
into (71), we obtain μ1 ≈ μ2 ≈ −2.51E0, what justifies the
assumption we made.

Solving next for the gaps and chemical potentials at T = 0,
we obtain (for mh = me) that μ1 ≈ μ2 ≈ −E0, while �1 ≈
−�2 = �, where

� =
√

2
√

EF E0 � Tins. (73)

The expression for the gap also agrees, up to an overall factor,
with that in the one-band model.

In Fig. 12, we plot the actual dispersion of the two
electron bands below Tins for the case EF � E0, along with
the bare dispersion. We see that the system behavior is
very similar to that in the one-band model (see Fig. 4 for
comparison). To understand what Tc is we again need to
compute superconducting stiffness.

D. Superconducting Tc

We follow the same logics as in the previous section,
i.e., introduce coordinate-dependent phases of the gaps
on the two electron bands φ1(r) and φ2(r), compute the
prefactors for the gradient term in the ground-state en-
ergy Egr = (1/2)ρs,1(∇φ1)2 + (1/2)ρs,2(∇φ2)2 and the mix-
ing term (�2/U ) cos (φ1 − φ2). Performing the same calcula-
tions as in the previous Section, we find that Tc is determined
by the combined stiffness ρcomb = ρs,1 + ρs,2.

The stiffnesses ρs,1 and ρs,2 are expressed via �1,2 and
μ1,2 by the same formulas as we obtained in the previous two
sections:

ρs,1(T = 0) = �2
1

8π

∫ �

0
dε

ε(
(ε − μ1)2 + �2

1

)3/2 ,

(74)

ρs,2(T = 0) = �2
2

8π

∫ �

0
dε

ε(
(ε − μ2)2 + �2

2

)3/2 .

The two stiffnesses are again related to the number of
fermions in each band via N1 = 8πN0ρs,1,N2 = 8πN0ρs,2.
Accordingly,

ρcomb = ρs,1 + ρs,2 = EF

4π
. (75)

At EF � E0, ρcomb � Tins, hence Tc ≈ Tins. The two individ-
ual stiffnesses are

ρe,2(T = 0) ≈ 0.03� = 0.05Tins � EF ,

ρs,1(T = 0) ≈ EF

4π
. (76)

This result is essentially identical to the one for the model with
a hole and an electron pocket in the same limit.

For EF = E0, we obtain from Eq. (74), using the results
for �e,h and μe,h from Sec. IV B,

ρs,1(T = 0) = 0.053EF ,

ρs,2(T = 0) = 0.027EF , (77)

ρcomb(T = 0) = 0.08EF ≡ EF

4π
.

Treating 1/(4π ) as a small parameter and using the same
estimate of the actual Tc as before we obtain Tc ≈ 0.125EF .
The onset temperature for the pair formation is Tins =
0.924EF ≈ 7.4Tc. Hence the system again displays preformed
pair behavior in a wide range of temperatures.

Finally, for EF � E0, both μ1 and μ2 tend to −E0, the gap
behaves as �2

1 = �2
2 = 2EF E0. Substituting into Eq. (74), we

obtain

ρs,1 ≈ ρs,2 = EF

8π
,ρcomb = EF

4π
. (78)

Hence Tc ∼ EF and is parametrically smaller than Tins ∼
E0/ ln (E0/EF ), i.e., there is a parametrically wide range of
preformed pair behavior. This behavior is quite similar to the
one in the canonical BEC regime, but we caution that Tins is
still smaller by a large logarithm than the temperature T0 ∼ E0

at which a bound state of two fermions emerges in a vacuum.
We summarize the results for the model with two electron

bands in Fig. 13. The behavior of Tc and Tins in this model is
quite similar to that in the model with one electron bands. A
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FIG. 13. The onset temperature Tins for the bound-state formation
and the superconducting transition temperature Tc in the two-band
model with two electron bands, as functions of E0/EF . The
temperatures are normalized to EF (a) and to E0 (b). Like in the
case of one-band model, Tins scales as E0/ ln E0/EF at large E0/EF ,
while Tc scales as EF .

similar behavior also holds in the models with one or two hole
bands.

E. The density of states at T = 0

The DOS at T = 0 in the model with two electron bands
is quite similar to that in the one-band model. Namely, the
DOS is highly anisotropic and is much larger at positive
frequencies than at negative frequencies. For EF � E0, the
chemical potentials are large and negative on both bands, and
the DOS on each band is zero at |ω| <

√
μ2 + �2, displays

a discontinuity at |ω| =
√

μ2 + �2 + 0, and at large negative
frequencies scales as 1/ω2 [see Eq. (22)]. We show the DOS
for this model for EF = E0 and EF = 0.1E0 in Fig. 14.

