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Excess current in ferromagnet-superconductor structures with fully polarized triplet component
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We study the I -V characteristics of ST/n/N contacts, where ST is a BCS superconductor S with a built-in
exchange field h, n represents a normal metal wire, and N a normal metal reservoir. The superconductor ST is
separated from the n wire by a spin filter which allows the passage of electrons with a certain spin direction so
that only fully polarized triplet Cooper pairs penetrate into the n wire. We show that both the subgap conductance
σsg and the excess current Iexc, which occur in conventional S/n/N contacts due to Andreev reflection (AR), exist
also in the considered system. In our case, they are caused by unconventional AR that is not accompanied by
spin flip. The excess current Iexc exists only if h exceeds a certain magnitude hc. At h < hc, the excess current
is converted into a deficit current Idef. The dependencies of the differential conductance and the current Iexc are
presented as a function of voltage and h.

DOI: 10.1103/PhysRevB.93.174510

I. INTRODUCTION

As is well known, a so-called excess current Iexc appears
at large voltages V in Josephson junctions (JJ) with a direct
conductance [1,2], that is, the current Iexc arises in JJs of the
S/n/S or S/c/S types, where n denotes a normal metal (a wire
or a film) and c a constriction. This means that the current-
voltage (I -V ) characteristics at large V (eV � �, where � is
the energy gap in the superconductors S) has the form

I (V ) = V/R + Iexcsgn(V ) , (1)

where R is the resistance of the JJ in the normal state and the
constant Iexc is the excess current which can be written in the
form

Iexc = a�/R . (2)

Here, a is a numerical factor equal to a = π2/4 − 1 in the
diffusive limit [3] and a = 8

3 in ballistic JJs with ideal (fully
transparent) interfaces [4,5]. Equation (1) also describes the
asymptotic behavior (eV � �) of the I -V characteristics of
S/n/N contacts [4–6], where N is a normal metal reservoir. In
the latter case, the excess current is twice smaller than in the
S/n/S JJs. The excess current Iexc is an essential characteristic
of S/n/N or S/n/S contacts which distinguishes them from
the tunnel junctions S/I/N or S/I/S where this current does
not arise.

If the S/n or n/N interfaces are not ideal (the transmission
coefficient differs from 1), the coefficient a in Eq. (2) can
be either positive or negative. That is, an excess Iexc or
deficit Idef currents arise in this case. Their values depend
on the interface transparencies of both interfaces [7]. The
appearance of the excess current at large V as well as the
nonzero subgap conductance G(V,T ) of the S/n/N contacts
at V � �/e and T = 0 is explained [4–6] in terms of Andreev
reflections (AR) [8]. It has been shown in Refs. [4–6] that the
zero-bias conductance G(0,0) coincides with the conductance
in the normal state and has a nonmonotonous dependence
on the applied voltage V or temperature T . Similar behavior
of the conductance takes place in the so-called Andreev
interferometers (see experimental observations in Refs. [9–12]
and theoretical explanations in Refs. [13,14]).

The Andreev reflection implies that an electron moving in
the normal metal towards the superconductor is converted at
the S/n interface into a hole with opposite spin which moves
back along the same trajectory. Physically, this process means
that an electron with momentum p and spin s moving from
the n metal penetrates the superconductor S and forms there
a Cooper pair, i.e., it pulls another electron with opposite
momentum −p and spin −s. The absence of this electron in the
n metal is nothing else as the creation of a hole with momentum
−p and spin −s. In the superconductor/ferromagnet (S/F)
contacts, the AR is suppressed since the exchange field h acting
on spins breaks the symmetry of spin directions. De Jong and
Beenakker [15] have shown that the conductance G(V,T )|V =T =0

in ballistic S/F systems is reduced with increasing h and turns
to zero at h > EF, where EF is the Fermi energy. At high
exchange energy, electrons with only one spin direction exist
in the ferromagnet F so that the AR at S/F interfaces is not
possible.

One can expect a similar behavior of the conductance in
ST/n/N contacts, where a “magnetic” superconductor with a
spin filter ST (see below) supplies only fully polarized triplet
Cooper pairs penetrating the n metal. It consists of an S/F
bilayer and a spin filter Fl which passes electrons with only
one spin direction, so that one deals with the ST superconductor
constructed as a multilayer structure of the type S/F/Fl. In this
case, the conventional AR at the ST/n interface is forbidden
and, therefore, the subgap conductance at low temperatures as
well as the excess current may disappear.

