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Phase retrapping in a ϕ Josephson junction: Onset of the butterfly effect
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We investigate experimentally the retrapping of the phase in a ϕ Josephson junction upon return of the junction
to the zero-voltage state. Since the Josephson energy profile U0(ψ) in ϕ JJ is a 2π periodic double-well potential
with minima at ψ = ±ϕ mod 2π , the question is at which of the two minima −ϕ or +ϕ the phase will be trapped
upon return from a finite voltage state during quasistatic decrease of the bias current (tilt of the potential). By
measuring the relative population of two peaks in escape histograms, we determine the probability of phase
trapping in the ±ϕ wells for different temperatures. Our experimental results agree qualitatively with theoretical
predictions. In particular, we observe an onset of the butterfly effect with an oscillating probability of trapping.
Unexpectedly, this probability saturates at a value different from 50% at low temperatures.
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I. INTRODUCTION

The butterfly effect occurs in deterministic nonlinear sys-
tems, and, in essence, it refers to the extreme sensitivity
of the final state of the system to initial conditions [1,2].
The effect puts a clear distinction between determinism and
predictability. A canonical example [3] is the weather, which
cannot be predicted reliably for more than 3–5 days in advance,
although computing power allows us to make simulations
much farther ahead. Deterministic chaotic systems must
exhibit the butterfly effect. However, deterministic continuous
systems (also known as flows in nonlinear physics) with
dimensionality less than 3 cannot exhibit chaos [2], but
they can exhibit the butterfly effect. Below we investigate
experimentally one such system based on a Josephson ϕ

junction.
Josephson ϕ junctions (ϕ JJs) have attracted a lot of

interest in the past few years, both theoretically [4–14] and
experimentally [15–19], due to the peculiar physics and their
properties. In general, a JJ can be thought of as a system in
which a particle with coordinate ψ (Josephson phase) moves
along a one-dimensional (1D) potential U0(ψ). In the ϕ JJ, the
potential U0(ψ) has the form of a 2π periodic double-well
profile with degenerate minima at ψ = ±ϕ + 2πn, where
0 < ϕ < π depends on the parameters and n is an integer.

In the ground state (no current applied), the phase is
trapped in one of two wells of U0(ψ). Upon application of
the bias current I , the potential will be tilted as U (ψ) =
U0(ψ) − ψI�0/(2π ), where �0 ≈ 2.067 fWb is the magnetic
flux quantum. At some critical value of the bias current (tilt),
the phase escapes from the corresponding well and starts
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sliding down the potential. Therefore, in an experiment one can
observe two critical currents Ic− and Ic+, each corresponding
to the escape of the phase from different wells [9,18]. In
general, Ic+ �= Ic−. Thus, the measurement of the critical
current (Ic− or Ic+) can be used as a simple way to read out an
unknown state (−ϕ or +ϕ) of the ϕ JJ [18,19].

It is also interesting to understand in which of the two wells
the phase is retrapped when the bias current (tilt) is decreased.
In a previous experiment [18], we noticed that the retrapping
process depends strongly on temperature: for T � 2.4 K, the
destination well (state) is always +ϕ (if the JJ returns to a
zero-voltage state from positive currents and voltages), while
for low temperatures, T ∼ 300 mK, the destination well is
random. Theoretical analysis [13] of a simplified deterministic
model shows that the destination well is indeed +ϕ at large
damping α. However, it changes between +ϕ and −ϕ back and
forth as α decreases. Actually, the intervals of α corresponding
to the trapping in a particular well get shorter and shorter
as α → 0. This, in fact, results in a butterfly effect in the
limit α → 0, i.e., any tiny change (fluctuation) of the bias
current or the damping will change the destination well. In
the presence of noise (electronic or thermal), we expect [13]
that the probability P (α) to be trapped in a particular well
should exhibit smeared oscillations and should saturate at 0.5
for α → 0.