F. Evolution of Tins and Tc with the filing of the second band and
comparison with the experiments on Nb-doped SrTiO3

Like we said in Introduction, superconductivity in the
model with two electron bands is realized experimentally in
Nb-doped SrTiO3 and, possibly, in heterostructures of LaAlO3

and SrTiO3 (see Ref. [31] and references therein). The Fermi
energy in the band 1 is finite already at zero doping, and EF

is likely larger than E0, in which case Tc ≈ Tins. The band 2 is
above the chemical potential at zero doping, but the chemical
potential at T = 0 moves up with doping and enters the band
2 once it exceeds the critical value.

The experiments have found that superconducting Tc

rapidly increases when the chemical potential enters the band
2. This has been detected in Nb-doped SrTiO3 (Ref. [32]) and
in LaAlO3/SrTiO3 heterostructures (Ref. [33]).

To verify whether this effect can be explained within our
theory, we extend our approach to the case when EF is finite
in both bands. To make notations more convenient, in this
section, we use μ instead of EF (see Fig. 3.) We count μ from
the bottom of the band 1, hence the bare chemical potential μ0

(the one at T = 0 and � = 0) coincides with EF in this band.
We assume that at T = 0 the chemical potential in the band
2 is μ0 − μ∗. At zero doping μ∗ > μ0. At a finite doping, μ0

increases and crosses μ∗ at some finite doping. Once μ0 gets
larger than μ∗, the chemical potential enters the band 2. We set
μ0 = μ∗ + ε, assume that |ε| � μ0, and obtain the correction
to Tc to first order in ε.

 / EF

-3 -2 -1 0 1 2 3

D
O

S 
(a

rb
. u

ni
ts

)

0

1

2

3

4

5
(a)

 / EF

-40 -30 -20 -10 0 10 20 30 40
D

O
S 

(a
rb

. u
ni

ts
)

0

0.2

0.4

0.6

0.8

1 (b)

FIG. 14. The DOS at T = 0 for the model with two electron
bands. (a) E0 = EF and (b) E0 = 10EB . For E0 = EF , μ1 =
−0.05EF ,μ2 = −1.05EF , and �1 ≈ −�e = 1.38EF . For EF =
0.1E0, μ1 ≈ −24.6EF , μ2 ≈ −25.6EF , and �1 ≈ �2 = 4.47EF .
We introduced the damping γ = 0.001EF to make all features of the
DOS visible. Main figures: the DOS for each band (dashed red and
blue lines). (Insets) The total DOS. In the clean limit, the DOS has a
discontinuity at |ω| =

√
�2

i + μ2
i + 0 (i = 1,2), like in the one-band

model. At E0 = EF , DOS on band 1 is large immediately after the
jump because μ1 is very small. The DOS for each band is anisotropic
between negative and positive frequencies due to the anisotropy of
the coherence factors. At large frequencies, the DOS tends to a finite
value for positive ω and scales as 1/ω2 for negative ω. The arrow in
(b) indicates the position of the would be discontinuity at a negative
frequency.

At a finite temperature, the chemical potentials in the two
bands satisfy μ1 = μ0 − ε + μ2 and the condition that the
total number of particles is conserved reads

μ0 + ε = T ln [(1 + eμ1/T ) × (1 + eμ2/T )]. (79)

The onset temperature for the pairing, Tins ≈ Tc is obtained by
solving the set of linearized gap equations for �1 and �2. The
set has the same form as in Eq. (57):

�1 = −λ

2
�2

∫ �

−μ2

dx

x
tanh

x

2Tins
,

(80)

�2 = −λ

2
�1

∫ �

−μ1

dx

x
tanh

x

2Tins
.