As will be shown in this work, the subgap conductance
as well as the excess current Iexc remain finite in ST/n/N
contacts. The magnitude of the current Iexc and its sign depend
on the value of the exchange field in the ferromagnet F. In the
considered case of ST/n/N contacts, the subgap conductance
and the excess current occur due to an unconventional AR in
which two electrons with parallel spins in the n film form a
triplet Cooper pair with the same direction of the total spin.
Therefore, the AR at the ST/n interface is not accompanied by
spin flip (the hole in the n wire has the same spin direction as
the incident electron).

Note that, nowadays, the interest in studies of the excess
current is revived in the light of recent measurements on
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S/Sm/S JJs with unconventional semiconductor Sm (topolog-
ical insulator) in which the Josephson effect can occur due to
Majorana modes (see recent experimental papers [16,17], and
references therein). In these junctions, the excess current also
has been observed. On the other hand, properties of high-Tc

superconductors including the iron-based pnictides have been
also studied with the aid of point-contact spectroscopy in
which the differential conductance of N/S point contacts has
been measured [18–22]. A theory of differential conductance
of N/S point contacts composed by a two-band superconductor
with energy gaps of different signs [sgn(�1) = −sgn(�2)] has
been presented in Ref. [23].

In this paper, we calculate the I -V characteristics of
diffusive superconductor/normal metal systems of two types.
In the first type of contacts, Sm/n/N, the “magnetic” super-
conductor Sm is a singlet superconductor S covered by a thin
ferromagnetic layer [see Fig. 1(a)]. In this case, both the singlet
and the triplet Cooper pairs penetrate into the n wire. In the
second type of contacts, ST/n/N, the magnetic superconductor
ST consists again of an S/F bilayer which is separated from the
n wire by a spin filter Fl [see Fig. 1(b)]. The spin filter Fl is
assumed to pass only electrons with spins oriented along the
z axis (s ‖ ẑ). Using the quasiclassical theory, we show that in
both types of contacts, Sm/n/N and ST/n/N, the conductance
G is affected by the proximity effect and the excess (deficit)
current Iexc (Idef) as well as the subgap conductance are finite.

II. MODEL AND BASIC EQUATIONS

We consider an ST/n/N contact, in which the “magnetic”
superconductors are formed by a BCS superconductor S
(s-wave, singlet) covered by a thin ferromagnetic layer F with
an exchange field h [see Fig. 1(a)]. Due to proximity effect, the
singlet component penetrates from the superconductor into the
F film, and also a triplet component arises under the action of
the exchange field h. As is well known (see reviews [24–27]),
in the case of homogeneous magnetization M (M ‖ h) in the
ferromagnet, the vector of the total spin of triplet Cooper pairs
S lies in the plane perpendicular to M. Thus, the S/F bilayer
with a sufficiently transparent interface can be considered as a
“magnetic” superconductor with a built-in effective exchange
field heff which has a nonzero projection onto the z axis and an
effective energy gap �eff (to be more exact, the condensate
wave functions in the F film are analogous to those in a
“magnetic” superconductor).

The magnitudes of heff = |heff| and �eff are determined by
certain conditions. For example, in case of thin F and S layers
[dF � ξh, dS � ξS , where dF,S are the thicknesses of the F(S)
layers, ξh = √

D/h and ξS = √
D/�] and a low F/S interface

resistance, one has [28]

heff = h
νFdF

νFdF + νSdS
, (3)

�eff = �S
νSdS

νFdF + νSdS
. (4)

In case of a high S/F interface resistance, we obtain (see
the Appendix)

heff = h, (5)

FIG. 1. Schematic representation of the system under considera-
tion (not to scale). (a) Sm/n/N contact: the superconductor Sm consists
of a BCS superconductor S and a thin ferromagnetic layer (denoted by
Fw), and is connected to a normal metal reservoir N on the right-hand
side via a normal metal wire n. (b) ST/n/N contact: in addition to the
case (a), the Sm superconductor on the left-hand side is covered by a
spin filter Fl that passes electrons only with a certain spin direction,
say, parallel or antiparallel to the z axis (indicated by the thick
blue arrow). The superconducting phase on the left-hand side is χL.
(c) Sketch (not to scale) of a possible experimental realization of the
case (b).