In this work, we present measurements of the probabilities
of phase retrapping in the ±ϕ wells as a function of tem-
perature, and we compare them with theoretical predictions.
We note that the model [13] represents a simplified version
of the real system, resulting from several approximations:
(a) an effective (spatially averaged) model was used, which
works well only for very short JJs and reduces an infinite-
dimensional system to a 2D one (without chaos); (b) only
“slow” (in comparison with the retrapping time) noise was
treated [13]; (c) a linear damping was assumed [13]. Therefore,
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it is necessary to check the predictions of the model [13]
experimentally.

Our results demonstrate a crossover from the deterministic
behavior of the probability to be trapped in the −ϕ well
P−(T ) = 0 at high temperature T > T ∗ to an oscillating
probability P−(T ) at the onset of the butterfly effect at T < T ∗.
However, at even lower temperatures P−(T ) saturates at about
0.33 instead of 0.5 predicted theoretically. Possible reasons for
this are discussed.

II. EXPERIMENTAL RESULTS

For our investigations, we have used a superconductor-
insulator-ferromagnet-superconductor (SIFS) JJ with a step-
wise thickness of the F layer (see Fig. 1), i.e., a JJ with
one half behaving like a conventional 0 JJ and the other half
behaving like a π JJ (also called 0-π JJ). This JJ is short
in the x direction (the length L is smaller than or of the
order of the Josephson length λJ ) and much smaller in the
y direction (w � L). Treating this JJ as a pointlike device
with the properties averaged along its length L, we obtain a ϕ

JJ with an effective (averaged) Josephson energy profile U0(ψ)
looking like a 2π periodic double well. Here ψ is the average
phase across the device. The sample described here was used
in our previous works before [18,19].

The current-voltage characteristic (IVC) at H = 0 and the
critical current dependence on the applied magnetic field Ic(H )
at T = 0.30 K are shown in Figs. 2(a) and 2(b). Here one can
observe the presence of the two critical currents Ic− and Ic+
in each direction of the bias.1

In our experiment, we measured the probability to trap
the phase in one of the two wells for different values of the
temperature in the range 0.27 < T < 2.30 K. Note that the
damping α is a function of the temperature T in our tunnel-like
ϕ JJ. So we change T to change α. We sweep the bias current
N = 104 times with a constant rate İ = 0.1194 A/s at H = 0
and obtain a histogram such as the one shown in Fig. 2(c). In
general, it consists of two peaks: one situated just below the
fluctuation-free Ic− and another one below Ic+. The probability
P± = N±/N that the phase was trapped and then escapes from

1Another main feature of the ϕ JJ is visible in the Ic(H ) curve
[Fig. 2(b)], which has cusplike minima that are point symmetrically
shifted from H = 0.

FIG. 1. Sketch of the sample under investigation—a (from bottom
to top) Nb|AlO|CuNi|Nb JJ of length L = 200 μm ∼ λJ and width
w = 10 μm � L. The critical temperature of the device Tc ∼ 9 K.
The magnetic field H is applied along the y direction.

FIG. 2. Current-voltage characteristic (a), critical current de-
pendence on the magnetic field (b), and escape histogram (c) at
T = 0.30 K. In (a), different colors correspond to different sweep
sequences of the bias current I . In (b), the magnetic field is applied
in-plane of the junction by means of a coil with μ0H = ηIcoil with the
coil factor η ∼ 5 μ T/mA. The histogram in (c), measured by using
sequence S1 pos, shows two peaks corresponding to the two critical
currents Ic±.

the ±ϕ well is proportional to the number of events N± in the
corresponding peak in the histogram.

We performed the escape measurements using two different
sweep sequences; refer to Fig. 2(a).
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S1. In the sequence “S1 pos(neg)” we sweep the current
I from zero (zero voltage) to a maximum positive (negative)
value with V > 0 (V < 0) at the McCumber branch. During
this forward sweep, we read out the value of the critical current
and add this to the statistics to produce a histogram later on.
Then we sweep back to I = 0. During this sweep, the phase
is retrapped in one of the wells, −ϕ or +ϕ, when the voltage
jumps back to V = 0. The value of the phase (−ϕ or +ϕ) will
be read out during the next cycle.