We assume that μ0 � E0. The analysis in Sec. IV A for μ∗ =
μ0 shows that Tins � μ0, and, by continuity, we assume that
this remains true for μ∗ ≈ μ0. One easily makes sure that for
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such Tins, μ1(Tins) ≈ μ0 � Tins. Equation (79) then reduces to

μ2 − 2ε = −Tins ln (1 + eμ2/Tins ). (81)

Solving this equation, we find

μ2 = −Tins ln
2√

5 − 1
+ 4ε√

5(
√

5 − 1)
. (82)

Solving then the linearized gap equation to first order in ε, we
obtain after a simple algebra

Tins(ε) = Tins(0) + 2ε

3
√

5(
√

5 − 1)
, (83)

where Tins(0) = 1.04E
2/3
0 μ

1/3
0 . Reexpressing this result back

in terms of μ0 and μ∗, we obtain

Tins(ε) = Tins(0)

[
1 + 0.23

μ0 − μ∗

μ0

(
μ0

E0

)2/3]
. (84)

We see that Tins and hence Tc ≈ Tins increases once μ0 gets
larger than μ∗, and the slope is controlled by the large
factor (μ0/E0)2/3, i.e., the relative increase is parametrically
large. By the same reason, Tc rapidly decreases when μ0 is
smaller than μ. That Tc increases once μ0 gets larger than
μ∗ has been earlier found numerically in BCS calculations
in Ref. [22,31]. Our results are consistent with this work,
however, we emphasize that (i) our analytical result, Eq. (84)
shows that the slope of Tc versus μ0 − μ∗ is parametrically
enhanced at μ0 � E0 and (ii) “pure” BCS calculation neglects
the thermal evolution of the chemical potential, while in
our analysis this renormalization is included and plays an
important role.

A rapid increase of Tc once the band 2 gets populated in
consistent with the data [32,33]. At the same time, our Tc is
continuous as a function of μ, i.e., we did not find a jump in
Tc at a critical doping, as suggested in, e.g., Ref. [34].

V. THE GMB FORMALISM

A somewhat different approach to superconductivity in a
situation when EF is much smaller than the upper energy
cutoff for the pairing interaction was put forward by GMB
in Ref. [35]. They considered a weak coupling 3D case
and argued that, from the physics point of view, Tc has
to be expressed in terms of observable quantum-mechanical
scattering amplitude taken in the limit of zero momentum
(the scattering length a) rather than in terms of unobservable
interaction potential U . The relation between U with a is
obtained by solving the Schrödinger equation for one particle
in a field U of another particle. Diagrammatically, this amounts
to summing up ladder series vertex correction diagrams in the
particle-particle channel for two particles in a vacuum, i.e., for
zero chemical potential. To first order in U , a = mU/(4π ) and
the dimensionless coupling constant λ = m|U |/(2π2) (in 3D)
equals to (2|a|kF )/π . However, beyond leading order, λ and
(2|a|kF )/π are not equivalent.

GMB have demonstrated that, with logarithmic accuracy,
the equation for Tc in terms of a is obtained by summing up
the same ladder series as in the BCS theory, however, two
modifications have to be made simultaneously: (i) U has to
be replaced by 4πa/m and (ii) in each ladder cross-section

one has to subtract from the product of the two Green’s
functions Gk,ωG−k,−ω the same GG term taken at zero
chemical potential. As a result of these modifications, the
kernel in the gap equation is cut at energies of order EF ,
and EF appears as a prefactor in the formula for Tc, once
the exponent contains π/(2|a|kF ) instead of 1/λ. GMB went
further than the logarithmic approximation and obtained the
exact weak coupling formula Tc = 0.277EF e−π/(2|a|kF ) by
adding the leading renormalizations from the particle-hole
channel. We discuss these renormalizations in the Appendix.
The GMB approach does not include phase fluctuations and
hence the instability temperature obtained in this approach is
actually the onset temperature for the pairing Tins.

Below we discuss the extension of GMB approach to the
2D case and show how our Tins can be re-expressed in terms
of the physical scattering amplitude. We obtain Tins in the
form Tins = EF ∗ f (a), where a is the scattering amplitude
(dimensionless in 2D). These formulas are useful if a is known
from some other experiment. We show that in the proper limits
Tins � EF because f (a) is large.

We consider one-band and two-band models with one hole
and one electron pockets. The analysis of the model with two
electron pockets is equivalent to that of the one-band model.
We show that the GMB approach is applicable for an arbitrary
ratio of EF /E0, including the regime where Tins is close to the
temperature T0, at which the scattering amplitude diverges. To
set the stage, we first briefly review the GMB approach in 3D
and then consider 2D cases.