�eff = εsg ≡ DκSF

dF
, (6)

where D is the diffusion coefficient in the F film,
κSF = (σRSF)−1, σ is the conductivity of the F film, and RSF is
the S/F interface resistance per unit area [see Eqs. (9) and (10)].
The quantity εsg determined by the interface resistance is the
so-called subgap or minigap [29]. In both cases, the effective
exchange field heff may exceed the effective gap heff without
causing a nonuniform state of the Larkin-Ovchinnikov-Fulde-
Ferrel type [30,31] because the thicker S film is only weakly
affected by the F film. For example, in the famous experiment
[32], where a long-range triplet component has been observed
in a multilayered S/F′/F/F′/S Josephson junction, the Curie
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temperature in a weak ferromagnet F′ (Pd0.88Ni0.12) was about
175 K, that is, much larger than the critical temperature of the
superconducting transition in the superconductor S (Nb) with
a transition temperature Tc = 9 K. In principle, a similar F′/S
bilayer can be employed as a prototype of the presented Sm

superconductor.
The F layer in ST/n/N contacts is separated from the n

wire (or film) by a filter that passes electrons only with a
certain spin direction, say, parallel or antiparallel to the z axis
[see Fig. 1(b)]. As a filter, thin layers of strongly polarized
magnetic insulator [33–35] and DyN or GdN films [36] can be
used.

The convenient method to study the system under consider-
ation is the theory of quasiclassical Green’s functions [37–40].
This technique is generalized for the case of ferromagnet-
superconductor structures where a nontrivial dependence of
the quasiclassical Green’s functions ǧ on spin indices must be
taken into account [24,25,27]. In the considered nonequilib-
rium case, the Green’s function ǧ is a matrix with diagonal
matrix elements (ĝR and ĝA) and nondiagonal element (ĝK ),
where the matrices ĝR (A) and ĝK are the retarded (advanced)
and Keldysh functions, respectively. All these functions are
4 × 4 matrices in the Gor’kov-Nambu and spin spaces.

In the n wire, the matrix ǧ obeys an equation which looks
similar to the Usadel equation [41] [see also Eq. (5) in Ref. [7]]

∇(ǧ∇ǧ) + iκ2
ε [X̂30 ,ǧ] = 0 , (7)

where κ2
ε = ε/D with the diffusion coefficient D. The matrix

X̂30 = τ̂3 · σ̂0 is a tensor product of the Pauli matrices τ̂i

(i = 1,2,3) and the 2 × 2 unit matrix σ̂0, which operate in
the particle-hole and spin space, respectively. The matrix
quasiclassical Green’s function ǧ obeys the normalization
condition

ǧ · ǧ = 1̌ . (8)

Equation (7) is complemented by boundary conditions at the
interfaces Sm/n and n/N. They have the form [see Eq. (4.7) in
Refs. [42–45], and also the recent work [46]]

2r̄SLǧ∂xǧ = [�̂Ĝ�̂ ,ǧ]|0 , (9)

2r̄NLǧ∂xǧ = [ǧ ,ĜN]|L . (10)

Here, the subindices 0 and L relate to the n/Sm and n/N
interfaces, respectively, while r̄S,N = σRS,N/L, where σ is
the conductivity of the n wire, and RS,N denote the Sm/n (re-
spectively, n/N) interface resistance per unit area. The matrix
�̂ describes the electron transmission with a spin-dependent
probability T↑,↓. If the filters let to pass only electrons with
spins parallel to the z axis, then �̂ = T 1̂ + UX̂33 so that the
probability for an electron with spin up (down) to pass into
the n wire is T↑,↓ ∝ T ± U . We assume that U = ζT with
ζ = ±1, and the coefficients T and U are normalized, i.e.,
T = |U | = √

2. Note that coefficients r̄S,N are inverted with
respect to the coefficients rν used in Refs. [47,48].

Consider first Eq. (7) for the Keldysh Green’s function ĝK .
In the considered one-dimensional case, it has the form

∂x(ĝR∂xĝ
K + ĝK∂xĝ

A) + iκ2
ε [X̂30,ĝ

K ] = 0. (11)

The Keldysh function ĝK can be expressed in terms of the
retarded and advanced Green’s functions ĝR (A), and the matrix
distribution function n̂ = nlX̂00 + nX̂30:

ĝK = ĝR · n̂ − n̂ · ĝA. (12)