S2. In the sequence “S2 pos(neg)” the sweep starts from
the negative (positive) voltage state at the McCumber branch.
Then the current I is swept to a positive (negative) value up to
the resistive branch. During this sweep, the phase is retrapped
when the current approaches I = 0, but it is still negative
(positive), and then the critical current is read out (and added
to statistics) when the voltage jumps from V = 0 to V > 0
(V < 0). Finally, we sweep I back to the initial value.

Note that the probabilities P± to be trapped in the ±ϕ wells
(populations of histogram peaks) obtained using S1 and S2
are expected to be inverse, provided the potential U0(ψ) is
symmetric, i.e., P S1

± = P S2
∓ , because the trapping during S1

and S2 takes place at opposite values of the bias current (tilt).
Also, the results of “pos” and “neg” sequences are opposite.
Obviously, for any sequence, P− + P+ = 1. Therefore, below,
we discuss only P−(T ) for “S1 pos,” and the other P (T ) that
are supposed to be the same (P S1neg

+ , P
S2pos
+ , and P

S2neg
− ) may

be plotted in addition (see Fig. 3 below).
We have already seen [18] that for high damping, the

retrapping process is deterministic and we can predict the
destination well of the Josephson phase. Namely, at T > 2.3 K
the phase is always trapped in the +ϕ well, i.e., P− = 0.
However, as the damping decreases, the destination well
cannot be predicted and it depends on α and noise (thermal
or electronic) [13]. In our experiment, the damping should
depend on temperature quite strongly as in any tunnel junction.
Therefore, we study P−(T ) instead of the P−(α) in experiment.

FIG. 3. Retrapping probability P− of the phase in the −ϕ of the
Josephson potential U (ψ) for different temperatures T at zero applied
magnetic field H . The two sets of data correspond to two different
sweep sequences of the bias current I .

Also, the noise is most probably dominated by electronic noise
in the setup rather than by the thermal fluctuations in the JJ
itself. Thus, it does not depend strongly on T .

In Fig. 3, we present the experimentally determined
probability P−(T ). The vertical line in the figure indicates
the temperature T ∗ ≈ 2.25 K, where the boundary between
deterministic and nondeterministic retrapping is situated. For
T < T ∗, we observe an increase and several oscillations of
the probability P−(T ), qualitatively similar to the theoretical
prediction [13]. Three peaks at T = 2.15, 1.76, and T =
1.56 K indicate an enhanced probability to be trapped in the
“unnatural” −ϕ well. Those peaks are the smeared traces of
the regions where the phase is trapped in the −ϕ well in the
noiseless case. For T < 1.3 K, the P−(T ) saturates similar to
the theoretical prediction [13]. However, the asymptotic value
of P− in this region is ≈0.33 rather than 0.5 as expected from
the theory.

Retrapping measurements with the other possible sweep
sequences show similar results (“S2 neg” is shown in Fig. 3,
“S1 neg” and “S2 pos” are not shown). The results also do not
depend strongly on the ramp rate İ . Very similar results can
be obtained by just moving the bias point along IVC with an
unknown ramp rate defined by measurement electronics.

III. DISCUSSION

Here we discuss several possible reasons that can lead to
the saturation value of P−(T ) different from 0.5.

A. Asymmetric U0(ψ)

First, one of the possible reasons can be an asymmetry of the
potential U0(ψ). The limit α → 0 implies that the retrapping
current IR → 0. Therefore, in this limit, the potential is
untilted and, in the case of a symmetric potential, one expects
equal probabilities of trapping for both wells. If, however, the
potential is asymmetric, P−(α → 0) �= 0.5.