A. Original GMB consideration, weak-coupling D = 3 case

To keep the presentation short, we restrict our approach to
the ladder series and neglect contributions from the particle-
hole channel, i.e., we will not try to reproduce the exact prefac-
tor for Tins. GMB argued that to properly express Tins in terms
of observable variables, one has to consider simultaneously
the ladder series for the pairing vertex � in terms of bare �0

and ladder series for the vertex function � = 4π |a|/m for two
particles in a vacuum in terms of the interaction U . The ladder
series is easily obtained diagrammatically and reduces to

� = �0[1 + �pp(EF )|U | + (�pp(EF )U )2 + . . . ]

= �0

1 − |U |�pp(EF )
,

� = |U |[1 + �pp(0)|U | + (�pp(0)U )2 + . . . ]

= |U |
1 − |U |�pp(0)

, (85)

where

�pp(μ) = T
∑
ωm

∫
d3k/(2π3)G(k,ω)G(−k, − ω)

= T
∑
ωm

∫
d3k/(2π3)

(
ω2

m + (εk − μ)2)−1
. (86)

Expressing |U | in terms of � as |U | = �/(1 + ��pp(0))
and substituting into the expression for �, we obtain

� = �∗
0

1 − �(�pp(EF ) − �pp(0))
, (87)
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where �∗
0 = �0(1 + ��pp(0)) ∼ �0. Equation (87) can be

viewed as the sum of ladder series for � with |U | replaced
by � = 4π |a|/m and the term with zero chemical potential
subtracted from

∫
GG.

With these modifications, the equation for the instability
temperature in terms of |a| becomes

1 = 2|a|kF

π

∫ �

0
dε

(
ε

EF

)1/2( tanh ε−EF

2Tc

ε − EF

−
tanh ε

2Tc

ε

)
. (88)

We remind that we consider the case EF � �. One can easily
check that the integral over ε now converges at ε ∼ EF , so
the upper limit of integration does not matter any longer. The
evaluation of the integral yields, at |a|kF � 1,

Tc = 0.61EF e
− π

2|a|kF . (89)

This equation reexpresses Tins in 3D in terms of the fully
renormalized s-wave scattering length. The renormalizations
from the particle-hole channel further change the prefactor to
0.277 (Ref. [35]).

One can easily check that Eq. (89) coincides with the
conventional BCS result for Tins in 3D. Indeed, from the first
equation in (85), we obtain Tins in 3D directly in terms of U :

Tins = �̃e− 1
λ̃ , (90)

where λ̃ == m|U |kF /(2π2) (dimensionless coupling constant

in 3D) and �̃ = 0.61EF e

√
�

EF . Using the weak-coupling
relation between akF and λ̃:

2|a|kF

π
≈ λ̃

(
1 + λ̃

√
�

EF

)
, (91)

one can easily verify that Eqs. (89) and (90) are equivalent, as
they indeed should be.

We emphasize that, although Eqs. (89) and (90) are
identical, the physics behind GMB approach in 3D is the
separation of scales: fermions with energies below EF are the
only ones that contribute to superconductivity, while fermions
with energies above EF renormalize the interaction between
low-energy fermions into the quantum-mechanical scattering
amplitude.

B. Extension of GMB formalism to 2D

We now extend this approach to 2D case. We consider
separately one-band and two-band models.

1. One-band model

We first consider the case EF > E0, when bound pairs
do not develop prior to superconductivity and the scattering
amplitude is small at weak coupling, and then extend the
analysis to the case EF < E0. In the 2D case, the scattering
amplitude, which we label a2, is dimensionless. To first order
in U < 0, we still have a2 = mU/(4π ). Keeping a2 as a small
parameter and performing GMB computation of Tins in 2D,
we obtain

Tins = 1.13EF e
− 1

|a2 | . (92)

This equation is the 2D analog of Eq. (89). It expresses Tins in
terms of the 2D scattering amplitude, which is an observable
variable.

Equarion (92) is the same as Eq. (4) for Tins in terms of
U , as we now demonstrate. Summing up ladder series of
renormalizations, which convert U into ma2/(4π ), we obtain

1

a2
= ln

1.13�

T
− 2

λ
, (93)

where, we remind, λ = m|U |/(2π ). At EF > E0, Tins ∼
(EF E0)1/2 � E0, hence at a2 is negative at T ∼ Tins, like the
interaction U . Substituting 1/|a2| = −1/a2 from Eq. (93) into
Eq. (92), we obtain

Tins = 1.13(�EF )1/2e− 1
λ . (94)

This coincides with Eq. (4).
In the opposite limit EF � E0, the temperature Tins is larger

than EF , hence the temperature dependence of the chemical
potential μ must be included into the GMB-type analysis.
Performing the same calculation as before and treating a2 as
some temperature-dependent parameter, not necessary a small
one, we obtain, using μ = −T ln T/EF :

ln ln
Tins

EF

= 1

a2
(95)

or

Tins = EF ee1/a2 (96)

This formula again expresses Tins in terms of the scattering
amplitude a, with EF as the overall factor.