The distribution function nl determines the superconducting
order parameter �, whereas the function n describes the
dissipative current [49,50]. We need to know only the dis-
tribution function n. Multiplying Eq. (11) by X̂30 and taking
trace we obtain [employing the normalization condition (8), in
particular, the relations ĝR (A) · ĝR (A) = 1̂]

[1 − (ĝR
‖ · ĝA

‖ )00 + (ĝR
⊥ · ĝA

⊥)00]∂xn = J, (13)

where ĝ
R (A)
‖,⊥ are, respectively, the diagonal and off-diagonal

elements of ĝR (A) matrices in the particle-hole space, and we
introduced the notation (. . .)ij = Tr{X̂ij (. . .)}/4. The quantity
J = J (ε) is independent of x. Integrating Eq. (13) we obtain

n(x) = n0 + J

∫ x

0

dx

1 + Mn(x)
, (14)

where Mn(x) = −(ĝR
‖ · ĝA

‖ )00 + (ĝR
⊥ · ĝA

⊥)00.
Using the boundary conditions (9) and (10), we find

JL = FV

2r̄N/MN + 2r̄S/MS + 〈[1 + Mn(x)]−1〉 , (15)

where FV = (1/2)[tanh[(ε + eV )/2T ] − tanh[(ε − eV )/2T ]]
is the distribution function in the normal
metal reservoir (we set the voltage in the S
reservoir equal to zero), 〈. . .〉≡ L−1

∫ L

0 (. . .),
MS = [(ĝR − ĝA)‖(ĜR

S − ĜA
S )‖ + (ĝR + ĝA)⊥(ĜR

S + ĜA
S )⊥]00,

and MN = [(ĝR − ĝA)‖(ĜR
N − ĜA

N)‖]00.
The current I is expressed via the “partial” current J as

I = (σ/4eL)
∫

J (ε) dε. (16)

Equation (15) generalizes Eq. (13) of Ref. [7] for the
considered case of a spin-dependent interaction and can be
applied to the description of contacts with a condensate
consisting of singlet and triplet Cooper pairs. In the normal
state, above the critical temperature of the superconductor
S, one has MN = MS = 2(1 + Mn) = 4. Thus, we obtain a
standard expression for the current per unit area in an N/n/N
contact

I = V

RS + RN + L/σ
. (17)

The denominator is the sum of interface resistances and the
resistance of the normal n wire.

The normalized differential conductance of the contacts
under consideration σ̃d(v) ≡ (dI/dV )/σN at T = 0 is

σ̃d(v) = (r̄S + r̄N + 1)/4

r̄N/ML(eV )+r̄S/M0(eV )+ 〈[1+Mn(x,eV )]−1〉/2
,

(18)

where v = eV/� is the normalized voltage. The normalized
current Ĩ (v) ≡ I (eV/�)(L/σV ) is given by the relation
Ĩ (v) = ∫ v

0 σ̃d(v1)dv1 and, at large voltage, can be written in
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the form

Ĩ (v) = ĨN(v) + δĨ (v), (19)

where ĨN(v) = v/(1 + r̄S + r̄N) is the normalized current
through the contact in the normal state. The normalized excess
(δĨ = Ĩexc) or deficit current (δĨ = Ĩdef) is determined by the
expression

δĨ ≡ δĨ (∞) =
∫ ∞

0
[σ̃d(v) − 1] dv. (20)

It is valid at arbitrary temperatures because for the function
FV in Eq. (15) we have FV → 1 for V → ∞.

The current Ĩ (v) can be presented as Ĩ (v) = Ĩ< + Ĩ>, where
Ĩ< = ∫ 1

0 σd(v1) dv1 is a subgap current and Ĩ> = ∫ v

1 σd(v1) dv1

is the contribution from quasiparticles with energies above
the gap; the normalized current in the normal state is
ĨN(1) = (1 + r̄S + r̄N)−1.

We see that the excess current is determined by the retarded
(advanced) Green’s functions ĝR (A) that obey a Usadel-type
equation. This equation can be solved in limiting cases. We
consider a contact with a short n wire (L � ξS � √

D/πTc) in
which the interface resistances dominate (r̄S,N � 1), i.e., the
interface resistances are much larger than the resistance of the
n wire, RS,N � L/σ .