Of course, the potential U0(ψ) in our ϕ JJ can be somewhat
asymmetric, in particular because of nonuniformities along
the JJ or because of a remnant magnetic field. However,
an asymmetric potential will result in asymmetric critical
currents ±Ic+ and ±Ic−. In our experiment, we can affect the
asymmetry of the potential by applying an external magnetic
field H . We have repeated the measurements shown in Fig. 3
applying a small [|Icoil| < 1 mA; see Fig. 2(b)] magnetic field
such that the measurements always take place at symmetric
critical currents. We have found that such a technique changes
the P−(T ) curve in the vicinity of the peaks, however the
saturation value remains almost unchanged.

One can further argue that the symmetry of the critical
currents does not guarantee the symmetry of the potential, as
the measurements of the critical currents are the measurements
of the maximum slopes of the potential rather than the whole
potential. However, such a coincidence is very improbable.
Nevertheless, we have generalized the deterministic model
[13] to the case of an asymmetric potential and weak noise
(quasideterministic limit), i.e., the noise energy is smaller than
the depth of each potential well, measured relative to the
potential barrier separating the wells. Qualitatively, one can
say that at α → 0, the particle experiences several dephasings
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during the relaxation process and arrives at the decision point
(last pass over the barrier separating the well) with a small,
but random energy (velocity). Then one can conjecture that
P± ∝ Q±—the heat dissipated by the particle starting with
zero velocity at the barrier during the “left and back” (along
−ϕ well) or “right and back” (along +ϕ well) semiperiods.
That is, the more energy that is lost during traveling along a
particular well, the larger is the probability to be trapped in
this well. In the perturbation theory limit [13] (α → 0),

Q± = ±2α

∫ ±ψ(Ubar)

ψ0

√
2[Ubar − U0(ψ)] dψ, (1)

where ψ0 is the phase corresponding to the “small” maximum
of the potential U0(ψ) between the wells, i.e., the barrier,
Ubar = U0(ψ0). The phases ±ψ(Ubar) are the phases at the left
and right slopes of the double-well potential where U0(ψ) =
Ubar. The final normalized expression for the probabilities is

P± = Q±
Q+ + Q−

, (2)

which is independent of α.
To check our conjecture, we have performed direct numeri-

cal simulations of a particle falling into a double-well potential
subject to a weak noise, which confirms the prediction given
by Eq. (2); see the Supplemental Material [20].

Then, we tried different asymmetric potentials, having the
same symmetric ±Ic+ and ±Ic− critical currents, and we
estimated P− using Eq. (2). It turns out that one can find
some asymmetric profiles U0(ψ) that give P− ≈ 0.33; see
the supplemental material [20]. However, for such profiles
the dependence of ±Ic±(H ) is not point symmetric as in
experiment. Of course, one can further argue that the magnetic
field H also has an asymmetric effect on U0(ψ), rather than
just adding an odd function. The reason for this can be the same
as the reason for the asymmetry of U0(ψ) without a magnetic
field. This special asymmetry can make ±Ic±(H ) symmetric,
as in experiment. However, again, such a coincidence is
highly unlikely. Thus, to explain P− ≈ 0.33 with the help
of an asymmetric potential, we have to make two improbable
assumptions.

Finally, the strongest argument in favor of a symmetric
potential is the fact that the dependences P−(T ) obtained using
S1 and P+(T ) obtained using S2 almost coincide; see Fig. 3.

B. Saturation of damping α(T )

Actually, the simplest and most probable reason for our
observation is the saturation of damping α(T ) at low tem-
peratures caused, e.g., by leakage currents in the barrier. If
the damping α(T ) does not decrease further with T → 0, but
saturates below Tsat at the value αsat, then in the P−(α) plot we
are able to go only down to αsat, where P−(α) is not saturated
yet but still performs decaying oscillations. So, what we see
in the limit T → 0 is then just P−(αsat), which happens to be
0.33 in our system.