Equation (96) looks simple, but one should keep in
mind that the scattering amplitude a2 by itself depends on
temperature. In view of this, Tins is actually the solution of
the transcendental equation T = EF exp [exp (1/a2(T ))], in
which a2(T ) should be treated as input function, extracted
from independent measurements.

We now demonstrate that, although Tins in Eq. (96) contains
EF � E0 as the overall factor, this Tins coincides with that in
Eq. (5), once a2 is reexpressed back in terms of λ. To see this,
we substitute 1/a2 from Eq. (93) into Eq. (95) and obtain

ln
Tins

EF

= e− 2
λ eln 1.13�

Tins = E0

Tins
(97)

or

Tins = E0

ln E0
EF

. (98)

This is the same expression as Eq. (5), as it indeed should be.
Note that a2 is actually positive at T = Tins because Tins

is smaller than T0 = 1.13E0 at which a bound-state forms
in a vacuum. Taken at a face value, this would reply that
the interaction becomes repulsive. However, one can easily
verify that a2(Tins) changes sign exactly when μ(Tins) crosses
zero. As a result,

∫
(GG(μ) − GG(0)) becomes negative

simultaneously with the sign change of a and the product
a2 ∗ ∫

(GG(μ) − GG(0)) in the denominator of (87) remains
positive.

The case when Tins ≈ T0 actually requires more sophisti-
cated treatment because the scattering amplitude is large at
T = Tins and the corrections to the ladder diagrams, which
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we neglected, may become relevant. We will not pursue this
case nor discuss the mathematical details how to properly
extend the ladder series for the scattering amplitude in Eq. (93)
to the case when a in Eq. (93) changes sign. We just consider
the agreement between Eqs. (96) and (5) is the evidence that
Eq. (93) can be used even when a2 is not small.

C. Two-band model

We now extend GMB analysis to the two band model with a
hole and an electron bands. The interband scattering amplitude
ahe is again obtained by summing up ladder diagrams for the
vertex function for the two particles in a vacuum. Interband
scattering is reproduced in odd orders in the interaction. We
set mh = me to simplify calculations, sum up odd terms in the
ladder series, and obtain

ahe = λ

2

1

1 − λ2

4 �2
, (99)

where � = ln 1.13�/T is the particle-particle polarization
operator at μ = 0. We remind that λ = m|U |/(2π ) in 2D.

Expressing λ in terms of ahe as

λ = 4ahe

1 +
√

1 + 4a2
he�

2
(100)

and substituting this back into the set of linearized equations
for �1 and �e, Eq. (25), we obtain after a simple algebra the
equation for Tins as a function of ahe:

2 + 2
√

1 + 4a2
he�

2 = 4a2
he(�e�h − �2), (101)

where

�e =
∫ �

−μe

dε
tanh ε

2T

ε
,

(102)

�h =
∫ �

−μe

dε
tanh ε

2T

ε
.

The right-hand side (r.h.s.) of Eq. (101) can be rewritten as

(�e�h − �2) = �̃e�̃h + �(�̃e�̃h) (103)

and

�̃e = �e − � =
∫ μe

0
dε

tanh ε
2T

ε
,

(104)

�̃h = �h − � =
∫ μh

0
dε

tanh ε
2T

ε
.

Each �̃ is
∫

(GG(μ) − GG(0)), i.e., it is the difference
between the particle-particle polarization operator at a finite
chemical potential μe,h and the one at μ = 0. The chemical
potentials μe,h are at most of order EF , hence the integrals in
Eq. (104) come from energies below EF , like in the original
GMB analysis.

At small E0/EF , Tins is smaller than EF , μe = −0.48Tins

and μe ≈ EF � Tins [see Eq. (28)]. Then �̃e = O(1), while
�̃h ≈ ln (1.13EF /Tins) � 1. In this situation, �e�h − �2 ≈
��̃h. Substituting this into Eq. (101), we obtain that, up to an

overall factor

Tins = EF e
− 1+

√
1+a2

12�2

2a2
he

� . (105)

This is the transcendental equation on Tins with temperature
dependence in the r.h.s. coming from � = ln 1.13�/Tins and
from ahe = ahe(T ). The latter again should be treated as input
parameter, extracted from independent measurements.