A. Retarded (advanced) Green’s functions

In the case of a short contact, the last term in the
denominator of Eq. (18) and the second term in Eq. (11) can be
neglected so that the Usadel equation for the Green’s functions
ĝR (A) acquires the form

∂x(ĝR∂xĝ
R) = 0, (21)

provided that L � ξS � √
D/Tc. We integrate Eq. (21) once

over x and obtain

Ĵ R (A) = (ĝ∂xĝ)R (A). (22)

From the boundary conditions (9) and (10) for the retarded
(advanced) Green’s functions, we have

2Ĵ R (A)L = r̄−1
S [�̂ĜS�̂ ,ĝ(0)]R (A), (23)

2Ĵ R (A)L = −r̄−1
N [ĜN ,ĝ(L)]R (A). (24)

Subtracting the first equation from the second we arrive at

[�̂ ,ĝ]R (A) = 0, (25)

where the matrix �̂ = �̂N + �̂S is a sum of contribu-
tions of the n/N and Sm/n interfaces �̂N = r̄−1

N X̂30 and
�̂S = r̄−1

S [G‖X̂‖ + G⊥X̂⊥]. The form of matrices X̂‖ and X̂⊥
depends on the type of a superconductor.

1. “Magnetic” superconductor Sm

That is, the superconductor Sm is represented by an S/F
bilayer with a thin ferromagnetic layer F. We assume that the
exchange field h is aligned parallel to the z axis, h ‖ ẑ. In this
case,

�̂
(a)
S ≡ �̂Sm

= r̄−1
S [GS+X̂30 + GS−X̂33 + (FS+X̂10 + FS−X̂13)] , (26)

with [47,48]

G
R (A)
S± = [ζR (A)(ε+h)]−1|ε+h| ± [ζR (A)(ε − h)]−1|ε − h|

2
,

(27)

F
R (A)
S± = �[[ζR (A)(ε + h)]−1 ± [ζR (A)(ε − h)]−1]

2
. (28)

The terms FS+X̂10 and FS−X̂13 in Eq. (26) describe the
singlet component and, respectively, the short-range triplet
component with the total spin of triplet Cooper pairs S normal
to the h vector.

Note that the energy gap � and the exchange field h in
Eqs. (27) and (28) mean the effective �eff and heff defined in
Eqs. (3)–(6). In the following, for brevity, we drop the subindex
“eff.”

2. “Triplet” superconductor ST

This case can be realized with the help of an S/F bilayer
with the h vector aligned, for instance, along the x axis. The
S/F bilayer is assumed to be separated from the n wire by a
spin filter oriented parallel to the z axis. Then,

�̂
(b)
S ≡ �̂ST = r̄−1

S [GS+(X̂30 + X̂03) + FS−(X̂11 − X̂22)].

(29)

The last term describes fully polarized triplet Cooper pairs
with the S vector oriented along the z axis.

3. BCS superconductor

For completeness, we consider also the case of the BCS su-
perconductor which is obtained from the case of a “magnetic”
superconductor Sm setting h = 0. Here,

�̂
(c)
S ≡ �̂BCS = r̄−1

S [GSX̂30 + FSX̂10], (30)

with

G
R (A)
S = ε[ζR (A)]−1, (31)

F
R (A)
S = �[ζR (A)]−1, (32)

and ζR (A) =
√

(ε ± i�)2 − �2.

B. General form of ĝ in case of large interface resistance

In order to make the results more transparent, we assume
that the parameter r̄N/r̄S is small and both parameters r̄N,S

are large (r̄N,S � 1). These conditions correspond to exper-
imental systems and mean that the S/n interface resistance
is much larger than the resistance of the n/N interface, and
both interface resistances are larger than the resistance of
the short n wire. Then, the solution for a small correc-
tion δĝR (A) = ĝR (A) − ĝ

R (A)
0 [where ĝ

R (A)
0 = ±X̂30 are the

quasiclassical retarded (advanced) Green’s functions in the
separated n wire] is

δĝR (A) ≡ δf̂ R (A) � r̄N

r̄S
Ĝ

R (A)
⊥ . (33)

We see that in the lowest approximation in the parameter
r̄N/r̄S only the condensate wave function, off diagonal in the
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Gor’kov-Nambu space, is changed due to proximity effect.
The correction δĝR (A) is small if the parameter γ ≡ r̄N/r̄S is
small or, in the case of the ST/n/N contact, if the parameter
h/� is small.