To check this, we determine α(T ) from IVCs taken at
different temperatures. The pitfall here is that our SIFS JJ
is not RSJ-like, i.e., the resistance is voltage-dependent and,
strictly speaking, α is not defined. However, our task is not
to determine the exact value of α, but rather to see whether

FIG. 4. Plot of α(T ) obtained by means of fitting IVCs as
described in the text.

it saturates or not, and at which T . For this purpose, we have
performed a fitting of the low-voltage part of experimental
IVCs by solving the 1D perturbed sine-Gordon equation for a
0-π JJ with constant (x-independent) damping α; see Fig. 1.
Before doing these fits, we estimated the other key parameters
of our JJ, such as its Josephson length λJ , and critical current
densities jc0 and jcπ of the 0 and the π parts, respectively,
by fitting the numerically obtained Ic(H ) dependence to the
experimentally measured one. The dependence α(T ) is then
obtained from fitting IVCs at different temperatures and is
shown in Fig. 4. One sees that at T < Tsat ≈ 1.2 K, the
damping α(T ) saturates, presumably due to leakage. Self-
heating at T ∼ 1 K is still a minor effect.

Knowing the α(T ) dependence, we have also performed
simulations of the retrapping probability for different values
of T . Since our 0-π JJ is not extremely short, the model of a
pointlike JJ with a biharmonic averaged current-phase relation
is valid only qualitatively. Therefore, for simulations we again
used a 0-π JJ of finite length to be as close as possible to
the experiment. The thermal noise term was taken as ∝ T .
The results show a behavior of P−(T ) qualitatively similar
to the experimental one in Fig. 3, i.e., P−(T ) makes a few
oscillations and saturates at a value different from 0.5 (e.g.,
0.21) as T decreases (not shown). The discrepancy between
the experimentally and numerically obtained saturation value
of P−(T → 0) can be caused by some fine details, such as
nonlinearity of the damping in experiment or x-dependent
damping in the sample (different damping in 0 and π parts).

Nevertheless, we have checked that in our simulations
P− → 0.5 when the damping becomes much smaller than
αsat = 0.057—the saturation value in Fig. 4. During this
simulation, the noise was kept constant and corresponding to
a value T = 300 mK (constant noise amplitude independent
of α). These results support our claim that the saturation of the
damping α(T ) leads to P−(T → 0) �= 0.5.

Finally, we would like to estimate whether the peak width
in the P−(T ) plot in Fig. 3 is in agreement with the noise level.
The noise amplitude in our setup

√〈δI 2〉 ∼ 1 μA. In normal-
ized units,

√〈δγ 2〉 ∼ 0.002. This translates into the “noise”
in α as

√〈δα2〉 = √〈δγ 2〉/I (�0), where [13] I (�0) ∼ 1.
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Using the α(T ) plot in Fig. 4, one can measure that above
1.5 K the slope ∂α/∂T ≈ 1/(60 K). This gives

√
〈δT 2〉 ∼

√
〈δα2〉 ∂T

∂α
∼ 0.002 × 60 K = 0.12 K,

in good agreement with Fig. 3. Note, however, that at T <

1 K, where the α(T ) dependence saturates, the slope ∂α/∂T

vanishes, which leads to
√〈δT 2〉 → ∞. In this sense, a weakly

pronounced maximum at T ∼ 1 K can be yet another stretched
oscillation.

IV. CONCLUSIONS

We have performed measurements of the phase escape and
retrapping from/in two distinct states ±ϕ of a Josephson ϕ

junction in a temperature range from 0.3 to 3 K. We have
seen that retrapping is deterministic above some damping
(temperature) α∗ (T ∗). At α < α∗ (T < T ∗), the probability of
trapping in the unnatural well P−[α(T )] grows and oscillates,

demonstrating the onset of the butterfly effect as predicted
earlier [13]. However, we observe that the probability P−(T )
saturates at a level different from 0.5 most probably because
α(T ) saturates at its minimum value αsat for T < Tsat. Thus,
we were not able to penetrate deep into the region of the
butterfly effect. Further experiments with the ϕ JJs showing
lower damping, e.g., an effective ϕ JJ based on dc SQUID
[21], may help us to move further in this direction.
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