It is straightforward to verify that Tins in Eq. (105) is the
same as we obtained in Eq. (31) earlier in terms of the coupling
λ (or, equivalently, in terms of E0). To see this, we reexpress
ahe back in terms of λ. This converts Eq. (105) into

Tins = EF e
− 4

(
1− λ2�2

4

)
λ2� = EF e

− 4
λ2�

�

Tins
, (106)

hence, up to constant prefactors,

ln
(�EF )1/2

T
ln

�

T
= 2

λ2
. (107)

Using ln � = (2/λ) + ln E0, we obtain after simple algebra,
Tins ∼ E

1/3
F E

2/3
0 , which agrees with Eq. (31).

In the opposite limit E0 > EF , we use the fact
that Tins � EF , μe ≈ −EF /2, μh ≈ 3EF /2, and obtain
�̃e ≈ −EF /(4Tins) and �̃h ≈ 3EF /(4Tins). Substituting into
Eq. (101) and using the fact that � � 1, while �̃e,h are small,
we obtain

Tins = EF

2

2a2
he�

1 +
√

1 + 4a2
he�

2
. (108)

Using next the fact that at small EF , Tins is close to T0 at
which the scattering amplitude diverges, i.e, ahe� � 1, we
can further approximate Eq. (108) to

Tins = EF

ahe

2
. (109)

Note that in the two-band case ahe remains positive (like U )
for arbitrary EF /E0 because even at EF → 0, Tins is larger
than T0, see Eq. (41).

Equation (109) expresses Tins at EF � E0 in terms of EF

and 2D inter-band scattering amplitude, which, again, should
be considered as temperature dependent input function. One
can easily demonstrate that Eq. (109) coincides with Eq. (41).
For this, we note that when ahe is large, it can be expressed via
the coupling λ (or, equivalently, via E0) as

ahe ≈ 1

2 ln b
, (110)

where b ln b ≈ (EF /4E0). For small EF /E0, ln b ≈ EF /4E0,
hence ahe ≈ 2E0/EF . Substituting this into Eq. (109), we
obtain Tins ≈ E0. This coincides with Eq. (41) up to corrections
that we neglected by approximating ahe by 2E0/EF .

VI. CONCLUSIONS

In this paper, we considered the interplay between super-
conductivity and the formation of bound pairs of fermions
in multiband 2D fermionic systems (BCS-BEC crossover). In
two spatial dimensions, a bound state develops already at weak
coupling, and BCS-BEC crossover can be analyzed already at
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weak coupling, when calculations are fully under control. We
reviewed the situation in one-band model and considered two
different two-band models, one with one hole and one electron
bands and the other with two hole or two electron bands. The
first model is relevant to experiments on Fe pnictides and Fe
chalcogenides, particularly on FeSe, the second one is used to
describe Nb-doped SrTiO3.

For each model, we solved self-consistently the equations
for the gaps and the chemical potentials on the two bands
and obtained the onset temperature of the pairing Tins and
the chemical potentials and the pairing gaps below Tins.
We computed the superfluid stiffnesses and used them to
estimate the actual superconducting Tc below which U(1)
gauge symmetry is spontaneously broken.

In a one-band model, the system displays BCS behavior
when the Fermi energy EF exceeds the energy, E0, of a
bound state of two fermions in a vacuum. In this regime,
(i) Tins ∼ (EF E0)1/2 is parameterically larger than E0, i.e.,
the pairing emerges at a much higher T than would-be the
temperature for the bound-state formation in a vacuum, and (ii)
the superfluid stiffness ρs = EF /(4π ) is parametrically larger
than Tins, hence phase fluctuations are costly near Tins. As a
consequence, phase coherence sets in almost immediately after
bound pairs form. In the opposite limit E0 � EF , the pairing
develops at Tins � EF , while the actual Tc is determined by
phase fluctuations and is of order EF . In between Tins and Tc,
bound pairs develop but remain incoherent, and the fermionic
spectral function displays a pseudogap behavior, when the
spectral weight gradually transforms from zero energy to
an energy of order of the pairing gap � ∼ (EF E0)1/2. This
is a typical system behavior in the BEC regime. The only
difference with the “canonical” BEC behavior in 3D, where
strong coupling is a must, is that in our weak coupling model
bound pairs are not tightly bound molecules because the two
fermions in a pair are separated on average at distances by a
distance well above the interatomic spacing. We argued that
the fermionic spectral function is highly nonsymmetric in the
preformed pairs regime.