III. DIFFERENTIAL CONDUCTANCE AND THE I-V
CURVE IN A SHORT CONTACT

A. Differential conductance

Using the known function ĝR (A) = ĝ
R (A)
0 + δĝR (A) and

Eq. (18), we can readily calculate the normalized conductance
σ̃d(v) at T = 0. Thus, we obtain

σ̃d(v) = 1 + γ

γ + [νS + γf 2]−1

∣∣∣∣
ε=v

, (34)

with the functions

νS =

⎧⎪⎨
⎪⎩

Re{[ζR(ε+h)]−1|ε+h|+[ζR(ε−h)]−1|ε−h|}
2 , Sm/n/N

Re{[ζR(ε+h)]−1|ε+h|+[ζR(ε−h)]−1|ε−h|}
2 , ST/n/N

Re
{ |ε|

ζR+ (ε)

}
S/n/N

(35)

and

f 2 = Tr{(ĜR
⊥ + ĜA

⊥)2}
16

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[Re{ �

ζR (ε+h)
+ �

ζR (ε−h)
}]2+[Re{ �

ζR (ε+h)
− �

ζR (ε−h)
}]2

2 , Sm/n/N
[Re{ �

ζR (ε+h)
− �

ζR (ε−h)
}]2

2 , ST/n/N[
Re

{
�

ζR− (ε)

}]2
, S/n/N

(36)

where ζR
± (ε) =

√
±[(ε + i�)2 − �2]. Equation (34) deter-

mines the dependence of the normalized differential conduc-
tance on the normalized voltage v = eV/�.

The first term in the denominator, γ = RN/RS, determines
the resistance of the n/N interface, while the second term is
proportional to the resistance of the interface between the n
wire and the corresponding superconductor. The first term
in the square brackets, νS, determines the conductance of
this interface due to quasiparticles with energies above the
gap, whereas the second term, γf 2, is related to the subgap
conductance.

We analyze the differential conductance σ̃d(v) and the I -V
characteristics I (v),

I (v) =
∫ v

0
σ̃d(v1) dv1, (37)

for contacts of different types. Equations (34)–(37) allow
one to calculate the conductance and the I -V characteristics
of contacts under consideration. In Fig. 2, we show the
dependence of the normalized differential conductance σ̃d(v)
on the normalized voltage v for the three types of contacts, i.e.,
the Sm/n/N contact [Fig. 2(a)], the ST/n/N contact [Fig. 2(b)],
and the S/n/N contact, where S is a usual BCS superconductor
[Fig. 2(c)]. Note that the dependence σ̃d(v) for the case of
the BCS superconductor coincides with that for the case of a
“magnetic” superconductor if one sets h = 0.

Although the function σ̃d(v) in Fig. 2(c) looks like the
voltage dependence of the differential conductance of an

FIG. 2. The normalized differential conductance at low tem-
peratures (T � �) as a function of normalized voltage for the
(a) Sm/n/N contact, (b) ST/n/N (in both cases, the parameters are
γ = 0.3, h = 0.5 for the black solid line and h = 5 for the red dashed
line), and (c) S/n/N contact, where S is a BCS superconductor (the
parameter is γ = 0.3). Note that the quantities � and h are not the true
energy gap and the magnetic field, respectively, but in Eqs. (3)–(6)
the defined effective values (see also Appendix).

S/I/N junction (where I stands for an insulating thin layer),
it differs from the latter one because this dependence leads
to an excess current Iexc. This current is given by the value of
Iexc(h) in Fig. 4(a) at h = 0 (blue dashed line). The appearance
of the excess current is a direct consequence of the fact that
the integral

∫ ∞
0 dv [σ̃d(v) − 1] is not zero as it takes place in

tunnel S/I/N junctions.
It is seen from Fig. 2(c) that there is a nonzero subgap

conductance in the S/n/N contact. It is caused by a subgap
contribution related to the Andreev reflection. This mechanism
is also responsible for a zero-bias peak in the conductance that
has been observed in early experiments on S/n/Sm contacts
(here, Sm is an n-doped semiconductor) [51]. Theoretical
explanations for the observed subgap conductance are given
in Refs. [7,52,53].

In Figs. 2(a) and 2(b), we plot the voltage dependence of
the normalized conductance of the contacts of Sm/n/N and
ST/n/N types for different values of h. In both cases, the
subgap conductance is not zero, but it is small in contacts of
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FIG. 3. Zero-bias conductance as a function of normalized
exchange field h̃ for the contacts for the ST/n/N (black solid line),
respectively, S/n/N contact (red dashed line); in both cases, the
parameter γ = 0.2. Note that the quantities � and h are not the true
energy gap and the magnetic field, respectively, but in Eqs. (3)–(6)
the defined effective values (see also Appendix).

Sm/n/N type if the exchange field h is small compared to �.
The latter property is due to a negligible contribution to the
conductance in the subgap region because this contribution is
provided by fully polarized triplet Cooper pairs, the density
of which, FS−, decreases with decreasing h since FS− ∝ h.
Note that similar results (nonzero subgap conductance) were
obtained in Ref. [54], where differential conductance of an
F′/F/S structure has been studied. However, the case of fully
polarized triplet component has not been considered there.

The subgap conductance in another, although similar,
system has been calculated in Ref. [55] on the basis of
the scattering matrix approach. The authors considered a
half-metal/ferromagnet/superconductor contact in the ballistic
regime assuming that the magnetizations in half-metal and
ferromagnet are not collinear. They assumed also that only
a single conducting channel exists in the system so that the
quasiclassical theory can not be applied to the system. To
some extent, the results obtained in our paper and in Ref. [55]
differ. Although the subgap conductance σ̃d(v) calculated in
Ref. [55] differs from zero, it turns to zero at v = 0 whereas
σ̃d(0,h) obtained by us in this work is finite.

A similar system consisting of a half-metallic ferromagnet
and a superconductor has been studied in Refs. [56,57]. The
authors assumed that these materials are separated by a spin-
active interface. They also obtained the vanishing zero-bias
conductance for T → 0. In our case, the finite σ̃d(0,h) is caused
by unconventional Andreev reflection of triplet Cooper pairs
induced in the n wire due to proximity effect. This AR makes
the Sm/n interface partially transparent as it occurs in S/n
contacts [7,51–53].

The zero-bias conductance σ̃d(0,h) as a function of h is
depicted in Fig. 3 for the Sm/n/N and ST/n/N contacts. It
is equal to zero at h = 0 in the ST/n/N contact, where only
triplet Cooper pairs are present, and has a maximum at h = �.
As mentioned above, at h = 0 the amplitude of the triplet
component turns to zero, and hence the zero-bias conductance
vanishes.

B. Excess or deficit current

We investigate the I -V characteristics of the contacts of the
types Sm/n/N and ST/n/N.

FIG. 4. Dependence of the excess, respectively, the deficit current
on h for the (a) Sm/n/N and (b) ST/n/N contacts. Noticeably is the
nonmonotonic behavior of the I -V curve in the Sm/n/N contact. The
excess current in the ST/n/N contact turns to deficit current at low
h < hc (see text). The parameter γ has the values γ = 0.1 (black
solid lines), γ = 0.3 (blue dashed lines), γ = 0.5 (red dashed-dotted
lines), and γ = 0.7 (green dotted lines). The current is normalized
to the value of the Ohm’s law current at the voltage V = 1.0�/e,
i.e., I0 = IN(eV = 1.0�), where IN = V/R with the resistance of
the contact in the normal state R. Note that the quantities � and h

are not the true energy gap and the magnetic field, respectively, but
in Eqs. (3)–(6) the defined effective values (see also Appendix).

1. Sm/n/N contact

In the considered case of small but finite γ , the I -V
characteristics show an excess current. In particular, for
h = 0 we obtain Ĩexc ∝ γ ln(2/γ ) [or, with dimension,
eIexc(RS + RN) ∝ �γ ln(2/γ ) with γ = RN/RS]. The excess
current increases with increasing the exchange field h [see
Fig. 4(a)]. The I -V curve has a simple form for the case h = 0
(BCS superconductor). For small γ and � → 0, we obtain

Ĩ (v) =

⎧⎪⎨
⎪⎩

γ ln
( √

1+γ 2+v√
1+γ 2−v2

)
, v < 1

γ ln
(

2
γ

) + √
v2 − 1, v > 1.

(38)

In this case, there is an excess current in the I -V curve (see
Fig. 5).