We next considered the two-band model with one hole
and one electron bands. For definiteness, we set EF = 0 on
the electron band, but kept EF finite on the hole band. We
found that the behavior of this model is different in several
aspects from that in the one-band model. There is again a
crossover from BCS-like behavior at EF � E0 to BEC-like
behavior at EF � E0 with Tins > Tc. However, in distinction
to the one-band case, the actual Tc, below which long-range
superconducting order develops, remains finite and of order
Tins even when EF = 0 on both bands. The reason for a finite
Tc is that the filled hole band acts as a reservoir of fermions. The
pairing reconstructs the fermionic dispersion and transforms
some spectral weight into the newly created hole band below
the original electron band and the electron band above the
original hole band. A finite density of fermions in these two
bands gives rise to a finite Tc even when the bare Fermi level
is exactly at the bottom of the electron band and at the top of
the hole band.

We also considered the model with two hole/two electron
bands. We found that the behavior in this model is similar
to that in the one-band model. Namely, BCS-BEC crossover
occurs when the largest of the two EF ’s becomes comparable

to E0. When the ratio EF /E0 is large, the system displays
BCS-like behavior, when it is small, the system displays the
same BEC-type behavior as in the one-band model, namely Tc

scales with EF and is parametrically smaller than Tins.
Finally, we reexpressed Tins in terms of the 2D scattering

amplitude, which is a physical observable, in distinction to U .
For this, we extended to D = 2 the approach put forward by
Gorkov and Melik Barkhudarov back in 1961 for the D = 3
case. We obtained explicit formulas for Tins in terms of the 2D
dimensionless scattering amplitude a2 for the one-band model
and for the model with one hole and one electron bands, and
demonstrated that these formulas are valid not only in the BCS
limit but also in the BEC limit, when the scattering amplitude
is not small. One distinction between 2D and 3D cases is that
in our 2D case the scattering amplitude a2(T ) is temperature
dependent, hence the formulas relating Tins and a2(Tins) are
transcendental equations, which have to be solved with a2(T )
taken from a separate measurement.

Our results confirm an earlier BCS analysis by several
groups [8,30] that in the one hole/one electron band model,
Tc does not tend to zero if EF on one band vanishes, and
it remains finite even when one of the bands is located
entirely below or entirely above the Fermi level. However,
previous works identified Tins with Tc, while we show that
Tc ≈ Tins only when EF � E0, while at EF < E0, Tc is
numerically substantially smaller than Tins. Our results for Tins

also differ from these earlier works because they neglected the
temperature dependence of the chemical potential.

We summarize our results for all three models in Fig. 2
and in Table I. Our results show that the case of one hole
and one electron pocket is the “best case” scenario for higher
superconducting Tc at small EF , because for this case, phase
fluctuations do not reduce Tc more than by a numerical factor.
For a system with a single hole or electron band and for a
system with two hole or two electron bands, phase fluctuations
reduce Tc parametrically compared to the onset temperature
of pair formation.

With respect to applications to Fe-based superconductors,
our results do confirm that Tc does not vanish when one of the
hole bands sinks below the Fermi level or moves as a whole
above the Fermi level. Furthermore, the gap on this band is
generally higher than that on the bands that cross the Fermi
level. The gap ratio is nonuniversal and depends on the mass
ratio and/or presence of additional bands. That the gap is larger
on the band that does not cross the Fermi level is consistent with
the experimental results reported for LiFe1−xCoxAs in Ref. [3]
and for FeTe0.6Se0.4 in Ref. [4]. We note in passing that one
does not need to invoke a highly unconventional concept of the
ultra-strong pairing at all momenta in the Brillouin zone [3] to
explain the data.

Our analysis for the case EF � E0 may be relevant to FeSe.
In this material Fermi energies on all bands are only a few
meV, and are comparable to Tc. For the two-band model, we
found that Tins and Tc do differ by a sizable factor, and there
exists an intermediate T range of preformed pair behavior.
Recent experiments on FeSe have been interpreted [7] in terms
of preformed pairs, which appear at about twice Tc. This is
exciting possibility and the theoretical study of the interplay
between Tins and Tc in the full multiband model for FeSe is
clearly called for.
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FIG. 15. Hartree-Fock diagrams for the self-energy.

Finally, our analysis of the model with two electron pockets
one of which has a finite EF and for the other the Fermi level
is near its bottom, may be relevant to superconductivity in
Nb-doped SrTiO3 (Refs. [22,23,31,32]) and LaAlO3/SrTiO3

heterostructures (Ref. [33]). These materials contain two
electron bands, and the Fermi level passes through the
bottom of one of the bands upon doping. Experiments have
found [32,33] that Tc rapidly increases once the chemical
potential moves up and crosses both bands. We reproduced
this result in our theory—we found that Tc increases when the
chemical potential moves into the second band, and the slope
of the increase of Tc contains a large parameter. We, however,
did not find a jump in Tc at a critical doping, as some other
experiments suggest [34].
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APPENDIX

In this Appendix, we obtain the exact prefactor for Tins in
Eqs. (4) and (5). To compute it, one needs to go beyond ladder
approximation and include the fermionic self-energy to order
λ and the corrections to U from the particle-hole channel.

The fermionic self-energy to order λ comes from Hartree
and Fock diagrams in Fig. 15. This self-energy renormalizes
the fermionic dispersion and the chemical potential, and also
changes the fermionic residue to Z < 1. The correction to Z

originates from the frequency-dependent part of the fermionic
self-energy �(k,ω). The latter is nonzero in our model, despite
that the interaction is approximated by the static U , because
we set the sharp frequency cutoff at energy scale � (and
momentum cutoff at εk = �).

We assume that the renormalization of μ at T = 0 is already
incorporated into EF . The remaining one-loop self-energy has

FIG. 16. Second-order diagrams for the renormalization of the
irreducible pairing interaction due to contributions from the particle-
hole channel.

the form

�(k,ω) = iω
λ

4
fω

(
ω

�
,
εk

�

)
− εk

λ

2π
fε

(
ω

�
,
εk

�

)
, (A1)

where the scaling functions satisfy fω(0,0) = fε(0,0) = 1.
We define the sign of the self-energy via G−1(k,ω) = iω −
εk + �(k,ω). The self-energy comes from internal frequency
and momentum of order of the upper cutoff and only weakly
depends on EF � �. The scaling functions fω and fε can
be straightforwardly obtained numerically. However, for our
purposes, we will need the renormalization of the fermionic
propagator only at ω ∼ εk ∼ Tins � �. At these energies,
the scaling functions can be approximated by their values
at ω = εk = 0. The full Green function to order λ in this
energy/momentum range is then

G(k,ω) = Z

ω − (
k2

2m∗ − EF

) , (A2)

where

Z = 1 − λ

4
, m∗ = m

(
1 + λ

4
− λ

2π

)
. (A3)

Substituting the Green’s function from (A2) into the ladder
diagrams, we immediately obtain that the fermionic self-
energy changes the dimensionless coupling λ into

λ̃ = λm∗Z2 = λ

(
1 − λ

π + 2

4π

)
. (A4)

The renormalization of the irreducible pairing interaction
to order λ comes from particle-hole channel and generally
involves four diagrams, each contains a particle-hole bubble
(Fig. 16). For a constant interaction U , the first three diagrams
in Fig. 6 cancel out and only the last, exchange diagram
contributes. In 2D, the contribution from this diagram to the
irreducible coupling (i.e., the correction to U ) is a constant,
equal to Uλ, when relevant transferred frequency is much
smaller than EF . At a higher frequency �, the renormalization
from the exchange diagram is additionally reduced by EF /�.
Accordingly, the renormalization of U by the particle-hole
bubble is only relevant at EF � E0, when Tins � EF . In this
regime, the effective coupling constant is

λeff = λ̃(1 − λ) = λ

(
1 − λ

5π + 2

4π

)
. (A5)

In the opposite limit, EF � E0, Tins � EF , and the renormal-
ization from particle-hole channel can be neglected. In this
regime, the effective coupling is

λeff = λ̃ = λ

(
1 − λ

π + 2

4π

)
. (A6)
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Collecting all renormalizations to order λ and substituting into
Eqs. (4) and (5), we obtain for Tins at EF � E0,

Tins = 1.13(�EF )1/2e−1/λ̃ = 0.276(�EF )1/2e−1/λ. (A7)

The prefactor differs somewhat from that in Ref. [35b]. At
EF � E0, we have

Tins = 1.13
�

ln E0/EF

e−2/ ˜̃λ = 0.751
E0

ln E0/EF

. (A8)
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