2. ST/n/N contact

Using Eq. (20), we find the excess or deficit current for
small γ and h:

Ĩexc = (γ h4)1/3c3/2

2
− γ ln

(
2

eγ

)
, (39)

where c3/2 = ∫ ∞
0 (1 + x3/2)−1dx ≈ 1.79. One can see that at

h > hc ≡ √
γ [ ln(2/eγ )]3/4, there is an excess current and at

h < hc the excess current is converted into a deficit current
[cf. Fig. 4(b)].
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FIG. 5. Current voltage characteristics for the case of BCS
superconductor for γ = 0.2 (black solid line) and γ = 0.5 (blue
dashed line). The current is normalized to the value of the Ohm’s
law current at the voltage V = 1.0�/e, i.e., I0 = IN(eV = 1.0�).
The black dotted line indicates the Ohm’s law IN = V/R with
the resistance of the contact in the normal state R. Note that the
quantities � and h are not the true energy gap and the magnetic field,
respectively, but in Eqs. (3)–(6) the defined effective values (see also
the Appendix).

As is seen from Fig. 4, the magnitude of the excess current
Iexc in the case of the ST/n/N junction is comparable with the
excess current in an S/n/N junction with the same interface
resistances. This means that it can be measured experimentally
on existing experimental junctions.

IV. CONCLUSIONS

We studied transport properties of “magnetic” supercon-
ductor/normal metal point contacts of different types, in which
both the singlet and triplet Cooper pairs are present. It is
shown that, as it takes place in point S/n/N contacts with BCS
superconductor, the subgap conductance σsg and the excess
current Iexc are not zero even if only fully polarized triplet
component exists in the n wire. In this case, the σsg and Iexc

are caused by an unconventional Andreev reflection without
spin flip; the hole moving back along the trajectory of an
incident electron with a spin S has the same spin direction
as S. A similar AR, equal-spin Andreev reflection, has been
studied in a recent paper [58], where a contact between a
ferromagnet and topological superconductor with Majorana
modes has been considered.

We considered two types of contacts, namely, the Sm/n/N
contact, where both the singlet and triplet components exist,
and the ST/n/N contact, in which only fully polarized triplet
Cooper pairs penetrate into the n wire. In both types of contacts,
the subgap conductance and the excess current are present. In
the second type of contacts, in ST/n/N, these are caused by an
equal-spin AR. With decreasing the magnitude of the exchange
field h, the excess current in the ST/n/N contact is transformed
into a deficit current Idef. The systems considered by us can be

realized experimentally, taking into account a rapid progress in
preparing S/F nanostructures of different kinds [59–61]. The
obtained results can be used for identifying the long-range
triplet component and in future applications in spintronics [62].
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APPENDIX: GREEN’S FUNCTION IN AN S/F BILAYER

We consider an S/F bilayer and show that, under certain con-
ditions, the matrix Green’s function ĝω coincides with that in
a superconductor with a built-in exchange field h. We assume
that the thickness of the F layer dF is small so that the condition
dF � ξh ≡ √

D/h is fulfilled. Then, the Usadel-type equation
(7) in the F region can be integrated over the thickness and we
come to Eq. (25) with �̂± = τ̂3[GS + ω/εsg ± ih/εsg] + τ̂2FS,
where GS = FS = ω/ζω is the Green’s function in S,
ζω = √

ω2 + �2. The exchange field vector h is set along
the z axis. The subgap energy εsg is defined in Eq. (6) and we
use the Matsubara representation. The matrix ĝω is diagonal
in the spin-space with elements ĝω±. The retarded Green’s
function ĝR can be directly obtained from ĝω using the relation
ω = −i(ε + i0). The solution for ĝω can be easily found as in
Sec. II A and has the form

ĝω± = �̂±
a±

, (A1)

where a± =
√

(GS + ω/εsg ± ih/εsg)2 + F 2
S . If the resistance

of the F/S interface is large enough (this corresponds to
real experiments) so that the subgap energy εsg is small in
comparison with �, the solution (A1) can be written as

ĝω± = τ̂3[ω ± ih] + τ̂2εsg√
(ω ± ih)2 + ε2

sg

. (A2)

Equation (A2) shows that the Green’s function in the F layer
has the same form as in a superconductor with the energy gap
εsg and built-in exchange field h. This equation is valid if the
thickness dF satisfies the condition

DκSF

�
� dF �

√
D

h
. (A3)

As follows from this condition, the exchange field h can be
much larger than the effective energy gap εsg.
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